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NUMERICAL EXPERIMENTS WITH EQUILIBRATION IN 

KHACHIAN'S ALGORITHM FOR LINEAR PROGRAMMING 

Gerrit K. JANSSENS* 

Summary 

Ellipsoidal algorithms for linear programming have been more of 

theoretical than of practical interest, because of their slow convergence 

and bad numerical behavior. The paper shows results of experiments, with 

a version of Khacian's algorithm with a good initial step size, in which 

program data are scaled by equilibration. This scaling results in better 

numerical behavior. The improvement by equilibration increases with 

greater equilibration factors and decreases tolerance in difference 

between primal and dual objective function value. 

1. Introduction 

Scaling is often applied in solving linear programming problems. The 

reasons for scaling, used with the simplex method, have been described by 

TOMLIN (1975), as: 

a) to allow a compact representation of the bounds on variables, 

b) to reduce the number of simplex iterations required to solve the 

linear program, 

c) to improve the numerical behavior of the simplex algorithm. 

TOMLIN (1975) advises linear programming analysts not to use scaling for 

reason (a), not to expect a great effect of scaling for reason (b), but 

only to use scaling for reason (c). 

The numerical behavior becomes even more important if not the simplex 

method, but an ellipsoidal algorithm, such as the one by KHACHIAN (1979) 

is used. 

Those algorithms, which in most cases require a large number of 

iterations, are most susceptible to bad numerical behavior due to the 

accumulation of round-off errors. 
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KORTE and SCHRADER (1981) report the instability of Khaohian's algorithm 

experienced by practitioners. They promote scaling methods but feel that 

these will slow down the convergence to the solution. By this, 

convergence rate and stability of Khaohian's algorithm should be 

conflicting goals. 

More instability is to be expected if simple or double precision 

arithmetic is used instead of the number of significant digits needed as 

computed by Khachian, which in all non-trivial cases is far too large to 

be implementable. 

On the other hand, HALFIN (1983) claims that the ellipsoid algorithm is 

numerically robust if matrix updatings are done following Khaohian's 

original schemes rather than the easier to understand GACS-LOVASZ (1981) 

version of the algorithm. 

Khacian's ellipsoid method is inferior to Karmarkar's projective method 

from a computational point of view. Theoretical bounds for the 

computational behavior of both methods however are nearly the same (TODD, 

1987). 

In this paper we will present the empirical results of the numerical 

behavior of a version of Khaohian's algorithm when applying the simpliest 

form of scaling, equilibration. 

2. Presentation of the version of Khaohian's algorithm used in the 

experiments. 

Practical experience has shown that the number of iterations needed to 

solve the linear programming problem is highly dependent on the choose of 

the initial ellipsoid. Khachian proposes an initial ellipsoid which in 

most cases is far too large. Therefore some improvements of the ellipsoid 

algorithm make use of choosing a smaller initial ellipsoid. 

Let the linear program be written as: 

maximize c^x 

subject to Ax S b 

and x > 0 



97 with c e Rn, x e Rn, b e Rm and A e Rmxn 

Considering the primal-dual equality for the optimal solution, we can 

write the program is: 

Ax £ b 

x i 0 

A^y ^ c (1) 

y £ 0 

ox = by 

with c e Rn, x e Rn, b e Rm, y e Rm, A e fl"1*11 

BERTRAND and FOURNEAU (1982) prove that if the system (1), with the 

equality ex = by changed by cx a by, is consistent, than its solution 

lies in a ball B(0,R) with center 0 and radius R = / n a2 + m B2, where 

n = number of primal variables 

m » number of primal inequalities 

u,B = bounds on the absolute values of the components of the 

solutions of the systems Ax a b and A”y S c. 

This ball B is much smaller than the one proposed by Khachian and so 

less iterations are expected. To be implementable the last inequality of 

the system has to be written as cx - by > e (call e the tolerance), 

where e>0 is a small constant to be chosen. Besides results on the 

improvement of Khachian's algorithm with their initial ellipsoid, 

BERTRAND and FOURNEAU's original working paper provided also a computer 

program which we will use in our further experiments. 

3. Experimental design of the simulation 

The form of scaling used in this paper is equilibration. Equilibration 

of a matrix is to be understood in the sense of VAN DER SLUIS (1970) as 

'scaling of rows (and/or columns) such that the rows (and/or columns) 

obtain more or less equal values for some vector norm'. Concretely we 

use TOMLIN (1975) 's interpretation of this definition stating that: 

'each row is scaled to make the largest element of order unity, followed 

by a similar scaling of the columns'. 
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The experiments to follow will deal with linear programs with different 

main characteristics as 

- number of primal variables 

- number of primal constraints 

- number of primal binding constraints. 

Specific to the data respresentation of the problem (scaled or unsealed), 

we need another measure concerning the order of numbers used in the 

inequalities. We use two indicators mentioned by TOMLIN: 

Ft = max | a | / min | a. ,| 

i.j J l.j J 

and V = E (log | a^ | 2) 

aij<0 

The effect of scaling in the experiments will be measured by means of the 

deviation from the optimum value, i.e. the difference between obtained 

and exact value of the objective function. 

The experiments include as a basis six linear programs published in the 

literature. These programs are solved using 9 values of e, i.e. 0.02, 

0.01 , 0.005 and 0.0025. Once equilibrated, another 4 solutions are 

obtained using e-values chosen so that comparable precision is reached 

after multiplying the objective function value with the equilibration 

factor. Let the inequality in system (1) cx - by 5 e be transformed into 

c'x' - b'y' S e' , in such a way that to obtain comparable objective 

function values c'x' has be multiplied with k, then should e' = e/k. 

As it is suggested in the literature that the radius of the first ball is 

important in the convergence process, we also report for each linear 

program this radius in the non-equilibrated and equilibrated case. 

It is expected that the deviation will decrease in absolute value with 

increasing precision (smaller e). Therefore we report immediately a 

simple regression with deviation as dependent and e as independent 

variable, including regression coefficients, their t-values between 

brackets and the R2 of the regression. 

4. Experimental results 



SAMPLE 1 (WAGNER, 1975, p.98) 99 

Program 

maximize 1tx1 + 5x2 + 9x^ + llx^ 

subject to 

1x1 + 1x2 + Ix^ + Ix^ S 15 

7x1 + 5x2 + 3Xj + 2x^ S 120 

3x1 + 5x2 + 10x3 + 15x4 S 100 

experiment ^parameters 

number of constraints = 3 

number of variables = ^ 

number of binding constraints = 2 

R - 15 

V = 4.62 
7 

radius of first ball (non-equilibrated) = 0.557 * 10 

radius of first ball (equilibrated) = 0.124 * 10^ 

results 

- non-equilibrated (Tolerance = 0.02/x) 

x 12 4 8 

Deviation -0.902 -0.324 -0.200 -0.100 

# Iterations 398 430 462 510 

Deviation = -0.005 - 45.8 * Tolerance 

(0.78) (-8.66) 

(R2 = .97) 

-v 
- equilibrated (Tolerance = 0.222 * 10 /x) 

x 12 4 8 

Deviation -0.019 -0.009 -0.007 -0.002 

It Iterations 282 314 354 394 

Deviation = -0.0007 - 81.97 * Tolerance 

(-0.54) (-8.06) 

(R2 = .97) 



SAMPLE 2 (GORDON & PRESSMAN, , p.178) 

Program 

maximize 3x1 + 8x2 

subject to 

2x1 + 4x2 S 1600 

6x1 + 2x2 S 1800 

x2 S 350 

number of constraints = 3 

number of variables = 2 

number of binding constraints = 2 

R = 6 

V = 1.15 

radius of first ball (non-equilibrated) = 0.407 

radius of first ball (equilibrated) = 0.417 

results 

- non-equilibrated (Tolerance = 0.02/x) 

x 12 4 8 

Deviation -4.94 -3.64 -2.04 -0.363 

# Iterations 180 204 228 242 

Deviation =■ -0.484 - 241 .2 * Tolerance 
(-0.69) (-3.96) 

(R2 = 0.89) 

* 10' 

* 10 

-4 
- equilibrated (Tolerance = 0.71*10 /x) 

x 12 4 8 

Deviation -0.033 -0.028 -0.027 -0.028 

# Iterations 213 237 255 273 

Deviation = -0.026 - 90.1 * Tolerance 
(-22.06) (-3.14) 

(R2 - 0.83) 



SAMPLE 3 (BERGLUND & HALLDEN, 1968, p.88) 101 

Program 

maximize 10x^ + 15X2 + 12.5X2 

subject to 

10x1 + 20x2 + 8x3 £ 30000 

15x1 + 5x2 + 6x3 £ 30000 

6x1 + 3x2 + 10x3 2 20000 
10x1 + 8x2 + 25x3 £ 40000 

§5E§tiI5§C!S_E‘iC3'B§£§C§ 

number of constraints = 4 

number of variables = 3 

number of binding constraints = 3 

R = 8.33 

V = 11.59 
Q 

radius of first ball (non-equilibrated) - 0.147 * 10 

radius of first ball (equilibrated) = 0.149 * 10^ 

results 

- non-equilibrated (Tolerance = 0.02/x) 

x 12 4 8 

Deviation -35.7 -24.2 -10.3 -6.19 

# Iterations 413 445 491 523 

Deviation = -3.09 - 1707.5 * Tolerance 
(-1 .09) (-3.09) 

(R2 > 0.96) 

- equilibrated (Tolerance = 0.88 * 10 "Vx) 

x 12 4 8 

Deviation -0.491 -0.484 -0.487 -0.488 

# Iterations 1336 1385 1417 1449 

Deviation = -0.486 -426.9 * Tolerance 
(-185.0) (-0.82) 

(R2 = 0.25) 
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SAMPLE 4 (ACKOFF & SASIENI, 1968, pp.198-154) 

Program 

maximize 1.2x^ + l^x^ 

subject to 

40x1 + 25x2 S 1000 

35x1 + 28x2 £ 980 

25x1 + 35x2 < 875 

t£Ef C i5®2 

number of constraints - 3 

number of variables - 2 

number of binding constraints = 1 

R = 1.6 

V = 13.33 
7 

radius of first ball (non-equilibrated) = 0.139 * 10 

radius of first ball (equilibrated) = 0.512 * 10^ 

results 

- non-equilibrated (Tolerance = 0.02/x) 

x 12 4 8 

Deviation -1.117 -0.760 -0.536 -0.495 

# Iterations 218 242 257 270 

Deviation = -0.383 - 36.7 * Tolerance 
(-16.6) (-18.3) 

(R2 = 0.99) 

- equilibrated (Tolerance = 0.57 * 10 /x) 

x 12 4 8 

Deviation -0.477 -0.488 -0.488 -0.486 

# Iterations 111 128 134 164 

Deviation = -0.49 + 20.18 * Tolerance 
(-169.7) (2.29) 

(R2 = 0.72) 



SAMPLE 5 (KAUFMANN, 1970, pp.333-338) 
103 

Program 

maximize O.Mx + 0.28x_ + 0.32x_ + 0.72X,. + 0.6Ax_ + 0.60x, 1 2 3 A 5 5 
subject to 

0.01x1 + 0.01x2 + O.OIXj + O.OjXjj + 0,03x,- + 0.03Xg S 

0.02x1 + O.OSXjj S 

0.02x2 + 0.05x5 S 

0.03x3 + 0.08x6 S 

®!£E®Ei3S22.E?Palneters 

number of constraints = *1 

number of variables = 6 

number of binding constraints = 3 

R = 0.08/0.01 = 8 

V - 31.63 
?n 

radius of first ball (non-equilibrated) = 0.105 * 10 

radius of first ball (equilibrated) = 0.8147 * 101 

results 

- non-equilibrated (Tolerance = 0.02/x) 

x 12 4 8 

Deviation -792.2 -413.4 -224.4 -86.0 

# Iterations 1545 1576 1647 1722 

Deviation = -8.43 -39527 * Tolerance 
(-0.45) (-24.6) 

(R2 = 0.997) 

- equilibrated (Tolerance = 0.14 * 10 "Vx) 

x 12 4 8 

Deviation -0.252 -0.222 -0.213 -0.207 

# Iterations 1045 1099 1174 1184 

Deviation = -0.198 - 37885 * Tolerance 
(-102.6) (-16.0) 

(R2 = 0.99) 

850 

700 

100 

900 
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SAMPLE 6 (DI ROCCAFERA, 1964, pp.544-558) 

Program 

maximize 9x^ + + 8x^ 

subject to 

10x1 + 5x2 + 5x^ < 65 

6x^ + 6x2 + 8x^ S 60 

4.5x1 + 18x2 * 9x3 £ 81 

number of constraints = 3 

number of variables = 3 

number of binding constraints - 2 

R = 18/4.5 = 4 

V = 6.91 

radius of first ball (non-equilibrated) = 0.580 * 10^ 

radius of first ball (equilibrated) = 0.860 * 10^ 

results 

- non-equilibrated (Tolerance = 0.02/x) 

x 12 4 8 

Deviation -0.054 -0.044 -0.024 -0.011 

# Iterations 329 343 378 404 

Deviation = -0.011 - 2.34 * Tolerance 
(-1 .56) (-3.72) 

(R2 = 0.87) 

- equilibrated (Tolerance = 0.333 * 10 ^/x) 

x 12 4 8 

Deviation -0.016 -0.011 -0.005 -0.006 

# Iterations 183 211 239 261 

Deviation => -0.004 - 37.96 * Tolerance 
(-2.65) (-5.39) 

(R2 = 0.94) 



5. On the effect of the i-adlus of the first ball and equilibration factor 

on the scaling behavior 
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Table 5.1 shows the improvement factor of equilibration in relation to 

the ratio of the radius of the first ball in the non-equilibrated to the 

equilibrated case, with definition: 

improvement factor 
deviation in non-equilibrated case 
deviation in equilibrated case 

radius ratio 
radius of first ball in non-equilibrated case 

radius of first ball in equilibrated case 

TABLE 5.1. 

Sample Equilibr. 
factor 

Radius 
ratio 

Improvement factor for 
tolerance 

0.02 0.01 0.005 0.0025 

1 

2 

3 

4 

5 

6 

90 

218 

2272 

35 

142S6 

60 

-5- 
4.5 * 10 

5 
9.8 * 10 

-9 
9.9 * 10 

5 
2.7 * 10 

18 
1.2 * 10 

4 
6.7 * 10 

47.5 

150. 

72.7 

2.34 

3144 

3.38 

36.0 

130. 

50.0 

1.56 

1858 

4.00 

28.6 

76. 

21.1 

1.10 

1054 

4.80 

50.0 

13. 

12.7 

1.02 

415 

1.83 

A quick look at the table generates the impression that with a higher 

radius ratio a greater improvement can be obtained. The counterexample is 

the 3rd sample where the radius after equilibrating is increased. 

Another hypothesis which can be raised is that the improvement factor is 

related to a radius ratio defined as: 
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radius ratio 
maximum radius of first ball (non-equil., equil.) 
minimum radius of first ball (non-equil., equil.) 

If existing, this effect seem to be non linear. As a first indication, we 

compute in Table 5.2 rank correlations between radius ratio and 

improvement factor, first for all samples, afterwards for all samples 

except the 3rd and for all samples with the changed definition of radius 

ratio. 

TABLE 5.2 : Spearman's rank correlation coSfficiSnts for the relation 

between radius ratio and improvement factor. 

Tolerence 0.02 0.01 0.005 0.0025 

6 samples 0.60 0.60 0.77 0.71 

5 samples 
(3rd excluded) 

0.90 0.90 0.90 O.SO 

6 samples 
(changed definition) 

0.89 0.89 0.77 0.71 

On the rank relation between equilibration factor and radius ratio, the 

Spearman rank correlation is: rs = 0.37 for the first definition of 

radius ratio and r = 0.94 for the second definition of radius ratio. The 
s 

relation between equilibration factor and improvement factor is shown in 

Table 5.3. 

TABLE 5.3 : Spearman's rank correlation, coefficients for the relation 

between equilibration factors and improvement factor. 

Tolerance 0.02 0.01 0.005 0.0025 

6 samples 0.94 0.94 0.83 0.77 



107 The positive relations between: 

- radius ratio (changed definition) and improvement factor 

- equilibration factor and improvement factor, 

are now explored by further experiments. 

In each of the 6 samples each the inequalities is multiplied by 2. This 

means that the objective function value of the programs and the 

equilibrated programs remain the same, but the radius of the first ball 

changes. So 20 new programs are generated, for which the deviation from 

the optimal value for different tolerances e is given in Appendix A. 

With these 20 samples Spearman's rank correlation was computed in order 

to check both the relationship between radius ratio (changed definition) 

and improvement factor, as the relationship between equilibration factor 

and improvement factor. As for the latter by our experiment the factor 

has not changed, no spectacular changes are expected. Results are 

presented in Table 5.4 and 5.5. Both in radius ratios as in 

equilibration factory ties occur: to compute the rank correlation 

coefficient the average rank of the tied observations is attributed to 

each of those (KENDALL & STUART, 1979, §31.81). 

TABLE 5.4. : Rank correlation coefficients between radius ratio and 

improvement factor for different tolerances. 

Tolerance 0.02 0.01 0.005 0.0025 

6 samples 0.88 0.84 0.81 0.78 

TABLE 5.5. : Rank correlation coefficients between equilibration factor 

and improvement factor for different tolerances. 

Tolerance 0.02 0.01 0.005 0.0025 

6 samples 0.90 0.88 0.85 0.79 
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The results confirm the preliminary observation made in Tables 5.1, 5.2 

and 5.3. The greater the radius ratio and/or equilibration factor, the 

greater improvement is expected from equilibration. The improvement is 

lower if the tolerance is put at a lower level. 

CONCLUSION 

A hypothesis was put forward that scaling by equilibration improves the 

numerical behavior in ellipsoidal algorithms for linear programming. 

Experiments were designed for a version of Khacian's algorithm, with a 

good initial step size. The hypothesis is confirmed by the experimental 

results. Moreover two results are obtained: (1) the improvement by 

equilibration increases with greater radius ratios and/or greater 

equilibration factors; (2) the improvement decreases with decreasing 

tolerance. 
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APPENDIX A 

Deviation from optimal objective function value and improvement factor 

for different linear programs 

SAMPLE I (WAGNER, 1975) 

Deviation from optimum 

Improvement factor 

SAMPLE 2 (GORDON & PRESSMAN, 1983) 

Deviation from optimum 



Improvement factor 

SAMPLE 3 (aERGLUN’D & HALLDEN, 1968) 

Jeviation from optimum 

Improvement factor 



SAMPLE 4 (ACKOFF & SASIENI, 196S) 113 

Deviation from optimum 

Improvement factor 

SAMPLE 5 (KAUFMANN, 1970) 

Deviation from optimum 



Improvement factor 

SAMPLE 6 (DI ROCCAFERRA, 1%'f) 

Deviation from optimum 

Improvement factor 


