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A BRANCH AND BOUND METHOD FOR THE TRAVELING 

SALESMAN PROBLEM ON A ROAD NETWORK 

J.N.M. van Loon * 

ABSTRACT 

A Branch and Bound algorithm for the exact solution of the 

Traveling Salesman problem is presented. The problem is defined 

directly on the (incomplete) road network as an Integer Linear 

Program. Solutions can be determined with the aid of 

"Transportation-like" tableaux,so without knowing the underlying 

simplex tableau explicitly. Extra tour constraints can be 

generated and treated in these tableaux because we split them up in 

such a way that unimodularity of the coefficient matrix is 

preserved. This gives rise to the Branch and Bound process. The 

algorithm is tested on a 13-node network. 
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1. INTRODUCTION 

In the classical form of the Traveling Salesman Problem (TSP) each 

node of a complete network must be passed through exactly once.The 

shortest closed tour that meets this demand is looked for. However 

in many applications a lot of work is saved by working directly on 

the incomplete network. Therefore we define the TSP on a road 

network as follows (seed]): 

RTSP:Find the shortest closed tour in a directed network that 

visits all nodes at least once. 

Such a tour may contain cycles and pass through a node more than 

once. 

Example:Consider the network in fig.l. 

The one and only tour passes 

two times through the nodes 2 and 3 

fig.l 

In section 2 the RTSP is formulated as an Integer Linear Program 

(ILP) and extra tour constraints are introduced. A 

Transportation Tableau format(TT format) is dealt with in section 3 

and illustrated with an example. Next a Branch and Bound(BandB) 

procedure is set up in section 4, followed by some computational 

arrangements in the tableau in section 5. The example is completed 

in section 6 and some considerations are given in section 7. 

Finally the results for a 13-node network are mentioned. 

2. PROBLEM FORMULATION 

Let G=(N,A,c) be a directed network with node set N=(j|j=l,..,n), 

arc set A={(i,j)} and distances c[i,j]. The RTSP can be formulated 

as the following ILP: 
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Min £ c[i,j)x[i 

(i,j)EA 

. j] 

(2.1) s. t r 
L 

(i,j)EA 

x [ i , j ) = ^ x[j,k] 

(j,k)EA 

for all jEN 

(2.2) £ x [ j ,k]> = 1 

(j ,k)EA 

for all jEN 

(2.3) x[i,j]>=0 and integer for all (i,j)EA 

(2.4) solution {x[i,j]} builds a tour. 

where x[i,j]=the number of times the tour passes through 

arc (i , j) . 

Theorem l:The coefficient matrix of the ILP (2.1-2.3) is 

unimodular. 

Proof: It is well-known that problems with network structure have 

unimodular coefficient matrices (see[2]). Without constraint 

set (2.2) the ILP has network structure:in each column of the 

matrix the non-zero elements +1 and -1 appear. Addition of an 

inequality from (2.2) does not change this character,because 

the only 1-elements in such a row form exactly the +1 part of 

the corresponding row in set (2.1). 

By theor.l it is clear that the basic solutions of the ILP, e.g. 

found by the (dual) simplex method, are integer. Moreover we can 

determine and present these solutions in TT format. If the 

solution, by chance,satisfies the tour condition (2.4) then the 

RTSP is solved. In most cases however the tour is not closed 

because of unadmittable subtours.To counter this we add one extra 

tour condition,based on the current solution in the following way. 

Letting N1 and N2 be the node sets corresponding to an arbitrary 

couple of subtours the following inequality must hold (see fig.2): 
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(2.5) 

iENl; jEN2 Nl"N2=gr 

a11(i,j)EA N1UN2=N 

L X1i,j)>=1 

Nl 

N2 

cut fig.2 

In order to preserve unimodularity of the matrix this inequality 

should be split up in‘one-node“ cuts and treated one after another 

(for ease of notation let the concerning nodes of Nl be 1,2,....): 

(2.6) 

This can be organised in a Bands process. (The solution sets are 

not disjoint! See section 7.2). 

Theorem 2 :The extended constraint set is unimodular. 

Proof: Since each "one-node" cut is of the form (2.2) the same 

arguments from the proof of theor.l can be used again. 

The (dual) simplex manipulations for the extended problem can be 

carried out again in TT format. If the new optimal solution still 

contains subtours another extra inequality of the shape (2.5) is 

added(Otherwise the tour solution is kept in mind and a new branch 

is searched and so forth. This procedure is treated in section 4. 

Finally we define the slack variables for the ILP as follows: 

(2.7) py [ j ) =^x [ j , k]-1> = 0 corr. with node or row j of (2.2) 

pz(j]=Ex[j,k]-Sx[i,j]=0 corr. with node or row j of (2.1) 

When py[j]>0 the tour passes through node j more than once. 
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3. SIMPLEX METHOD AND TT FORMAT 

The ILP without tour condition (2.4) can be tackled with the dual 

simplex method . The dual program is: 

Max Y y(j] 

jEN 

s.t. 

(3.1) y[i]+z[i]-z(jJ=c[i,j] for columns corr. to basic variables 

(3.2) y[i]+z[iJ-z[j]<=c[i,j] for all other columns 

(3.3) y(j]>=0 and z[j] arbitrary, 

where y[j] and z[j] are the dual variables resp. for the 

constraint sets (2.2) and (2.1). 

The set (2.1) is linearly dependent,so one of the variables z[j] 

can be chosen zero. The use of the TT format can best be shown in 

an example: 

Example: 

Consider the directed network in fig.3. A tour solution is 

indicated by black arrow heads: 

x[l,3]=x[3,4]=x[4,2]=x[2,5]=x[5,4]=x[4,l]=l and py[4]=l. 

Since we need 2n-l=9 basic variables in a simplex solution, let 

us try also the variables x[2,4] and x[4,3]=0 as such. This 

solution is arranged in a transportation tableau, see table 1. 

Table 

a 
relative cost 
primal sol 

°ij 

The tableau is extended with extra columns for the dual 
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variables and a bottom row only for ease of calculations. When 

a primal slack variable py[i] is basic, its value is given in 

the y[i]-column and is encircled. Note that the corresponding 

dual y[i] is zero in that case, because of the complementarity 

condition. Let us start with z[5]=0. Next the dual solution can 

be determined uniquely, unless ties are present in the primal 

solution, applying the equations (3.1) over basic cells. Begin 

with column 5 where z(5]=0. Row 2 has assignments in columns 5 

and 4 so that 

y[2]+z[2]-z(4]=c[2,4] 

(appl.l) y[2]+z[2]-z[5]=c[2,5] 

z[5]-z[4]=c[2,4]-c[2,5] 

hence z[4]=c 12,5]-c12,4]=7-2=5 

The second characteristic step in determining the dual 

solution makes use of a primal basic cellie.g. in cell (4.3) 

holds: 

y [ 4]+z[4]-z (3]=c[4,3]=1 and since z[4] is known: 

(appl.2) z(3]=y[4]+z[4]-c[4,31=0+5-1=4 

Next appl.l can be used in row 4 yielding 

z(1]=4-(6-1)=-l and z(2]=4-(2-1)=3 

Finally all the remaining y[i) values can be found: 

via cell (1,3) : y[1]+z[1]-z[3]=c[1,3] gives y[l]=9 

(2.4) or (2,5) : y[2]=2+5-3=4 

(3.4) : y(3]=l+5-4=2 

(5.4) : y[5]=6+5-0=11 

Objective value :primal:4+7+1+6+2+6=26,dual:9+4+2+0+11=26 

The relative costs in the NB-cells are: 

cell (1,2):r[l,2]=c[l,2]-(y[l]+z[l]-z[2])=8-(9-l-3)=3 etc. 

This solution is not optimal: cells (3,1) and (5,2) have 

negative relative costs. Let x[3,l] enter the basis. We 

construct a new basic solution in a way, analogous to the 

transportation method. Determine a closed path,starting from 
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cell (3,1) with alternating + and - signs,as indicated in table 

1. Note that we need sometimes elements from the py[i]-column 

and that the sign does not change in that case! Choosing 

arbitrarily x[4,l] to leave the basis we get the new solution 

as indicated in table 2,with object value 26-3*1=23. 

Unfortunately this is not a tour solution!(see fig.4). 

i 

a 

a 

4 

a 

z (1! 

4. BRANCH AND BOUND PROCEDURE 

Table 2 of the example is not optimal and the solution contains 

two subtours. We should decide how to proceed. Improving the 

solution probably will give no tour solutions,but we are not sure. 

Therefore we must start the Bands part up from the optimal 

solution of the ILP. In this section the global procedure is 

outlined. Suppose the problem has a tour solution. 

Global solution procedure: 

Stepl. Determine,by hand or otherwise,a good primal feasible solution 

as a start for the simplex method. 

2. Build this solution up to a basic solution. 

3. Improve this solution by the simplex method,up to the optimal 

solution. 

4. If the optimal solution,object value xO,is a tour then set 

xopt=xO and go to step 6,if not add an extra constraint of the 
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shape (2.5) and split it up according to (2.6) giving k 

problems on the BandB list. 

Choose an upper bound on the object value,say xopt,perhaps 

found in applying the foregoing steps as some tour solution. 

5. Take one problem from the list. If the list is empty go to 6. 

Express the extra constraint in terms of the MB variables of 

the current tableau. The solution of the extended problem is 

not primal but dual feasible. 

Use the dual simplex method. If on the way to the optimum the 

object value is >=xopt then stop:there is no improvement 

possible in this branch,repeat step 5. If the optimal solution, 

with value xO is a tour then xopt:=x0,repeat step 5. Otherwise 

generate an extra constraint again,split it up and put the new 

problems on the list.Repeat step 5. 

6. Ready,the minimum is xopt. 

Details about this procedure and its use are given in section 6. 

First we illustrate the procedure with the example from section 3. 

Example: 

Consider table 2. The relative cost of cell (5,2) is negative. 

The closed path is indicated in table 2. We assign a zero and 

py[4] leaves the basis. The new solution is given in table 3. 

The step is a degenerate one. The tableau is now optimal,the 

solution is the same as indicated in fig.4. There is an 

alternative as appears from r[4,5]=0. It leads to the same 

solution but in reversed order for the nodes 2,4 and 5. The 

object value is x0=23. None of the solutions forms a tour. 
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1 a 3 4 3 y (1J z (U 

1 

2 

3 

4 

3 

z m 

Dp till now we have gone through the steps 1 to 4 of the global 

procedure. In step 4 we generate the extra constraint (see 

fig.4) 

x[l,2]+x[l,4]+x[3,4]+x[3,5]>=l 

and split it up in the "one-node" constraints 

x[l,2]+x[l,4]>=l or x[3,4]+x[3,5]>=l 

Let us start with the second one,because c(3,4] is minimal 

among the c[i,j] involved. But to be able to use this extra 

constraint in the current tableau we should first consider some 

computational and notational aspects of the TT format. 

1 

2 

0 ©4 I 
7- 2. 

I I 
®, 3 4- 

© 
1 ©, 
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1 5 

2 
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1 5 
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1 
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It 0 

2 V s O 2-3 

5. SOME COMPUTATIONAL ARRANGEMENTS IN THE TABLEAU 

5.1 If the extra constraint contains only NB variables we can choose 

the one with the minimum relative cost,find the closed path and 

force it to unity. E.g. the constraint x[1,2]+x[1,4]>=1 in table 3 

yields x[l,4]=l. The dual simplex method can be used in case of an 

infeasible solution. No variable is leaving the basis, in fact the 

slack of the extra constraint does!In our example the closed path 

would be (l,4)-(5,4)-(5,2)-(4,2)-(4,3)-(l,3)-(l,4). The solution 

would remain feasible.See section 6 for an application. 

5.2 If the extra constraint contains at least one basic variable we 

must express it in terms of the current solution. This can easily 
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be executed in the tableau,in the same way as we treat the 

objecive equation in order to find the relative costs in the 

transportation tableau. Let us illustrate this with the constraint 

x[3,4]+x[3,5]>=1 in our example. Because it corresponds to row 3 we 

define a slack ps[3]: 

x[3,4] +x [3,5] -ps [ 3] =1 or ps 13] =-l+x [ 3,4]+x [3,5] > = 0 

where x[3,4] is basic but zero and x[3,5] is NB in the current 

solution. Suppose now x[3,4]+x(3,5] is the object function,then we 

would proceed as follows. Create extra columns and a bottom row,see 

table 4. 

Table 4 

The only non zero coefficients are indicated in cell (3,4) and 

(3,5). Calculate the dual values and the relative costs for the NB 

cells, starting with z[5]=0 as before. Table 5 gives the resulting 

simplex row coefficients and the corresponding relative costs. 

NB variables xl2 xl4 pyl x21 py2 x35 py3 x41 x45 py4 x53 py5 ps3 

extra row 

rel. costs 

0 0 0 0 110 

1 2 

0 0 0-1 

Table 5. 

Possible entries for the pivot in the dual simplex method 

are:x[2,1], x(4,l] and py[3]. Look at the corresponding relative 

costs in table 3 and choose the minimum: py(3] enters the basis. 

Determine the closed path and get to the new solution in table 6. 

Note that no variable leaves the basis,in fact ps[3] does. 
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i a 3 4 a ytlj ztlj sUJ 

Table 6 

5.3 In further computations we should keep in mind that 

x[3,4]+x[3,5]>=1 must stay satisfied. Therefore we mark these cells 

in the tableau with a dot. The corresponding primal slack is 

zero,but we must create a dual variable s[3] for this extra 

constraint and indicate it in another extra column at row 3. It 

should fill the gap in the dual constraint, e.g. in the basic cell 

(3,4) : 

y[3]+z[3]-z[4]+s[3)=l 

Also in a NB dotted cell,e.g. cell (3,5) must hold: 

y[3]+z[3]-z[5]+s[3]<=7 

In finding the dual values start as usual,but neglect the dotted 

cells. Afterwards we adjust via s[3]:cell (3,4):s[3]=5+0-5+l=l and 

in cell (3,5):r[3,5J=7-(0+5-0+1)=1. 

5.4 In the dual object function we must add the dual value 

corresponding to the extra constraint. The solution in table 6. is 

optimal,but does not build a tour. The solution should satisfy for 

example 

x[2,l]+x[2,4]+x[5,3]+x[5,4]>=1 

which is equivalent with the set of "one-node" inequalities 

x[2,1]+x[2,4J>=1 or x(5,3]+x[5,4]>=1 

Because of c[2,4]=2 we try first x[2,1]+x[2,4]>=1 in the BandB 

process. According to 5.2,x[2,4] is a basic variable,so we look for 

the row coefficients of this constraint. In table 7. the 0- 

coefficients are left out. The non zero part of the row is given in 

table 8. 
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NB var x35 x45 py2 ps2 

Extra row 111-1 

Rel costs 103 

Table 7 
Table 8 

exta row coeff NB var 

extra row coeff if *0 

So x[4,5] enters the basis. Unfortunately the new solution in table 

9 is infeasible again. The extra constraint in the dotted cells 

(2,1) and (2,4) is now satisfied. Of course the relative costs do 

not change,due to the zero relative cost of x[4,5].Next the 

infeasibility in cell (4,2) or (5,4) must be tackled. Note that in 

the dotted cells the sti] values are taken into account. The row 

coefficients of x[4,2] are given in table 9 as well. 

Table 9 

5.5 The closed path may pass through two dotted cells in the same 

row,since then in the new solution the extra constraint is 

satisfied again. Let us choose x[3,5] to enter the basis and x[4,2] 

must leave (dual method!),giving the solution in table 10. Which is 
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an optimal tour solution! An alternative tour (13452431) can be 

found via y[4]=0. 

Table 10 

6. EXAMPLE 

In this section we will illustrate the Bands procedure with a full 

exposition of our example. 

step 1.In section 3 we started the example with the tour solution 

(1342541) and py[4]=l. This solution produces also an initial 

upper bound on the object value:xopt=26. However a tour 

solution is not necessary to begin with,mostly it is even 

disadvantageous as we shall see later, 

steps 2. and 3.In section 4,table 3 the optimum solution was found, 

step 4.It was not connected,so the extra condition 

x[l,2]+x[l,4]+x[3,4]+x[3,5]>=l 

was added,yielding the branching in fig.7. 

step 5.Next we solved the ILP with x[3,4]+x{3,5]>=1. Two subtours 

were found (fig.5) and 

x[2,l]+xI2,4]+x(5,3]+x[5,4]>=l 

was split up,giving two feasible tours with xopt=25 in the 

branch with x[2,1]+x[2,4]>=1 (table 10 and fig 6). 

Following the LIFO rule we then search the branch with 

x[5,3]+x[5,4]>=1,starting from table 6. 
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fig- 7 

NB var x21 x53 py4 py5 ps5 

Extra row X 1 1 1 -1 

Rel costs 2 1 1 11 

Table 12 
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Let us choose x[5,3] according to table 12. Now we could stop 

in this branch because x0>=25 and xopt=25. But let us continue 

and find the alternative optimum in table 13 and fig.9. 

Next we go back to the ILP solution in table 3 and add 

x[1,2]+x[1,4]>=l,giving the left branch of the tree in fig.7. 

This is an illustration of the remark in 5.1 because both 

x[l,2] and xll,4] are NB variables. The best one:x[l,4] with 

r[l,4]=2 enters the basis giving the solution in table 14. 

We could stop because of the new optimum becoming at least 

23+2=25>=xopt. 

Moreover the solution is not connected,so we cannot improve 

in this branch. There is no problem left on the list, 

step 6.The optimum value is xopt=25. 

• 

© ©# 
7777 

2 2 

I 1 ® © i 4 

© 1 1 © 1 S 1 
© © l 5 ! 

1 

I © © 
V/// 

W/< 
n 0 

2- S' 0 Z5 
Table 14 

7. SOME CONSIDERATIONS 

7.1 Starting solution for the ILP. 

In practice mostly a feasible solution,whether it is a tour or an 

AP solution,can easily be found,using the directed road network. 

One can imagine that an AP solution is cheaper,in the mean,than a 

tour solution. So it is a better start in the way up to the 

optimum ILP solution,which must be found. However we also need a 

good "upper bound" tour. If the corresponding basic simplex 

solution appears to be optimal, the BandB procedure is not needed 

at all. So some effort should be made to find a good tour. But 
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perhaps an AP solution or both do not exist. The network may be so 

complex that it is not an easy task to find one or other. Therefore 

we need a good procedure for this search. The next question is how 

to find the or a basic simplex tableau corresponding with such a 

"hand"-solution. An AP solution is heavily degenerate and should 

be extended with suitably chosen O-assignments. A tour solution 

could have less than (2n-l) positive assignments, but sometimes 

more,in which case apparently extra constraints are needed to build 

the basic solution. Another possibility is that redundant cycles 

occur in the hand-solution. Can these be recognised and deleted? 

Working with AP solutions means degeneracy. But advanced primal AP 

methods can be used in order to overcome these troubles. 

Conclusion-.much can be gained by not starting the ILP problem 

simply with the dual simplex method. 

7.2 Disjoint solution sets. 

The "one-node" constraints in (2.6) do not necessarily yield 

disjoint solution sets. These can be achieved as follows. Suppose we 

treat the inequalities in the order of (2.6): 

Y x[l,j]>=l or £ x(2,j)>=1 or £ x[3,j]>=l or .. 

jEJl j EJ 2 jEJ3 

and x[1,j]=0 for jEJl and x[l,j)=0 for jEJl 

and x(2,j]=0 for jEJ2 

where Ji={i/iENl and (i,j)EA} 

Example: 

Considering the situation in fig.5 and table 6. we get 

x[2,1]+x(2,4]>=1 or x[5,4]+x[5,3]>=1 

and x[2,1J =x[2,4]=0 

or equivalently 

x[1,2]> = 1 or x[4,2]+x [ 4,5]> = 1 or x[3,5]> = l 

and x[l,2]-0 and x[1,2]=x[4,2]=x[4,5]=0 

These disjointedness (DIS)-conditions can be used in several ways,e.g 

(i) only when an extra constraint contradicts a DIS-condition: 

the branch can be cut off. 

(ii) the DIS-condition is fully worked up in the process,see section 8 

for an application. 
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7.3 Extra constraints with slacks. 

When, in applying the dual simplex method,a slack variable py[j] 

becomes negative in a primal basic solution we should express it 

in the NB variables by using the defining row in (2.7): 

py I j]=x[j,k]-1 

Apparently all x[j,k]=0,but some of these could be basic variables. 

We must have x(j,k]>=l,so we can treat this in the same way as 

the extra constraints in section 5.2. An extra slack variable ps[i] 

can be treated in a similar way. 

7.4 Equivalence of inequalities. 

The extra constraint (2.5) is equivalent with the "opposite" one 

in the reverse direction through the same cut: 

£ x(i,j)>=l 

iEN2;jENl 

This can easily be proven using the set of equations (2.1). 

Example: 

In fig.4 we see: 

Node 1: x[l,2J+x[l,4]=x[2,l)+x[4,l]+x(3,l]-x[l,3] 

Node 3: x[3,4]+x [3,5] =x [4,3]+x [5,3]+x [1,3]-x[3,1] 

x(l,2]+xl,4]+x[3,4]+x(3,5]=x[2,lj+x[4,l]+x(4,3]+x(5,3] 

When expressed in the NB variables of the current 

tableau we get the same extra constraint(see also table 5): 

-py[l]+x[l,2]+x[l,4]+x[2,l]+x[4,l]+py[3]>=1 

But the result for the BandB process is different: 

On one side:x[1,2]+x[1,4]>=1 On the other:x(2,1J>=1 

or x[3,4] +x[3,5]> = 1 or x[4,1]+x(4,3]>=1 

or x[5,3J>=l 
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So even in this symmetric network we have a different number of 

branches. It depends on the current solution and the distances 

(costs) involved whether there will be significant difference in 

the efficiency of the process. In general one should choose such 

that the number of branches is as small as possible and such that 

the distinction in costs is as great as possible. Of course one 

should begin with searching the most promising branch. 

8. APPLICATION TO A 13-NODES NETWORK 

See fig.10 for the road network. In first instance a 

straightforward program in BASIC was used to solve this problem. 

Extra constraints were added to the usual simplex tableau in an 

interactive way. Later on we also solved the problem by hand using 

the TT-format. A possible BandB tree is given in fig.11. Finding a 

good primal feasible solution and building it up to a basic 

solution by adding appropriate zeroes was an easy task. In fact we 

did this during the determination of the dual values y[il and 

z[i],choosing the cheaper cells if possible. In five (three 

degenerate) steps the optimal AP solution was found. The 

consequences of using the DIS-conditions of section 7.2 are 

indicated in the tree. For larger problems the gain is expected to 

be considerable. Perhaps the net profit decreases climbing higher 

up in the tree. 
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- start:1368521-47A4-9BDC9 with x0=72 

O-assignments in (1,2);(3/1);(4,3);(6,7);(6,9);(7,9); 

(8,9) ; (9,6) ; (9,D) ; (A,7) ; (B,A) ; (D,B) 

► optimal tour:12589BDC967A431 with xopt=74 

- optimal AP-solution:131-252-467A4-89BDC8 with x0=69 

fig.10 Road network of a 13-nodes example. 



ft BA means: x( B, A] >1 

** (3): order of execution 

»N» 

+ 

[ .1 : extra DIS-conditions: if used see lower left 

corner of this page 

contradicts condition in this branch: stop 

when the order of execution was changed, we could 

have stopped here! 

Fig.11: B and B tree of 13-nodes example. 


