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ESTIMATORS FOR THE LC50 

J.A.Hoekstra 

ABSTRACT 

In this paper methods to estimate the median lethal concentration (LC50) are 

revieved. The performance of the methods is examined by draving together 

information from the statistical literature and ovn simulation studies. 

Estimation from datasets with limited occurrence of partial response (>0%, 

<100%) receives particular attention. 

Amongst the methods compared are maximum likelihood estimation based on the 

logit model, the method of Spearman-KSrber and the moving average procedure. 

The most important difference between the methods lies in the different 

demands they make on the data to be applicable. In circumstances where they 

can all be applied results are similar. 
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1. Introduction 

A common measure of the toxicity of a substance to a species is the median 

lethal (effective) concentration (dose) denoted by LC50 (LD50, ED50). This is 

the concentration at which 50% of the population is killed within a fixed 

time. The LC50 is estimated from the results of an acute bioassay. In table 1 

an example is given of a bioassay to determine the toxicity of trichlorophenol 

to the earthworm Eisenia andrei. Relevant for the estimation procedure is the 

limited occurrence of concentrations with partial mortality (> 0% and < 100%). 

This can be caused by small variation in tolerance between individuals of an 

assay and/or lack-of-knowledge of the toxicity of the substance. A second 

aspect of the data is the incidental occurrence of mortality in the control 

group, indicating mortality factors other than the toxic substance on test. 

The dataset is characteristic for many toxicity experiments with earthworms 

and indeed with many other species as well. Some statisticians would argue 

that this type of data is too poor for statistical analysis. However, given 

that it was not known beforehand between which concentrations the LC50 would 

fall, the data contain a lot of information and it is worthwile to summarize 

this information succinctly. Of course, sometimes a design providing more 

information would have been possible with the same resources and within 

reasonable time. This subject will not be pursued in this paper. 

Much is published on methods to estimate the LC50 (e.g. Finney, 1971, 1585; 

Hamilton et al., 1977; Hoekstra, 1987; James et al., 1984; Kooijman, 1981, 

1983; Killer and Halpern, 1980; Racine et al., 1986; Stephan, 1977; Thompson, 

1947; Williams, 1986). In this paper the methods will be discussed and 

relations between methods indicated. I will not attempt to give a complete 

overview, but the methods known by me to be advocated for routine data- 

analysis of non-sequential designs will be included. For sequential methods, 

which can reduce the number of animals to be tested, see Govindarajuluh 

(1988) . The problem of possible dependence between responses will not be 

discussed (see e.g. Williams, 1982; Moore, 1987). Analysis of multifactor 

bioassays (Finney, 1971) and modelling the effect of different exposure - times 

(Ten Berge et al., 1986) is not considered either. 

Section 2 will deal with methods based on tolerance distributions, section 3 

with tolerance distribution-free methods. Comparisons will be made in section 

4, with attention for their usefulness for data as described above. Section 5 

contains recommendations. 
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Table 1 Toxicity of 2,4,5-trichlorophenol to the earthworm Eisenia andrei 

concentration mgAg 0 0 0 10 10 10 18 18 18 32 32 32 56 56 56 100 100 100 

number tested 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 

number killed 001 000 000 000 97 10 10 10 10 

Source: C.A.M. van Gestel <1987, unpublished data). 

2, Methods based on tolerance distributions 

2.1. The problt and the logit model 

P(x), the probability of response in relation to the log concentration x of 

the toxic substance is most frequently modelled by a probit or a logit model 

(Finney, 1971; Ashton 1972), formulated as: 

o+/5x J 
P(x) - J _1_ exp (- u /2) du 

J2x 

and P(x) — _1_ , respectively. 

1 + exp (-a -£x) 

Here, a is a location and p a scale parameter. 
The models can be conceived as tolerance distributions: 

each individual is characterized by a log concentration just sufficient to 

kill it (its "tolerance"). The probability that an individual, randomly drawn 

from the population, will die at a given log concentration x is: 

x 

P(x) - / f(u) du, 

- OO 

in which f(u) is the density function of the tolerance in the population. The 

probit and logit model assume a normal and logistic density, respectively. 

Both functions are symmetric. Some asymmetric and more heavy tailed models are 

discussed by Goedhart (1986). Hamilton (1979) and James et al. (1984) use 

symmetric, heavy tailed distributions in Monte Carlo studies to compare the 

robustness of different estimators. Generally, these models need large sample 
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sizes for adequate estimation, and are seldomly applied to analyse data. More 

widely used is the extension of the probit or logit model with one parameter 

to allow for mortality in absence of the toxic substance: 

x 

P(x) - C + (1 - C) / f(u) du. 

- CO 

C is the background mortality probability. The LC50 is now defined as the 

point at which P - 1/2 (1 + C). For interpretation, Hoekstra (1987) 

distinguishes between background mortality caused by natural factors and 

background mortality by the experimental circumstances, like spraying or 

manipulating the animals. In the last case, to allow extrapolation to a 

natural situation without artificial mortality, it has to be assumed that the 

artificially killed animals are not the ones also most sensitive to the 

poison. If the background mortality is the result of natural processes, 

however, this extrapolation is unnecessary: the LC50 can be interpreted as the 

concentration lethal to 50% of the population of individuals that would have 

survived in absence of the poison. No assumptions about independence of 

mortality causes need be made. The above model is implicitly assumed in 

Abbott's formula (1925) to "correct" the data when background mortality is 

observed. However, direct estimation of the model is preferable to Abbott's 

correction because the last method does not account for uncertainty in the 

estimate of the background mortality probability C. To ignore the background 

mortality can lead to bias in the estimate of the LC50 (Hoekstra, 1987). 

2.2. Estimation 

If a probit or logit model is used, maximum likelihood estimation (MLE) of the 

log (LC50) - p - -a/p is the prevalent method. The estimates are obtained 

either numerically (Finney, 1971) or graphically (Litchfield and Vilcoxon, 

1949). The last method seems rather outdated. An alternative estimator is 
2 

minimum x (Ashton, 1972). 

Confidence intervals can be constructed by applying Fiellers theorem (see 

Finney, 1978) or the delta-method (see, e.g., Hamilton, 1980). The first 

method uses normal approximations for a and fi . The second uses normal 

approximation for a/$ itself, resulting in symmetric intervals. Goedhart 

(1986) found for 2 investigated data sets that the approximations for a and fi 

were the better. Other parametric methods to obtain confidence limits are the 

parametric bootstrap (Efron, 1985) and Bayesian procedures (Racine et al., 
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1986), which however up to now did not prove their superiority to the simpler 

Fieller method. Recently, Sansthanan et al. (1987) developed a trimmed logit 

method in analogy with the trimmed Spearman-KSrber method (see Section 3.1). 

All methods described above break down if there is just one or no 

concentration at which partial kill occurs: the MLE of p is then infinite. 

(Computer programs do not always warn against this situation. A convergence 

criterion can be met before f) causes overflow, in which case faulty estimates 

will be given.) 

Williams (1986) points out that w*ith one partial kill a confidence interval 

for the LC50 can still be determined by likelihood methods: the interval is 

given by the set of values not rejected by a likelihood ratio test. The 

likelihood ratio test statistic is obtained by subtraction of the deviance 

under the full model (both parameters estimated by MLE) from the deviance of 

the model under the null hypothesis (fixed value of p, 0 estimated by MLE). In 
case of one partial kill the full model has zero deviance. 

_Tolerance distribution-free methods 

3.1. Spearman-KSrber method 

The method of Spearman-KSrber (Spearman, 1908; KSrber, 1931; Finney, 1971) 

obtains an estimate of p as a weighted average of the mid-points between 

successive log concentrations. The weights are the estimated tolerance 

densities at the midpoints. Let x^ < X£ < ... < x^ be the log concentrations 

and Pj^, P2. Pk the observed proportions mortality. The number of 

individuals tested at Xj^ is denoted by n^ If p1 - 0 and pk~ 1, the Spearman- 

KSrber estimator (SK) can be written as: 

k-1 

i-1 

(P i+i • V 
2 

If ^ 0 or pk p 1 a conventional rule is to extend the series of 

concentrations with (unobserved) next level, at which p is assumed to be 0 or 

1, and to apply the above formula to the extended series. 

The formula is an approximation of: 

E (x) f(u) u du 

if the density vanishes outside the range (x., x^.) . Equating the above 

estimator of the mean to the median lethal dose, implies that it is assumed 

that the underlying tolerance distribution is symmetric. 
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\0 7. - Trimmed Spearman - Karber estimate 

The original SK-estimator is applied to data with proportions between 0. I and 0 9 ('*■) supplemented 

with the estimated values at O.t and 0.9 (o). The variance formula is adopted to account for this modification. 
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The 

V 
variance of J is obtained by substituting Pi(l-pi)/n1 for the variance of 

k-1 

Var (£) - £ Pl (1-Pl) (x1+1 - xi.1>2/4n1 

i-2 

Sometimes ^ is replaced by nj^-1. Tuo further modifications on the method need 

to be mentioned. The first is initial monotonization of the proportions by 

combining the number of responses and subjects of adjacent concentrations 

whenever the ordening p^^ < p2 <-< pk is violated. The monotonized 

proportions are the MLE’s of the true mortality probabilities when no specific 

tolerance distribution is assumed (Barlow et al., 1972). 

The second modification is due to Hamilton (Hamilton et al., 1977 1978- 

Hamilton, 1979, 1980). He proposes symmetrically trimmed versions of the 

Spearman-KSrber estimate in analogy of the trimmed means for continuous data 

with heavy tailed distributions. The method is exemplified in Figure 1 for the 

10% trimmed Spearman-KSrber estimate (SK10%). 

Note that the SK50% is equivalent to the median of the empirical tolerance 

distribution, and amounts to linear interpolation between the two dose- 

response points that enclose the 50% mortality (Hamilton, 1979).The variance 

is obtained by application of the delta-method (Hamilton 1979, 1980). In all 

versions of the Spearman-KSrber method 95% confidence limits are derived as p 

+ 2 s.e. (p). 

^ or orle csn av°id introducing unobserved concentrations with 

assumed 0% or 100% mortality by the procedure of symmetrical trimming. 

3.2. Moving averate 

This method (Thompson, 1967) is seldomly mentioned by statisticians, but 

popular amongst ecotoxicologists (Stephan, 1977). 

It amounts to calculating moving averages of the pt and x^ followed by linear 

interpolation between the two averages x* and x* for which the p* 's enclose 

0.50: J J 

" - Xj* + a.<xj+1*- x/) 

. _ _ St St St 
a - (0.5 - Pj) / (Pj+1 - Pj ) 

The variance is approximated by the delta-method, and a confidence interval 

obtained by p ±2 s.e. (p). Bennett (1952, 1963) improved the efficiency of 
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the estimator by weighted averaging according to number of tested individuals 

and by angular transformation of the proportions. 

The span of the averaging procedure should be chosen such that p*'s exist that 

enclose 0.50. A large span implies the assumption of symmetry. 

Vhen "averaging" takes place over span 1, the method is equivalent to SK50%. 

Averaging over infinite span would equal the untriramed SK (Finney, 1953). 

3.3. Other distribution-free methods 

Robust estimators for the location of a continuous distribution have been 

adapted for quantal bioassay data. Table 2 provides a list with references. 

All estimators are for the centre of symmetry, giving less weight to 

observations at the tails. Asymptotic considerations and small sample 

simulations suggest that these estimators are generally comparable with 

trimmed or untrimmed Spearman-KSrber estimators (Miller and Halpern, 1980; 

Hamilton, 1979; James et al., 198A). The logistic scores estimator developed 

by James et al.(198A) seems to be an exception. 

It is that value of ^ that satisfies: 

n 

1 ^ J | n < f (*!> +1 - t <.2 m - )) I Q 

n i_1 [ 2n+l ] 

J is the logit function J (t) - log (t/(l -t)), and t is the empirical 
(monotonized) distribution function. For the logical development of this 

estimator see James et al. (198A). As far as I know, no estimator of the 

variance has been developed so that the method is not yet ready for practical 

use. Shuster and Yang (1975) present the MLE of the smallest such that the 

response probability is no less than a required level, based on the minimal 

assumption that the tolerance distribution exists (i.e. p is a non-decreasing 

function of x). Recently, Glasbey (1987) derived estimators under different 

sets of assumptions, namely that the tolerance distribution exists, is 

unimodal, is symmetric, or is symmetric and unimodal. Because no intrapolation 

between observations is performed, the assumption of symmetry generally does 

not result in a point estimate, unlike the method of Spearman*Kfirber. 

Stephan (1977) suggested that in absence of partial kills, the highest 

concentration with complete survival and the adjacent lowest concentration 

with complete mortality can be used as limits of an interval with confidence 

level: 

(1 - 2 (l/2)n) x 100%. 
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Here, it is implicitly assumed that all 0% responses precede the 100% 

responses. This procedure is informally justified and extended in the 

Appendix. 

Table 2 

Robust 

Name_ 

Trimmed Spearman-K&rber 

One-Step Huber M-estimator 

Sine Curve M-estimator 

Tukey Biweight 

Logistic Score 

Hodges-Lehmann 

stimators of the LC50 

_Reference_ 

Hamilton et al., 1977 

Andrews et al. , 1972 

Andrews et al., 1972 

Miller and Halpern, 1980 

James et al., 1984 

James et al., 1984 

4. Comparison 

4.1. Introduction 

Comparison of LC50-estimators is complicated by the fact that their 

performance depends quite heavily on the design of the bioassay in relation to 

the underlying tolerance distribution. A further complication is the fact that 

most estimators or their variances cannot be calculated for particular 

datasets. How does one compare the performance of methods if some are not 

applicable to some realisations of a model/design combination? How does one 

judge the true confidence level of a method if it does not provide confidence 

intervals in a number of cases?- I will confine the comparison to the maximum 

likelihood and minimum x estimators based on the logit model (MLE and MCS) , 

untrimmed and trimmed versions of the Spearman-KSrber estimator (EK), the 

method of moving average (MA), the logistic scores estimator (LS) and interval 

estimation by the likelihood ratio method (LR). 

In section 4.2 I will summarize articles in which the methods are compared, 

necessarily with a quite detailed description of the circumstances under which 

the comparisons are made. In section 4.3 I will add some results of own 

simulation studies. In section 4.4 conclusions will be drawn. 
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4.2. f-Uerafurs 

2 
The merits of MLE and minimum x have been disputed extensively (Berkson, 

1980). Which method is best seems to depend very critically on the design and 
2 

the chosen criterion for performance. Generally, minimum x seems better in 

terms of estimating a and from the logit model (Berkson, 1955; Smith et al. , 
2 

1984) , however MLE may outperform minimum x substantially in estimating the 

log LC50 - - a/fi (Hamilton, 1979; James et al., 1984). 

Finney (1950, 1953) compared the performance of MLE, SK and MA with respect to 

asymptotic variance and bias under the probit (1950) and logit (1953) model. 

The experimental design was chosen to be an unlimited series of equally spaced 

log concentrations each with n observations. In practice, the results can be 

expected to hold as long as the range of concentrations covers the tolerance 

density to a large extent. In this situation, the observed response rates 

should range from approximately 0% to 100%. 

Included in the study is the effect of the spacing between designpoints, 

measured relative to the variance of the tolerance distribution (the variance 

is inversely related to the slope P). The asymptotics refer to n -* Also 

included in the comparison is the effect of the distance of /i to the nearest 

designpoint, i.e. the effect of asymmetry of the design with respect to the 

model. 

Important conclusions are: 

- SK is identical to logit-MLE (except for discontinuity in the 

distribution of estimates). 

- MA can best be applied with the largest possible span, once a data set has 

been obtained. It then becomes similar to SK. 

If the design is asymmetrical about /i, SK and MA have a bias independent of 

n. The wider the spacing of the designpoints, the larger the bias becomes. 

- The variance of all three estimators is strongly dependent on the distance 

from /j to the nearest designpoint. This instability of the variance 

increases with the spacing between designpoints. MA with span 1 (using 

observations at just 2 designpoints) is the most sensitive. 

Stephan (1977) discusses the same methods, indirectly referring to the design 

by mentioning different types of outcomes. He pays attention to the 

possibility of datasets with no or just one concentration with partial kill. 

This implies wide spacing of the log concentrations on test relative to the 

variance of the tolerance distribution. Stephan (1977) advocates the moving 

average method because of its calculability in cases when p^ r* 0 or p^ r* 1 

(unlike the untrimmed SK which would need undesirable fabrication of data) and 

when there is just one level with partial kill (unlike MLE). However, he does 
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not consider the efficiency of HA. This can be low if one is forced by the 

outcomes to take averages of small span to obtain averages that enclose 50% 

mortality. This occurs when the observed concentration range covers the 

tolerance density only partially. 

Hamilton (1979) and James et al. (1984) carried out large simulation studies 

to compare a number of estimators under a variety of symmetric tolerance 

distribution models. The estimators include the logit MLE and (monotonited) 

Spearman-K&rber estimations without and with trimming (trimming percentages 5, 

10, 20, 50 %). Hamilton uses dosages x - 1,2 ...10, with n - 5, 10, 20. The 

true value of /j is fixed at x — 5.5. 

The simulated tolerance distribution models include heavy tailed and 

contaminated distributions. For comparison of both studies I will use the 

logistic distribution with 10% contamination with another logistic 

distribution having 100 times the variance of the first. All distributions are 

scaled so that P (3) - 1- P (8) = 0.01. For heavy tailed and contaminated 

distributions this results in steep tolerance curves. For the above mentioned 

contaminated logistic distribution no designpoint has a response probability 

between 0.1 and 0.9. Many datasets with one or no partial kills are the 

result. Robustness of an estimator under different tolerance distributions is 

therefore confounded with applicability of the method to datasets with few 

partial kills. MLE is the only method included in the study that needs at 

least 2 partial kills. James et al. (1984) used x - 1,2...11, with n ■- 10, 20 

and p - 6. The distributions were scaled so that P (3) - 1-p (9) = 0 01 

However as their design includes p as designpoint. appreciable stochastic 

variation is left at least at this point, even for heavy tailed distributions. 

The outcomes of the two studies differ remarkably.Th.e efficiencies of the 

trimmed SK estimators in the study of James et al. (1984) are much lower and 

not as strikingly different as in Hamilton's article, and sometimes the order 

is reversed. For example, Hamilton's SK50% has a mean squared error (KSE) of 

0.0014 for the contaminated logistic (n-20) and is in this respect 5.6 times 

better than SK. The tables of James et al. (1984) imply an MSE of 0.033 for 

SK50%, 0.578 times worse than SK. Smaller but still appreciable differences 

exist for trimmed Spearman-KSrber estimators with smaller trimming 

percentages. These differences are attributable to the different position of 

the dose levels relative to p in the two studies. It may be recalled from 

Finneys study that the variance depends quite heavily on the location of 

design with respect to /i. This explanation was confirmed by a small simulation 

study (100 repetitions, n-10) using Hamilton's design and a logit tolerance 

density with 0-6. If p was fixed at 5.5 the MSE of SK50% was 0.0035, if p 



vss randomly dravrn from a uniform distribution betveen 5 and 6 (100 

independent drawings), the MSE increased to 0.0251. 

Another consequence of considering just one symmetric position of p is that 

the bias cannot be properly studied. Both studies explicitly mention the 

probable absence of bias due to the symmetry of the design with respect to p. 

The conclusions of the two simulation studies are as follows. 

Hamilton (1979) recommends the 10% or 20% trimmed SK for n - 10,20 because of 

their favourable MSE under a variety of tolerance models (but we have seen 

that his MSE's are misleadingly small). James et al. (1989) find that SK5% 

performs quite well. Heavier trimmed SK's were never more efficient than the 

untrimmed SK. The logistic scores estimator first presented in this study is 

overall the best, its efficiency is up to 30% higher than SK under heavy 

tailed models and less than 20% lower under the logit model. 

Miller and Halpern (1980) study asymptotic properties (n -» ®, difference 

between designpoints -* 0 and infinite number of designpoints) of several 

robust estimators and find that SK10% performs better than SK5% for two very 

heavy tailed distributions but less for moderately contaminated 

distributions. Hamilton (1980), using the same design and tolerance 

distribution as he did before, compared 95% confidence intervals obtained from 

logit-MLE (delta-method) and trimmed SK's in a Monte Carlo study (n - 

5,10,20). The empirical coverages never fell below 91% for any of the methods. 

I consider this to be close enough to the nominal value. With strongly 

contaminated steep tolerance distributions MLE, SK, SK5% and SK10% all 

resulted in conservative confidence intervals, MLE giving the widest intervals 

in cases where all methods could be applied (>1 partial kill). We expect these 

conclusions to be valid also if the centre of the design is chosen randomly 

vith respect to /j. 

Williams (1986) comes to the conclusion that for small sample sizes MLE- 

intervals obtained by the Fieller method are conservative even under the logit 

model itself. He uses designs with a total of 20 to 30 observations spread 

over 4 to 6 dose levels and different values of the design centre relative to 

p. For some simulations the empirical confidence probability of MLE exceeds 

98%. The LR- intervals were reported to be liberal, but rarely fell below 93% 

confidence probability. 

The simulation study included models leading to substantial percentages of 

datasets vith one or no concentrations vith partial kill. 

In summary, the literature seems to indicate for designs that cover roost of 

the tolerance densities and small and moderate sample sizes (10 levels, n — 5, 

10) that: 
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(i) MLE, SK and SK5% do not differ much in terms of MSE. SK5% is perhaps the 

best because it performs well under a variety of distributions. Only for 

very heavy tailed tolerance distributions SK10% may outperform the 

earlier mentioned estimators. 

(ii) Empirical confidence levels from MLE, SK5% and LR are reasonably close to 

the nominal value. For steep or heavy tailed distributions MLE gives the 

widest confidence intervals.The MLE-intervals obtained with Fiellers 

method are the most conservative. 

(iii) The logistic scores estimator deserves further investigation (performance 

of variance estimator, confidence intervals etc.) 

To confirm some of the above conclusions under the situation that the centre 

of the design is randomly located with respect to p, and to include the moving 

average method (MA) in the comparison, a small simulation study was performed. 

^•3 Additional simulation study 

MLE, LR, SK and MA with span 8 are compared using as design x - 1,2,... 10 

with n - 10 at each level. The position of p is drawn from a uniform 

distribution between 5 and 6, for each of the 1000 simulated datasets 

independently. This corresponds to the (still optimistic!) practical situation 

of knowing that /i falls in the central interval, but not its exact location. 

The underlying tolerance distribution was the logistic distribution with & - 

1,2,3 and 6, corresponding to an increasingly wider spacing of the design with 

respect to the variance. The average percentages response at the 10 

designpoints are given in Table 3. 

The results are presented in Table U. 
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Table 3 

x 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Average percentage response in simulation study 

1 2 

1.0 0.0 

3.0 0.1 

7.8 0.7 

18.5 5.6 

36.6 28.8 

62.0 71.7 

80.5 94.6 

91.9 99.3 

97.0 99.9 

99.1 100.0 

3 6 

0.0 0.0 

0.0 0.0 

0.1 0.0 

1.6 0.0 

21.5 10.7 

78.0 87.7 

98.6 100.0 

100.0 100.0 

100.0 100.0 

100.0 100.0 

Simulation and calculations vere thoroughly checked, amongst others by running 

the programs modified in such a vay to obtain results comparable with those of 

hamilton (1979) and Vlilliams (1986). The outcomes then agreed with the 

outcomes reported by these authors. For each method, all statistics are given 

with reference to those datasets on which the method could be applied. Hence, 

the results of particularly KLE refer to just a small subset of all datasets 

for the larger P's. The results are scaled with respect to the variance of the 

tolersnce curve. 
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•m.u 4 
Results of simulation study 

1 2 3 

Batasets without 0% 

partial response 

Datasets with 1 0% 

partial response 

Spearrosn-KSrber 

Bias * 0 

MSB * p2 

C.I. includes 

Average width 

-0.0122 

0.0952 

^ 95.6% 

C.I. * p 1.22 

Moving Average 

Bias * p -0.0137 

MSE * p2 0.0989 

C. I. includes p 95.5% 

Average width C.I. * p 1.25 

Maximum likelihood 

Bias * p -0.0127 

MSE * p2 0.0983 

F.C.I. incl./i 96.7% 

D. C.I. incl./i 95.3% 

Average width of 

F.C.I. * p i 22 

Average width of 

D.C.I. * p i 23 

likelihood Ratio method 

C.I. includes p 95.6% 

0% 

3.5% 

0.0124 

0.2028 

94% 

1.74 

0.0122 

0.2028 

94% 

1.74 

0.0109 

0.2029 

96.5% 

93.4% 

1.97 

1.70 

94% 

0.8% 

28.4% 

0.0123 

0.2916 

94% 

2.13 

0.0123 

0.2916 

94% 

2.13 

0.0097 

0.2969 

98.9% 

95.6% 

2.70 

2.21 

94% 

14.4% 

74.6% 

0.0084 

0.6768 

91.5% 

3.24 

0.0084 

0.6768 

91.5% 

3.24 

0.0441 

0.5760 

100% 

98.2% 

5.13 

4.04 

97% 

C. I. 

F.C.I. 

D. C.I. 

95% confidence interval 

95% confidence interval Fieller method 

95% confidence interval Delta method 
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No difference of practical relevance exist betveen SK and MAS. 

This agrees vith Finney's <1953) conclusion about the similarity of the 2 

methods in this type of situation. Bias played a negligible role in all 

methods. The empirical confidence probabilities are to my opinion all 

acceptably close to the nominal value. Kith a steep logistic curve or 

equivalently a vide spacing of the concentrations, the methods SK and KA8 give 

a slightly liberal confidence interval. Hamilton (1980) found the same vith a 

smaller p (P - 1.838) and n - 5. MLE is not generally applicable in this 

situation, and is conservative even for the subset of data to which it can be 

applied. Remarkably, Fiellers method seems no improvement over the simpler 

delta - method. 

With p - 6 the LR-interval was conservative, a result that cannot be 

attributed to sampling error. This contrasts with Williams (1986) findings 

with smaller sampling sizes. The average width of the intervals was not 

calculated because of its numerical exactingness (it was only calculated 

whether the true p was not rejected by LR) . However, the LR-intervals were not 

larger than the SK-intervals: with £ - 6, about 50% of the SK-limits were not 

rejected by the LR-test. 

9•9 Conclusions 

Lay-out of the designpoints, number of observations and underlying model all 

influence the performance of the estimators in a rather unpredictable way. 

Fortunately, the differences between the methods are small as long as the 

designs covers the tolerance density to a large extent, as was the case in the 

conip«risons discussed in sections 4.2 and 4.3. The most important difference 

between the methods lies in the different demands they make on the data to be 

applicable. 

The results are summarized as follows: 

Spearman-K^rber method 

Under the logit model, the method is asymptotically equivalent to logit-MLE 

and hence fully efficient. With small sample sizes (n - 5, Hamilton, 1980), 

the confidence interval becomes liberal. Large values of p have the same 

effect (section 4.3). The assumption of the conventional Spearman-KSrber 

estimation namely that responses range from 0% to 100% can be circumvented by 

using a trimmed version of the estimator. A moderately trimmed version (5% 

say) is more efficient if the tolerance density function is heavy tailed. 



79 

Logit’KLE 

Also with small samples sizes SK and MLE are comparable, if spacing of the 

concentrations is fine enough to observe several partial kills. If the spacing 

is wide MLE becomes inefficient.Confidence intervals based on Fiellers method 

are more conservative than intervals based on the delta-method. 

Moving average 

This method is most efficient if a large span is used in which case the 

estimates are practically equal to the Spearman-Karber estimates. The 

assumption of symmetry of the tolerance curve implied by SK, logit- and probit 

MLE, can be relaxed by limiting the span of the averaging procedure. 

Likelihood Ratio confidence interval 

With small sample sizes the empirical confidence probability is less than its 

nominal value, as was the case with SK (Williams, 1980). Large values of 0 

seem to make intervals conservative, at least with n - 10 (section A. 3). It is 

questionable whether the gain in accuracy of the interval as compared to SK, 

for example, is worth the extra calculations! effort. If so, the confidence 

limits obtained from SK could be used as starting values for iterative 

calculation of the likelihood based confidence limits. 

Bias: negligible in all methods 

As long as the underlying tolerance distribution is symmetric, bias plays a 

negligible role in the performance of all estimators discussed. Symmetry can 

be enhanced by using an appropriate transformation of the concentrations. 

Mostly, log transformation is chosen, as was done in this paper, but sometimes 

there may be reasons to prefer another or no transformation. 

5, Some practical guidelines 

If the data indicate that only part of tolerance curve is covered by the 

design (response > 10% at lowest concentration or < 90% at highest 

concentration) use MLE based on a well fitting model. However do not use 

MLE if there are less than 3 concentrations with partial response. Use 

the moving average method with appropriate span for this case. 

the data indicate asymmetry of the response curve, use MLE based on a 

well fitting model or the method of moving average with small span 

(intrapolation between a few central concentrations). Asymmetry can only be 

observed in large datasets with many partial kills. 
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If responses range from 0% to 100% and there are no indications of 

asymmetry, either of the methods SK, KA vith maximal span, or MLE based on 

a symmetric model (subject to the above restriction) can be used. 

Incidental deaths at low concentrations can indicate background mortality 

or individuals vith high sensitivity to the poison. One of these two 

possibilities has to be chosen to enable estimation of the 1X50. In the 

first case an Abbott-like modification of the chosen method is appropriate. 

The second case can lead to choice of an asymmetric response model or - if 

corresponding incidental survivors at high concentrations are feasible as 

veil - use of a trimmed Spearman-Kgrber estimate. In practice it vill be 

very difficult to discriminate between these cases. 

A 95% confidence interval can be constructed by taking the estimate + 2 

times its standard error. Fiellers method is not recommended, unless the 

LC50 appears on the edge of the range of tested concentrations. 

Apply a binomial test if no partial kills are observed to obtain a 

confidence interval (Appendix). 

We have concentrations x, < x2 . . . < xk> vith n individuals tested at each 

concentration. The random variable denotes the response at x^, vith r^ as 

its realization. The variables i-l...k, follow a binomial distribution 

vith parameters and n. Ve assume a non-decreasing response function, i.e. 

P1 - P2 ''' - Pk' 
Suppose, a response percentage above 50% is observed at a certain 

concentration x^, h < k. The nulhypothesis P^— 0.5 is tested against the 

alternative ^ 0.5 vith significance level 1/2 cr. Vith a non-decreasing 

response function, all responses at concentrations equal or less than that 

exceed n/2 plead in favour of . Denote the subset of indices out of 

(1,2...,h) that refer to these observations in favour of H1 by E. 

The probability under Hq of obtaining as much or more evidence against Hq as 

is observed, is less than or equal to: 

Prob ( Rj > rj | Pj - 0.5 ) 

j e E 

If H0: Ph” °'5 is reicct:ed OTie can proceed vith H0: Ph x - 0.5, etc. Similar 

tests can be carried out at the other extreme where the observed responses are 

much below 50%. The range from the smallest to the largest concentration for 

which H0 was not rejected constitutes an interval for the LC50 vith confidence 

- TTi5r (J o.5n 
j t E 
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level at least 100 (1to)», For the special case of absence of partial kills, 

Stephan (1977) Inverted this procedure: the level a was calculated for which 

only the largest concentration with 0% and the smallest with lOOi response 

would be included in the interval (see Section 3.3.). Denote this interval 

with (xs, xs+1). If n-6, the confidence level is 96.9%. For smaller values of 

n, one may take a wider interval (x , , x ._) with confidence level 100 (1- 
n(c+l) s*d s+itc ' 

°-5 -0.S '). The s)Tiimetric intervals in the table below are chosen in 

such a way that the confidence level exceeds 95%. 

number of organisms interval confidence level 

1 

2 

3 

U 

5 

x 

x 

X 

X 

X 

s - 5 ’ 

s- 2' 

s-1- 

s-11 

s - 1 ’ 

s+6 

Xs+3 

^ + 2 

lts+2 

lts+2 

96.9 

96.9 

96.9 

99.2 

99.8 
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