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by P.M.C. de Boer and R. Harkeraa** 

ABSTRACT 

In this paper we apply the linearization procedure of Nakanishi and Cooper 

(1974) to Hanoch’s (1975) HCDES production function in order to estimate input- 

output factor demand equations for the Netherlands using annual data for the 

years 1950-1968. A newly proposed structure of the covariance matrix, named 

HARBO after De Boer and Harkema ((1983), (1986)) is applied, which proves to be 

superior to the specification that is usually applied in empirical work. 

1. Introduction 

Hanoch’s HCDES (homogeneous constant differences of elasticities of 

substitution) production function in input-output analysis received increasing 

attention in the Netherlands, c.f. Donkers and Kreyger ((1981), (1985)) and Van 

Zon ((1983), (1986)). 

Hanoch (1975) defines an (implicit) cost function*** which - after application 

of Shephard*s lemma - yields as functional form for (optimal) cost shares: 

(1) 
ei(pi/c) 

rjej(Pj/c) j 

i 1 »n 

* This is a revised version of a paper prepared for and presented at the 

Eighth International Conference on Input-Output Techniques, Sapporo, Japan, 

July 1986. 

The authors are indebted to Dr. Van Zon of the University of Limburg, 

Maastricht, for calculating the data for "labor services" and "capital 

services" used in this study. They are grateful to Mr. Slik of the 

Econometric Institute for his skilful help in the deflation of the input- 

output tables and to Mr. Romeijn of the Econometric Institute for performing 

the calculations reported upon in this paper. 

** Econometric Institute, Erasmus University Rotterdam, P.0. Box 1738, 3000 DR 

Rotterdam, Tel. 010-4081265/4081277. 

*** We do not deal with the (very) special case = 0. 
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with w^: cost share of Input i (i = l,...,n), 

p^: price of Input i, and 

c: unit cost function which is a function of p^(i=l.n). 

Contrary to Hanoch's assertion, it can be shown (Van Daal (1984)) that the 

production function that underlies (1) will be strictly quasi-concave if and 

only if: 

(2) ei > 0 

“i < 1. 

where the equality sign may apply for at most one i. 

Donkers and Kreyger (1985) apply (1) to specify a model with 10 inputs and 

estimate the parameters using annual data that covers the period 1970 - 1979 

(excluding 1971) for one sector, viz. Building materials. Prom (1) they derive: 

n n n 
dlog w. « a. (dlog p. - I w dlog p ) - l a.w (dlog p - Z w.dlogp, ) 

1 j=l J J j=1 J 3 J k=l * 

i = 1,.. ,n 

Replacing the optimal budget shares w^ in the right-hand side by their realized 

values in the previous period and using the approximations: 

(3) dlog z - —^ (with z - w,,P.,, i = l,..,n) 
Zt-1 1 1 

their discrete version reads: 

ti t-i.i tft-i,i(aipti 

n 
I 

j-1 

with p 
ti 

ti 
- Z w^ 

Pt-l,i j-1 t-1*jp. 
t-l,j 

Moreover, they use a specification of the covariance matrix which seems to be 

inspired by Theilfs rational random behaviour (see Theil (1980)). 

Van Zon (1983) applies (1) to specify a model with 9 inputs and uses annual data 

for the Netherlands that covers the period 1950 - 1968. He avoids the 

linearization (3) by transforming (1) according to: 

w e. 
(4) log - log (•^i) + ailog(pi/c) - anlog(pn/c) 1 = l,...,n-l 

n n 

yielding (n-1) equations. This transformation has been introduced by Somermeyer 
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(1956) in the framework of the theory of consumer allocation where (1) is known 

as the indirect addilos model. 

If no restrictions are imposed on the covariance matrix, Harkema (1984) has 

proved that the likelihood function associated with (4) is unbounded, when the 

number of observations is less than 2n. Since Van Zon distinguishes 9 inputs and 

disposes of 19 observations he is able to estimate this model by means of the 

unrestricted covariance matrix, but is so close to the lower bound of 2n that 

his estimates are likely to be quite unstable. A part of his disappointing 

results may be attributed to this fact. A second explanation for his 

disappointing results may be found in his treatment of "profits". In the 

derivation of the time-series for c "gross value of production" (including 

"profits") is used instead of "total cost of production" (excluding "profits") 

as advocated by De Boer and Donkers (1985). 

In this paper we propose to apply (1) to specify a larger model than Donkers and 

Kreyger, and Van Zon, viz. a model with 13 inputs. Like Van Zon we use annual 

data for the Netherlands that covers the period 1950 - 1968 (see section 4), but 

we use "total cost of production" in the derivation of the time series for the 

unit cost c. As our number of observations is too small to admit an unrestricted 

covariance matrix, we use two restricted specifications, denoted by "DESO" and 

"HARBO", respectively. These specifications are discussed in section 3. Since 

the latter specification requires the use of all n equations, we apply a 

transformation of (1) due to Nakanishi and Cooper (1974), which reads: 

1 n 
(5) w + log w I log w.; 1=1,...,n 

j-1 J 

We shall analyze this transformation in more detail in section 2. 

The organization of this paper is as follows: in section 2 we derive the model 

based on transformation (5), as well as a production model nested within 

Hanoch's, viz. CES (constancy of mixed value and volume coefficients, see De 

Boer and Donkers (1985)) and two models nested within CES: Cobb-Douglas (input- 

output analysis with constancy of value shares, see De Boer (1976)) and Leontief 

(input-output analysis with constancy of volume shares); in section 3 we discuss 

estimation and testing of the various production models, section 4 contains 

information on the data, whereas section 5 reports upon results. 

It appears that HARBO may be profitably used when the number of observations is 

relatively small as compared to the number of inputs: only in two cases DESO is 

accepted at a 5% level of significance, whereas in all other cases DESO is 

strongly rejected. 
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At the level of aggregation considered in the paper, the concavity of Hanoch's 

function is not rejected in 6 out of 10 cases which is quite encouraging in view 

of the small nunber of observations and the large number of parameters to be 

estimated. For the other 4 sectors it seems worthwhile to try another level of 

aggregation. It turns out that Hanocl^s model is by far superior to the (more 

simple) CES model. 

From an economic theoretical point of view the CES model behaves nicely: all 

sectors show positive signs for the elasticity of substitution. The Leontief 

model is strongly rejected against CES so that the hypothesis of no substitution 

between inputs cannot be upheld. For 2 sectors the Cobb-Douglas model is not 

rejected at a 5% level of significance whereas for 1 sector it is not rejected 

at a 121 level of significance. 

2. Derivation of the models 

2.1 Hanoch's HCDES 

Applying transformation (5) to (1), attaching a time index t=l,...,T, with T the 

length of the observation period, and adding a disturbance term ut^ leads to the 

following model: 

(6) 

i = 1,... ,n 

t = 1.T 

with: 

(7) bi = l08 ei - ^ 108 ej 

and Sjj the Kronecker delta, i.e., 5.^=1 for i=j and Sij=0 for ij4j 

From (7) it is clear that: 

n 

(8) I b = 0 

i-1 

Summation of (6) over all i and taking account of (8) leads to: 

n 

(9) 0 t = 1.T, 



i.c. to the well-known adding-up of the demand relations. 
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Defining: 

[log wj' = [log wli...log wT1l 

P, ^11 ^Ti 
[log(-i)]' = [log(-^)...log(-ii)] 

1 CT 

and i'T = [1...1] 

we can write (6) in matrix notation as: 

(10) 

where 

Xi = X.B + Ul i=l." 

1 1 r T y = log w - — I log w 
J-l '' 

X1 = [0 ... iT ... 0 • - -i log(-~) ... (1 - ”)log(——) 

with as the lt^ column of X^ 

6' = [b, b a, ... a ] 
n 1 n 

[u, UT1]- 

R t*; i 

“1 luli 

Moreover, (8) can be written as: 

(11) RB * 0, 

with 

and (9) as: 
n 

(12) E u - 0 . 
i-1 

The econometric model consisting of equations (10) - (12) will be analyzed in 
section 3. 

2.2 Some special models 

If: 
(13) cxj. = a i = l,...,n, 

Hanoch's HCDES reduces to a CES production model with: 

(14) a = 1 - a, 

where a denotes the Allen partial elasticity of substitution of the CES 

production function. 
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Then (6) reduces to: 

(15) iog wcl - 1 Z log w - bi + a Z (S - l)log(^) + ut . 

j J j t 

Defining the X^-matrix for the CES model to be: 

» 1 
Xi = [0 ... iT... 0; l (6lj - -)log(-J-)], 

i 3 

the 6-vector to be: 

and 

6T = [b . • • • b J a], 
x n f 

r = t: o]. 

the CES model can be written in the very same econometric structure (10) - (12). 

If: 

(16) a = 0, or equivalently, a = 1, 

(c.f. (13) and (14)), we have the Cobb-Douglas model which, after substitution 

of (16) into (15), reads: 

(17) log wtl - ■£ Z log wtj = + utl- 

If: i 

(18) a = 1, or equivalently, a = 0 

we have the Leontief model 

(19) log w - •£ Z log w - - ^)log(^) = bi + utl, 

J J t 

after substitution of (18) into (15). 

By an appropriate choice of y^ (c.f. the left-hand side of (17) and (19)) both 

models can be written as: 

(20) 

with: 

yi = bi1T + Ui 
i 1,... ,n, 

(21) Z b = 0, and 

i=l 1 
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I 
i-1 

0 
T' 

The econometric structure (20) - (22) will be discussed in section 3. 

3. Estimation of the models and some tests 

3.1 Introduction 

As usual, the vectors of disturbances [utl,...,utn] (t=l,...,T) will be assumed 

to be identically and independently* distributed according to a multivariate 

normal distribution with zero mean and covariance matrix nn. Because of (12) or 

(22) the rank of will be n—1. Barren (1969), however, has shown that this 

singularity can be handled by simply deleting one arbitrary equation, say the n- 

th one. The matrix obtained by deleting the n-th row and column of fln will be 

denoted by 

As mentioned before, the likelihood function becomes unbounded when the number 

of observations is too small. The reason for this phenomenon is that the 

estimated covariance matrix 8^ , becomes singular when T is smaller than 2n. 

Since we dispose of 19 observations and there are two sectors in the empirical 

application with n = 10 inputs and one with 11 inputs, it is impossible to 

estimate the model for these sectors without imposing restrictions on the 

covariance matrix; for the other sectors we either use 

n = 7 (1 sector), 8 (4 sectors) or 9 (2 sectors) and for these sectors T is so 

close to the underbound of 2n that the parameter estimates will be quite 

unstable. Therefore, we have decided to impose restrictions on the covariance 

matrix in order to reduce the minimum number of observations required to obtain 

a non-singular estimated covariance matrix. 

3.2 The specification PESO 

The first restricted covariance matrix we use is the one that is mostly used in 

applied research, see for instance Deaton (1975) and Solari (1971). This 

specification,denoted by DESO, reads: 

In the present paper we do not deal with any form of dynamic 
specification. The estimation of dynamic models is subject to current 
research. Some preliminary results have been presented in van Heeswijk, de 
Boer and Harkema (1986). 
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(23) = a^(I - — i i1) 
n n nan 

Deleting an arbitrary equation from system (10) through (12) (the Hanoch and the 

CES model), it can be shown that maximization of the loglikelihood function 
2 

subject to (11) with respect to a and B implies: 

(24) 8 = ( I X'X.)-1 ( l X'y ), 
i-1 1=1 

i.c. application of ordinary least squares to the system as a whole, and 

(25) 
*2 1 “ 

a “ T(n-l) uiui’ 

with 

(26) ujL = y± - 

The covariance matrix of 8 can be shown to be equal to 

it' 0 
n _i , n n 

(27) oZK X X^X ) - — 

1=1 |o 0 
and the value of the loglikelihood function evaluated at the optimum is: 

(28) logL(DESO) = —iT(n—1)(1 + log 2x) +-| log n - iT(n-l) log(o2). 

Deleting an arbitrary equation from system (20) - (22) (the Cobb-Douglas and the 

Leontief model)** leads to: 

(29) bi “ (it't^ lTyi ” T yti 1 = 1.. 

The estimate of o is obtained from (25) with 

(30) ui “ yi ' Vr 

and the value of the loglikelihood function from (28). 

*) The unrestricted ordinary least squares estimator (24) can be shown to 
satisfy automatically constraint (11). 

**) We have to estimate these models in order to evaluate the loglikelihood 
function for purposes of testing. 



3.3 The specification HARBO 
35 

De Boer and Harkema (1983) specify the covariance matrix SI as follows: 

(31) SI = D - d 6 S' 
n n n 7 

where 

D = 
n 

Obviously, for 

(32) d. = 

. 0 

: d 
. s; = [dl ... dn], d = ^ 

i = 1.", 

the HARBO specification (31) reduces to DESO (i.c. to (23)). 

They show that the maximum likelihood estimates of d^ follow from the following 

system of equations: 

‘ ^ 1- 
(33) d±-r = y 1 = 

d 

where ui is specified in (26) for system (10) - (12) and in (30) for system (20) 

” (22). Apart from one special case that occurs with probability zero there is a 

unique solution to (33) that can be found by means of a one-dimensional search 

procedure that works very quickly. The algorithm is described in De Boer and 

Harkema (1986). 

For model (10) - (12) it can be proved that 

(34) B - ( r d^X’X )_1( £ d^X'y ), 
i-1 i=l 1 1 1 

satisfying automatically constraint (11). The covariance matrix of g can be 

shown to be equal to: 

(35) ( I dTV'X )_1 - 4- 

i-1 1 dT 

and the value of the loglikelihood function evaluated at the optimum is: 

logL(HARBO) = -}T(n-l)(l + log 2ir) - j log(d_1 H d ) 

i=l 

(36) 



For the system (20) - (22), we also have (29) in case the covariance matrix is 

specified to be HARBO. The estimates follow from (33) with as specified 

in (30), the covariance matrix of the follows from (35) with a zero matrix 

apart from its i-th column, which equals i^., and the value of the loglikelihood 

function follows from (36). 

3.4 Some specification tests 

In the empirical part of this paper we test two kinds of hypotheses: 

(i) we test different specifications of the covariance matrix against each 

other, 

(ii) we test the different specifications of the model against each other. 

ad (i) Since DESO is nested into HARBO, see (32), we can use 

the likelihoodratio test statistic 

-21og X = -2(log L(DESO) - log L(HARBO)) 

2 
which is approximately x (n-0 distributed. 

ad (ii) Since the CES model (15) is nested into Hanoch's model (6) see (13), 

the likelihoodratio test statistic 

-21og X = -2(log (CES) -log (HANOCH)) 

2 
is once again approximately x (n“l) distributed. 

Finally, Cobb-Douglas and Leontief are nested into CES, see (16) and (18), 

respectively. Consequently: 

-21og X = -2(log L(Cobb-Douglas) - log L(CES)), and 

-21og X = -2(logL(Leontief) - log L(CES)) 

2 
are approximately x O) distributed. 



As is well-known from empirical studies in the field of consumer demand (see 

Laitinen (1978) and Meisner (1979)) the likelihoodratio test statistic is biased 

towards rejection of the null-hypothesis when the number of observations is 

small as compared to the number of budget categories distinguished. In the 

empirical part of this paper we apply - where needed - a small sample correction 

factor that has recently been proposed by Italianer (1985). 

Italianer decomposes the correction factor that Anderson (1958) derived for a 

specific testing problem into two factors and proposes to use this decomposition 

for more general problems such as the tests we described above. 

The correction factor can be written as: 

Kdf0 + dfx) 

total number of observations 

with dfg : the number of degrees of freedom under the null hypothesis, and 

df^: idem, under the alternative hypothesis, 

where the number of degrees of freedom is defined as the total number of 

observations minus the total number of parameters to be estimated (which is the 

sum of the number of model parameters and the number of covariance parameters). 

An example may clarify the procedure. Suppose we want to test CES against HANOCH 

with HARBO as maintained hypothesis. The total number of observations is (n-l)T 

(recall that we deleted one equation), the number of model parameters under the 

CES specification is n, i.c. b^ (i-1,... ,n-l) and a, and the number of 

covariance parameters is also n, i.c. di (i*!,...,n). 

Hence: 

dfq = (n-l)T - n - n = (n-l)T - 2n 

Similarly: 

df x = (n-l)T - (2n-1) - n = (n-l)T - 3n + 1 

4. Description of the data 

Empirical application of the theory presented in the previous sections requires 

data on inputs and outputs expressed in constant prices and series of price 

index numbers. 
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In the Netherlands the input-output tables compiled by the Central Bureau of 

Statistics (C.B.S.) are expressed in current prices so that we need price index 

numbers in order to deflate the tables. 

We got the appreciated cooperation of the Central Planning Bureau* (C.P.B.) that 

allowed us to use its data pertaining to the period 1950 - 1968. 

For a description of the deflation of the matrices of intermediate and of final 

deliveries we refer to De Boer ((1982), ch. 6.2)**. Summation of all deflated 

deliveries yielded (rowwise) deflated gross value of production. As regards the 

primary inputs, the CPB supplied us with the price index for the imports of all 

sectors. 

Consequently, we were able to derive deflated gross value added by (columnwise) 

subtracting from deflated gross value of production all deflated intermediate 

inputs as well as deflated imports. Gross value added can be split up into three 

components: 

(i) labor services, 

(ii) capital services, 

(iii) profits 

As argued by De Boer and Donkers (1985) "profits" just as "savings" in the 

theory of consumer allocation have to be excluded in the theory of costs. 

However, a part of "profits" can be attributed to renumeration for "labor 

services" of "self-employed". 

Van Zon ((1983), (1986)) solved this in the following way: he calculated for 

each sector the wage-sum per wage-earner by dividing the total wage-sum 

(including social security payments by employers) by the number of wage-earners 

in that sector. This "average wage" was imputed to the number of "self-employed" 

in that particular sector and added to the total wage-sum obtaining in this way 

nominal and deflated amounts for "labor services". 

Van Zon considered "capital services" to be measured by "depreciation charges". 

The price index was obtained from data on total nominal investment supply and 

total nominal investment demand for each sector. Using the RAS method he 

*) In this respect the authors sincerely wish to thank Mr. Van Nieuwenhoven 
for his kind allotment of precious time. 

**) In that study we only disposed of the tables for 1958 - 1967. Since then, 
we could extend the period of observation to 1950 - 1968. 
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constructed a matrix linking nominal supply to nominal demand. This matrix was 

first deflated by means of investment supply price data and then aggregated to 

obtain a sector-specific price index for the sector demand for investment goods. 

This price index was used to deflate "depreciation charges". 

The CBS distinguished 35 productive sectors for the period 1950-1968. As this is 

too detailed for our purposes, we decided to aggregate these 35 sectors into 10 

new sectors. In table 1 we present the aggregated sectors in terms of the 

original CBS sectors. For the latter classification we refer to De Boer (1982), 

p. 74. 

Table 1 

Definition of aggregated sectors 

Aggregated sector 

1. Agriculture, forestry and fishing 

2. Extracting industry 

3. Food, beverages and tobacco 

4. Textiles, footwear and other wearing 

apparel 

5. Chemicals, oil refineries 

6. Metal industry 

7. Construction 

8. Other manufacturing industries 

9. Transport, storage and communication 

10. Services 

CBS sector No. 

1 

2, 3 

4, 5, 6 

7,8 

13 

15, 16, 17, 18, 19 

20 

9, 10, 11, 12, 14 

27, 28, 29 

21, 22, 23, 24, 25, 26, 30, 31, 

32,33, 34, 35 

So we arrived at 19 nominal and deflated input-output tables with 10 

intermediate inputs and 3 primary inputs: imports, labor services and capital 

services. 

In applied research the optimal cost shares wt^ for a particular sector as well 

as the optimal (minimum) unit cost price are usually unknown and are replaced by 

observations on cost shares: 

costs of input i in period t 
wti total costs in period t ’ 

and by observations on the unit cost prices: 

nominal total costs in period t 
ct deflated total costs in period t 
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deflated costs of Input j. 

As a final remark, we left out items which have a cost share smaller than 1% of 

total costs (mainly zero entries), as the data for these inputs is quite 

unreliable, because of rounding errors. 

5. Results 

5.1 Estimates 

In table 2 we present the results for Hanoch*s model, i.c. (6). For economy of 

space we do not present the estimates of the constant terms b^ as they are not 

relevant from an economic—theoretical point of view . Moreover, we only present 

the results for the covariance specification HARBO, since DESO is strongly 

rejected in a large majority of cases (see section 5.2). 

Between brackets we present the standard errors of the estimates. 

Only in two cases, sectors 7 and 9, the theoretical constraint of concavity, 

i.c. 

(37) 04 <_ 1 i = l,...,n, 

with the equality sign applying for at most one i, is met with. 

For the other sectors, we also estimated the constrained version of the Hanoch 

model, i.c. with (37) imposed. 

In table 3 we present the results for the CES model, i.c. (15). All estimates of 

the substitution parameter a are positive, as it should be. From an economic- 

theoretical point of view the CES model behaves nicely. 

5.2 Testing specifications 

Testing DESO against HARBO 

In Table 4 we present the values of the likelihood ratio test statistic -21og X 

as well as the critical point at a level of significance of 0,5%. We only 

applied Italianer's correction (see section 3.4) when the null-hypothesis DESO 

*") For the same reason we do not present the estimates of the Cobb-Douglas 
and of the Leontief model. 

**) The results may be obtained from the authors upon request. 
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was accepted at a level of significance of 0.5% or slightly exceeded the 

critical point. In the following two tables an asteriks indicates application of 

that correction factor. 

In a large majority of cases DESO is strongly rejected against HARBO. At a 5% 

level of significance DESO is not rejected against HARBO only in the constrained 

Hanoch model for sectors 2 (with a corrected value of 13.867 and critical point 

14.1) and 6 (corrected value 12.431 and critical point 12.6). 

It seems safe to conclude that HARBO performs (much) better than DESO. 

Testing model specifications against each other 

Since DESO is strongly rejected against HARBO (except for 2 cases at a 5% level 

of significance), we only present the results for the covariance specification 

HARBO. 

Hanoch constrained vs. Hanoch unconstrained 

From the first column of table 5, it appears that in addition to sectors 7 and 

9, concavity is also accepted for sectors 4, 5, 6 and 10, so that at this level 

of aggregation the concavity of Hanoch* s function is accepted in 6 out of 10 

cases which is quite encouraging In view of the small number of observations and 

the large number of parameters to be estimated. For the other 4 sectors it seems 

worthwile to try another level of aggregation. 

CES vs. Hanoch 

In the second column of table 5 we present the values of the likelihood ratio 

test statistic of CES against the unconstrained* Hanoch model. In view of the 

very large values of the test statistic we do not present critical points in the 

table. Obviously, the CES model to strongly rejected against the unconstrained 

Hanoch model in all cases. 

* Note that the CES model is not rested within the constrained Hanoch model 



Table 2 Estimates of the parameter of the Hanoch model 

sector 1 2 

“i 

1 1.761 
(.134) 

2 

3 -1.336 
(.093) 

5 .021 .375 
(.110) (.149) 

6 -.132 .921 
(.352) (.422) 

7 .852 
(.364) 

8 .650 -.029 
(.101) (.247) 

9 — 2.856 
(.484) 

10 .571 -2.050 
(.691) (.478) 

11 .547 -.218 
(.072) (.196) 

12 -.370 -.233 
(.053) (.254) 

13 -.019 .777 
(.137) (.498) 

3 4 5 

.982 
(.370) 

2.544 
(.630) 

1.127 — .474 
(.232) (.488) 

.404 
(.170) 

-1.378 -1.219 -1.551 
(.203) (.167) (.500) 

1.424 -.178 2.597 
(.206) (.296) (.715) 

-1.325 .589 1.828 
(.408) (.274) (.459) 

3.938 1.930 1.294 
(.435) (.273) (.223) 

.173 -.832 -.326 
(.064) (.216) (.144) 

.410 .659 .580 
(.019) (.040) (.038) 

.151 1.480 .972 
(.181) (.261) (.220) 

6 7 

-.420 .816 
(.158) (.127) 

-.230 .235 
(.192) (.235) 

.165 
(.525) 

.422 .080 
(.121) (.220) 

2.897 .485 
(2.003) (.299) 

-.039 .297 
(.116) (.156) 

.428 -.144 
(.060) (.102) 

-.029 -2.330 
(.769) (.501) 

8 9 

2.367 
(.204) 

-.737 
(.191) 

-.321 .403 
(.121) (.165) 

.492 -.279 
(.360) (.468) 

.091 .713 
(.091) (.114) 

.694 -2.566 
(.291) (.666) 

-.580 .313 
(.577) (.458) 

.470 .779 
(.092) (.103) 

.288 .278 
(.045) (.063) 

.988 .708 
(.745) (.216) 

"—" denotes that the corresponding cost share is smaller than to 1% of 
total costs. 

10 

.419 
(.269) 

.792 
(.119) 

-.481 
(.103) 

.527 
(.178) 

-2.819 
(.735) 

.666 
(.107) 

-.563 
(.171) 

1.009 
(.455) 

-.179 
(.093) 

.645 
(.093) 

.325 
(.125) 



Table 3* Estimates of the substitution parameter of the CES model model 

sector 1 

°i 
a -.121 

(.024) 
a 1.121 

2 3 4 

.048 .282 .409 
(.085) (.016) (.013) 

.952 .718 .591 

5 6 7 

.393 .282 .008 
(.020) (.016) (.040) 

.607 .718 .992 

8 9 10 

.294 .340 .416 
(.032) (.021) (.021) 

.706 .660 .584 

* The standard errors of a are the same as those of a, of course. 

Table 4 Values of test statistic: PESO vs. HARBO 

sector critical point Hanoch Hanoch CES 
at a - 0.005 constrained 

Cobb-Douglas Leontief 

1 23.6 
2 20.3 

3 22.0 
4 20.3 

5 22.0 
6 18.5 

7 20.3 
8 23.6 

9 20.3 
10 25.2 

55.278 
14.977* 

91.698 
56.596 

83.116 
12.772 

35.284 
88.314 

57.900 
251.410 

85.758 
13.867 

85.412 
52.116 

107.200 
12.431 

152.698 

251.418 

133.502 
24.312 

102.548 
96.950 

133.714 
13.498 

111.420 
226.358 

84.176 
161.936 

130.036 
24.433* 

39.260 
19.279 

90.742 
13.046 

114.916 
222.666 

58.210 
122.726 

168.794 
29.852 

137.314 
97.310 

57.546 
62.290 

118.524 
138.802 

69.610 
134.892 

In table 5 we present the values of the likelihood ratio test statistic with 

the critical point at a 5% level of significance between brackets. 



Table 5 Values of the test statistic for alternative specifications of the model 

Ranoch constrained 

sectors vs.Hanoch 

CES vs Cobb-Douglas Leontief 

Hanoch vs. CES (3.84) vs CES (3.84) 

1 16.112 (3.84) 

2 10.816 (3.84) 

3 13.168 (9.49) 

4 5.870 (5.99) 

5 8.287* (9.49) 

6 .810 . (3.84) 

7 concavity already accepted 

8 26.1A2 (5.99) 

9 concacity already accepted 

10 0.0003 (3.84) 

167.788 6.248* 

63.214 .260 

92.166 73.244 

78.578 81.558 

28.354 62.386 

28.974 24.762 

37.546 .036 

78.932 25.136 

41.790 74.590 

159.730 44.342 

14.936 

51.544 

99.802 

93.654 

108.748 

85.896 

61.966 

120.662 

56.850 

95.812 

Cobb-Douglas against CES and Leontief against CES 

In the third and fourth columns of table 5, we present the results of testing 

Cobb-Douglas against CES and Leontief against CES, respectively. It appears that 

at a 5% level of significance Cobb-Douglas is only accepted for sectors 2 and 7. 

At a 1% level of significance Cobb-Douglas is also accepted for sector 1 (the 

critical point being 6.63). In all other cases Cobb-Douglas is strongly 

rejected. The Leontief model is strongly rejected against CES in all cases. 

Consequently, the hypothesis of no substutition between inputs cannot be upheld. 
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