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FINDING GROUPS OF CONSUMERS WITH SIMILAR PREFERENCE WEIGHTS 

USING CLUSTERWISE LINEAR REGRESSION 

Michel Wedel 

and 

Cor Kistemaker 

SUMMARY 

In this paper an extension of the Clusterwise Linear Regression method is 

proposed, a FORTRAN computer program for the application to preference data 

was developed. The method solves the problem of finding a given number of 

clusters of subjects that attribute the same importance to perceived product 

dimensions in the formation of product preference. It is particularly useful 

when consumers' evoked sets of products are small and multicollinearity 

plays a role in fitting preference models at the individual level. An 

application to data on elderly people's preferences for meat products is 

given. 
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INTRODUCTION AND REVIEW 

Consumer choice behaviour towards frequently purchased products is 

purposive, but the choice process is bounded by limitations of information 

on choice alternatives and time available for making choices. Not the 

objective product attributes are important in the choice process but the 

evaluative criteria of consumers based on the subjective perception of 

product attributes. In determining preferences for products consumers trade 

off the evaluative criteria (perceived product dimensions) against 

eachother. 

An important issue in modelling the formation of consumers' preferences 

for products is the recognition of the influence of individual differences 

(Carroll 1972, Bettman 1979). In external analyses (Carroll 1972) perceived 

product dimensions are related to consumers' preference statements. The 

perceived product dimensions can be obtained by e.g. multidimensional 

scaling of product similarity data or factor analysis or partial least 

squares analysis of product ratings on attribute scales (Shepard 1972, 

Wierenga 1980, Martens and Martens 1986). Fitting of preference models at 

the individual level (using multiple linear regression of stated preferences 

on product dimensions) yields estimates of the importances of the product 

dimensions. In the analyses subjects are often grouped on the basis of the 

preference parameters with existing hierarchical or divisive methods to 

detect 'natural' segments within the population. 

When a consumers evoked set of products is small, the model matrix in the 

regression may not be of full rank and the preference parameters are not 

estimable. This problem is frequently solved by deleting a sufficient number 

of terms from the model, so that the remaining parameters can be estimated. 

A serious disadvantage of this approach is that the estimates of the 

preference parameters in the reduced model are biased when the model terms 

excluded are good predictors of preference. As an alternate solution to the 

above problem Urban (1975) suggests to group the subjects (e.g. on the basis 

of their preferences) and to fit the model thought to be appropriate within 

groups across subjects and products. This procedure provides sufficient 

degrees of freedom in most cases, but it is based on the assumption that the 
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segments are homogeneous with respect to the preference parameters (an 

assumption that cannot be checked). 

Even if the individual model matrices are of full rank there are often few 

degrees of freedom for estimation which results in very unreliable estimates 

of the parameters (Mason et al. 1975). Grouping individuals on the basis of 

the estimated preference parameters as proposed by Urban and Hauser (1977) 

can then hardly be expected to yield meaningful clusters. 

Apart from the solutions indicated above one might remove all subjects from 

the data with which singularity occurs, but this may result in a 

considerable reduction of the study population and affects the 

representativeness of the results. 

The hierarchical clustering method Judgement analysis (JAN, Blottenberg 

and Christal 1968, Lutz 1977) also suffers from the problems outlined above. 

This method starts with single subject clusters and combines two previously 

defined clusters iteratively in such a way that the loss in overall 

predictive efficiency of the regression of preference judgements on 
2 

attributes (measured by R ) is minimized. It was shown by Adler and Kafry 

(1980) that JAN is identical to well known clustering techniques applied to 

the predicted individual preferences and thus equivalent to a clustering 

based on the estimated preference weights. 

Spath (1979, 1982) described a method for clusterwise linear regression 

for solving the problem of finding a given number of clusters of 

observations, such that the overall error sum of squares of the regression 

within clusters is minimal. In this paper we propose an extension of this 

method. It yields maximum likelihood estimates of the grouping factor that 

partitions subjects into segments with homogeneous preference parameters 

(given the number of segments present). The method circumvents the problems 

connected with multicollinearity in the estimation of the individual 

preference parameters and thus permits preference models to be fitted which 

would be severely overparameterized at the individual level. 

THE METHOD 

Let: 
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= the (J^xl) vector of preference scale values of individual i for 

products (i=l...n) , 

X. = the (J.x P) model matrix for individual i, the P columns are 
11 

functions of the product dimensions, depending on the model that is 

appropriate for the analysis , 

(3^ = the (Pxl) vector of preference parameters of individual i. 

Consider an external analysis of the preference data in which the measured 

preferences y^ are related to the product dimensions. We consider the 

following model: 

(1) yi = X.p. + Ei , ei ~ N(0,la.2) , i = l...n , 

where is a vector of error terms. Consider the case where the evoked set 

of products Ji is so small for some i, that J^< P. Now the coefficients (5^ 

are not estimable. 

Assume each of the y^ to arise from one of K groups, assume K known and 

assume the parameter vectors 6^ of the individual preference models to be 

the same for the set of n^ individuals (denoted by C^) in group k. (6^, 

i e C^). Now let : 

N, = the number of observations in segment k, N, = . f J. , 
k k i i 

yk = the (N^xl) partitioned vector of preference scale values of 

individuals in segment k, consisting of the n^ subvectors y^ , i 

e Ck , 

xk = the (Nk x P) partitioned model matrix, consisting of the nk 

submatrices X. , i e C, , 
i k 

= the (Pxl) vector of preference parameters in segment k. 

If = trk for all i e Ck, the model for the Nk observations in group k 

k ' 
(2) *k = "SA + Ei Ek ~ NtO.Io2) , k = 1...K , 
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If P< in each of the k groups, the are of full rank P and the 0^ are 

estimable given the partition of subjects into K segments. 

The objective is to find the partition of the subjects into the K groups. 

Analogous to Scott and Symons (1971) the maximum likelihood estimate of the 

grouping factor y, can be derived (y = Y1--'Yn ; Yi= k for i e ). Assuming 

the partition of subjects into K segments known, the log-likelihood function 

for the parameters (3^, is given by: 

(5) -i/2 L, - 1/2 LV"^) 

For each possible partition into K groups the likelihood is maximized by 

the ordinary least squares estimates of 0^ and , 0^ and It follows by 

substitution of 0k and ck in (3) that the M.L. estimate of y is that 

grouping of the n subjects into K groups that minimizes: 

(4) Li 
- 2(Nk/N) 

ak 

where N = ^ = a ^or aH *c' t*16 estimate of the grouping 

factor is that grouping that minimizes o, the pooled residual mean square 

(RMS) of the regressions within the K groups (which is equivalent to 
2 

maximizing R ). For Nk= 1 and ak = a the clusterwise regression problem of 

Spath (1978) minimizing the norm is obtained. 

Although estimates of the parameters with clusterwise regression are 

Maximum Likelihood estimates the asymptotic properties do not apply, the 

number of parameters estimated being close to the number of observations. As 

the distribution of the minimum RMS is unknown the significance of the 

regressions within clusters cannot be tested with the usual t- and F- tests, 

but simplified Monte Carlo significance tests could be used. In Monte Carlo 

test procedures the outcome of the test is determined by the rank of a 

statistic derived from the observed data, relative to the values of that 

statistic derived from random samples (the reference set). The reference set 

is generated in accordance with the hypothesis being tested. For the 

simplified Monte Carlo test the reference set consists of M -1 samples and 

the nulhypothesis is to be rejected if the testcriterion from the observed 

data is greater (or less) than M-M(a/2) or more of the values from the 
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reference set (a is the level of significance of the two-sided test, and 

both M and 11(0^2) are integers). The power of the test increases with M 

(Hope 1968). The significance of the regressions within clusters obtained 

with Clusterwise regression can be tested with e.g. a Monte Carlo 

permutation test, in which the reference set is obtained by permuting the 

observed preference scores randomly among products for each subject. 

The partition minimising the criterion (4) can be found by comparing all 

possible partitions of subjects into K segments. For large numbers of 

subjects the computational time required would be excessive, and therefore 

in practice, the transfer algorithm of Banfield and Bassil (1977) can be 

used to obtain the partition. This algorithm starts from a given 

classification of the individuals, tests each possible transfer of one 

subject and swop of two subjects, and executes them (if they improve the 

criterion value) until no more improvement on the criterion (4) can be made. 

When the Banfield and Bassil algorithm is applied to minimize (4), transfers 

from clusters with P observations or less are not permitted. 

The Banfield and Bassil algorithm was implemented in a FORTRAN computer 

program RMSCLUST by the authors. The program starts from a random or preset 

classification. The criterion (4) can be minimized both with and without the 

assumption of equal a^. As with most divisive methods, optimal 

classification found may not be unique and it may not be a global optimum. 

Banfield and Bassil suggest to use a classification with greater than K 

clusters as a starting point and to work down to the desired K clusters to 

help avoiding local optima, or else to use a set of different random 

starting classifications. The RMSCLUST program can start from a given number 

of clusters and automatically works down to the given number of desired 

clusters. The program output includes monitoring of the numbers of transfers 

and swops tried and executed as well as the changes in the criterion values 

during the iteration process. An option for generating a reference set for a 

Monte Carlo permutation test is included in the program (J^> 5; i=l_n). 

AN APPLICATION 

In a nationwide random sample of 199 subjects ranging from 65-80 years of 

age, data were collected on preferences and perceived product 

characteristics with respect to 11 different meat products (Wedel et al. 
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1986). Subjects were asked to rank photographs of the meat products in order 

of their preference. Preference orders were then rescaled to range from 0, 

corresponding to lowest preference, to 1, corresponding to highest 

preference. 20 Attributes were evaluated and reduced to four perceptual 

dimensions, using factor analysis (see e.g. Hauser and Koppelman 1979). 

These dimensions, labeled quality, fatness, exclusiveness and convenience 

respectively, were to be related to preferences to obtain estimates of the 
2 

preference weights according to a linear model . Multicollinearity did not 

play an important role in fitting the linear model at the individual level, 

as the number of observations (J^=ll) is substantially larger than the 

number of parameters (P=5) to be estimated. Clusterwise regression was 

applied to these data (n=199). The algorithm was started with a random 

classification of 8 clusters and worked down to 2 final clusters, minimising 

the RMS. 50346 Transfers were tried and 853 executed, while 122627 swops 

were tried and only 3 executed (this required 7234 CPU seconds on a VAX 

11/750). Figure 1 shows a plot of the RMS of the cluster solutions against 

the number of clusters. As for more than 5 clusters the RMS hardly decreased 

with increasing number of clusters, we decided that the 5 cluster solution 

gave a sufficient approximation to the data for our purposes. The five 

cluster solution had a RMS of 4.69. Clusterwise regression was applied 25 

times more with different random starting classifications, dividing the same 

data into 5 clusters. The resulting RMS's found were inbetween 4.69 and 

4.77. Five times a solution with a RMS of 4.69 was found, three times the 

solution was identical to the one described above, two times a different 

solution was obtained in which only 9 subjects were classified differently. 

Consequently the classification found does not seem to be a local optimum, 

but it appears to be a rather flat global optimum. 

2 The assumption of independence of the error terms is not tenable when 
rank ordered data are used as a dependent variable at the individual 
level. In the present data, however,ties were permitted, and when models 
are fitted within groups across several individuals, the assumption will 
be more nearly met. In fact the parameter estimates have the ML properties 
if the error terms are independent and have fixed variance for larger 
numbers of observations. 



FIGURE 1 - POOLED RESIDUAL MEAN SQUARE (RMS) OF CLUSTERWISE 
REGRESSION SOLUTIONS AGAINST THE NUMBER OF CLASSES 

RMS 

4.0 -1-1---1-1-1-1-1-' 
2 3 4 5 6 7 8 

number of classes 



145 

Table 1 shows the coefficients, estimated across subjects and products 

within the clusters obtained. To evaluate the significance of the regression 

coefficients 40 datasets were generated by permutation of the preference 

scores within individuals, and 199 values of the t-statistic were obtained 

for each dimension (40 times 5 segments, one deleted at random). The 2.5 th 

and 97.5 th percentiles of the distribution of the t-values of the reference 

set are given in table 1. The effects of quality in all segments, fatness 

in segments 3 and 4, exclusiveness in segment 5, and convenience in segment 

1 are significant at the 5% level by the simplified Monte Carlo test 

procedure. 

Table 1. Preference weights and t-values* of four perceptual dimensions of 

meat in 5 segments obtained with clusterwise regression. 

Segment: 12345 

37 

Quality 

estimate 

t-value (-8.3; 7.5) 

Fatness 

estimate 

t-value (-7.1; 7.3) 

Exclusiveness 

estimate 

t-value (-8.6; 8.4) 

Convenience 

estimate 

t-value (-7.8; 8.4) 

0.30 

16.0 

-0.05 

-4.4 

0.04 

3.6 

0.10 

8.5 

32 

0.14 

15.9 

-0.04 

-4.0 

0.03 

2.3 

0.05 

4.9 

56 

0.20 

22.0 

-0.08 

-9.4 

0.07 

7.2 

0.03 

3.6 

33 

0.18 

16.4 

-0.12 

-9.9 

-0.09 

-7.5 

0.05 

4.8 

41 

0.19 

17.5 

0.04 

3.6 

-0.10 

-10.8 

0.05 

5.2 

★ 
The 2.5 th and 97.5 th percentiles of the distribution in the reference 

set are given in brackets. 

For comparison a clustering algorithm was applied to the preference 

weights estimated at the individual level, minimizing the determinant of the 

pooled within group covariance matrix (the det(W) method yields M.L. 
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estimates of the grouping parameters, given the number of segments and 

assuming the preference weights to follow a Multivariate Normal distribution 

with identical Covariance matrices within segments, Scott and Symons 1977). 

This method is implemented in the statistical package GENSTAT (Alvey et al, 

1977), and also uses the Banfield and Bassil algorithm. The partition 

obtained with clusterwise regression was used as a starting classification. 

The percentages of subjects remaining in the clusterwise regression solution 

was 40% (for clusters 1 to 5: 40, 44, 41, 47 and 22% respectively). The 

det(W) method yielded (about 5-10%) smaller standard deviations of 

individual coefficients within segments, while the clusterwise regression 
2 

solution had greater predictive efficiency: the R for the regression across 
2 

subjects and products was 0.367 for the det(W) solution, while R was 0.524 

for the clusterwise regression solution. 

Subsequently, a random sample of 5 products was taken for each subject and 

the data on preferences and perceived product characteristics subjected to 

clusterwise regression, using the final five cluster solution obtained from 

the full dataset as an initial classification. The percentage of subjects 

remaining in the initial classification was 57% (for clusters 1 to 5: 71, 
2 

54, 42, 41 and 84% respectively). The R was 0.616 . Methods clustering the 

individual estimates of the parameters could not be applied for comparison 

as no reliable estimates of individual preference weights could be obtained 

from the reduced dataset. 

CONCLUDING REMARKS 

The clustering method described in this paper can be used when an 

overparameterized preference model is to be fitted to individual data. It 

was shown that if in the subsequent analyses individuals are to be clustered 

on the basis of their estimated preference parameters, clusterwise 

regression can be applied to obtain a clustering of individuals, 

circumventing the problem of multicollinearity at the individual level. 

Clusterwise regression is a divisive method and as such burdened with 

problems of convergence to a unique global optimum. 

In practice the assumption that coefficients for subjects within the same 

segment are identical might be somewhat unrealistic. If the preference 

parameters within each segment are assumed to follow a multivariate Normal 
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distribution, clusterwise regression can be applied and least squares 

estimates of the mean preference parameters and the error variance can be 

shown to be unbiased, however they are not Maximum Likelihood estimates. 

We conclude that the clusterwise regression is useful as an exploratory 

data analysis technique, especially if multicollinearity plays a role in 

fitting regression models at the individual level. 
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