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EMPIRICAL BAYES METHODS IN CLINICAL TRIALS META-ANALYSIS 

* ) Th. Stijnen and J.C. van Houwelingen ' 

Abstract 

In this paper we discuss empirical Bayes methods for combining 

evidence from a series of clinical experiments comparing two 

treatments. The approach is based on a random effects model for 

the treatment effects. We describe two nonparametric empirical 

Bayes procedures for estimating the effect sizes in the individu¬ 

al trials. The empirical Bayes estimates should have smaller mean 

squared error than the observed effect sizes. Moreover, the 

empirical Bayes estimates exhibit less variability and are more 

comparable to each other than the original estimates. 
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1. Introduction 

Meta-analysis is defined here as the statistical analysis with 

the purpose of combining and integrating the findings of several 

research studies. Such analyses become increasingly popular in 

medical research where information on the efficacy of a treatment 

is available for a number of comparative clinical trials. Most 

meta-analyses in the medical field concentrate on estimating and 

testing the common treatment effect, which is then assumed to be 

equal for all trials, and little attention is paid to possible 

inhomogeneity in effect sizes between trials. DerSimonian and 

Laird (1986) discuss a random effects model that adequately 

incorporates inhomogeneity of treatment effects. In this paper we 

adopt the same model and consider the use of empirical Bayes 

methods in order to construct improved estimators of the effect 

sizes in the individual trials. Several authors, among others 

Champney (1983) and Hedges and Olkin (1985), have proposed the 

use of empirical Bayes methods in meta-analyses. However, they 

assume a functional form for the distribution of the effect 

sizes. In this paper we describe two empirical Bayes methods 

which can be used if this distribution is left completely unspec¬ 

ified . 

Suppose we want to combine information from a series of k compar¬ 

ative clinical trials in which an experimental treatment is 

compared with a control treatment. Let the true difference in 

efficacy between the two treatments in the ith (i=l,...,k) trial 

be characterized by some unknown parameter 9^ For example, when 

the outcome of the treatments is measured by some continuous 

variable X, the true effect size in the ith trial could be 

defined as anc* P°Pula't;‘-on means of X for 

the experimental and control treatment, respectively. If the 

outcome is measured by a dichotomous variable, say dead or alive, 

common choices for 6^^ are the risk difference, the relative risk 

or the odds ratio. 

In each trial the true effect size 9i is estimated by the ob¬ 

served effect size y^, which has standard error ck . For instance, 

y^ is the observed difference xt- xc between the sample means of 

the outcome variable X, and a? is estimated by the sum of the 
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squares of the estimated standard errors of the means. If it is 

assumed that the true treatment effects 9. all are equal, the 

common effect size can be estimated by some weighted average of 

the y^'s in the usual way. However, differences in for instance 

the support of clinical care and minor differences in the treat¬ 

ments, such as differences in dose or duration, can lead to 

varying effect sizes between trials. In this paper we consider 

empirical Bayes (e.B.) methods in order to make improved esti¬ 

mates of the effect sizes of the individual trials. These e.B. 

estimates will show considerably less dispersion than the origi¬ 

nal observed effect sizes. 

We concentrate in this paper on empirical Bayes estimators that 

are non-parametric, i.e. the distribution of the effect sizes is 

completely unspecified. In the next section we specify the 

statistical model and introduce the empirical Bayes approach. In 

section 3 we describe two non-parametric e.B. estimators. The use 

of these methods is illustrated in section 4 with an examples of 

a series of clinical trials reported in the medical literature. 

We finish the paper with a short discussion in section 5. 

2. The empirical Bayes approach 

We adopt the following model. 

(a) 01(...,e^ constitute a random sample of treatment effects 

from a population of possible treatment evaluations. The 

distribution of effect sizes is denoted by G, which has mean 

4 and standard deviation a.. 
0 

(b) Given 9i, y^^ has a normal distribution with mean 8i and 

standard deviation a.. 
i 

Before introducing empirical Bayes estimators it is instructive 

to consider for a moment the situation in which the distribution 

G and the a.'s are known. In that case one could estimate 9. with 
i r 

the expectation of the posterior distribution of 0^ given the 

observation y.: 
J i 

(2.1) 
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where h denotes the standard normal density. The estimator d„ . 
f i. 

is the usual (non-empirical) Bayes estimator with respect to G 

under squared error loss. d_ . is optimal in the sense that it 
G r t 

minimizes E{dg Suppose for instance that G is a 

normal distribution with known mean p and standard deviation a0. 

Then (2.1) reduces to (cf. DeGroot (1970), theorem 9.5.1) 

dG,i(yi) 
ae + al 

yi+ + a? 
i 

(2.2) 

So in this case the Bayes estimator of the effect size 6^ is a 

weighted mean of the observed effect size y^ and the mean p of 

the prior distribution of effect sizes. 

Now let us turn back to the case that G is unknown. In the 

empirical Bayes approach the observations y^,...,yn are used to 

construct an estimator d. of d„ .. If some functional form for 
1 (j j 1 

the distribution G is assumed, the construction of e.B. estima¬ 

tors is very straightforward. For instance, suppose that G is 

normal with unknown mean p and variance a|. Then there are 

several methods to construct estimators p and for p and , 
y y 

respectively. One of the methods used by DerSimonian and Laird 

(1986) is as follows. Estimate p by the weighted average 

^ n n 
p = £ w.y. / £ w. , (2.3) 

i=l 11 i=l 1 

^ — 2 
where the weights w^^ are equal to cr , and estimate a* by 

a’ = max 0 S ( wi(Yi~ ^)2) ~ 2 4 

6 E wi - ( £ w? / E wi) 

Substituting these estimates in (2.2) we obtain the following 

e.B. estimator for the effect size 9. in the i1"*1 trial. 
r 

;,i<yi> = 
+ CT? 

1 
yi+ + a? 

(2.5) 

Much work has been done in constructing and investigating 

asymptotic properties of nonparametric e.B. estimators for the 
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case that all c^'s are known and equal (see Singh (1979), e.g.). 

Very little attention has been paid to the case of unequal 's. 

In the next section we describe two non-parametric e.B. estima¬ 

tors which are applicable in that case. 

3. Two nonparametric empirical Bayes estimators 

Method I 

The first e.B. estimator is based on nonparametric estimation of 

the distribution of effect sizes G. Once G is estimated by G, an 

e.B. estimator can be obtained by taking the Bayes estimator with 

respect to G, i.e. substituting G in (2.1). In order to estimate 

G we use a general method due to Laird (1978) for nonparametric 

maximum likelihood estimation of a mixing distribution. She 

considered the following model. Let ei,...,6n be a random sample 

from an unknown distribution G. The 0^'s are not observed. Let 

further • • • >yn *->e independent observations such that, 

conditionally on 6^, y^ is distributed with density h^y^Je^). 

Hence, marginally y^ has density 

fifyjjG) = j hi(yiSe) dG(6) . (3.1) 

The parametric form of h^(-[•) is assumed to be known. Laird 

showed that, under some weak regularity conditions, the 

nonparametric maximum likelihood estimator G of G is a discrete 

distribution with a finite number of atoms. Once it is known that 

G is discrete with k steps, G is easily computed with the EM 

algorithm (Dempster e.a., 1977), e.g.. When k is unknown, one 

approach is to start with a large (close to n) value of k, say 

kg, and take k to be the number of distinct steps with positive 

probability. (Choosing kg to be greater than k causes no problems 

if the EM algorithm is used, since that is capable to converge to 

a point on a ridge.) We apply this method in order to estimate 

the distribution G of effect sizes, taking h. (y. |6.) to be equal 
^ 111 

to h((y^-6^)/ck ), with h the standard normal density. (In 

order to simplify notation, we shall write in stead of in 

the sequel.) The EM algorithm used to compute G is very simple 

programmable as follows. Let 0^ ',...,0£ ’ be the atoms of G at 
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the sth iteration, and let it ^. ,rjs ^ be the corresponding 

probabilities. Then the (9jS + 1 , 7t(s+'1''), j=l,...,k at the next 

iteration are determined as follows. First compute 

(i=l,...,n; j=l,...k) by 

(yi-6js) J/^) / E^{Ti(s)a71h((yi-e(s))/ai)} . 

th 
Then the atoms and probabilities of G at the (s+1) iteration 

are determined by 

t(s+l). 

j 
E z. . /n C. . . 

i = l ^ 
and e(.s+1) = 

D 

A good set of starting values is a uniform distribution on an 

equally spaced grid between the minimum and the maximum of the 

y 's. 

Let (6^,11^), j=l,...k, be the estimate G of G obtained after a 

sufficient number of iterations. Then the following e.B. estima¬ 

tor can be obtained by substituting G in (2.1). 

•_! 9j "j h<(y~9j)/CTi) 

d (y) = . (3.2) 

k * * 
E n . h((y-e.)/a.) 

j = l 3 J 

Method II 

The second e.B. estimator we want to introduce is based on direct 

estimation of d„ .. This method has the special feature that, in 
13'1 th 

order to estimate the effect size in the i trial, it only makes 

The idea is as use of the observations y. of trials with a. < a. 
j D i 

follows. From 

written as 

(2.1) one can easily derive that d 
G, i 

can be 

f|(y||G) 

fi(ylG) 
dG,i(y) = y + (3.3) 



where f^(*jG) 

(• ||G) is its 

cr j < cri, then 

is the marginal density of given by (3.1) 

derivative. Let n^ denote the number of o_,'s 

f^(«|G) can be estimated by 
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and 

with 

fi(y) S (CT?-cr?) 

j so,<a. 
J j r 

y-y. 

(a?-a?) 
' i j' 

(3.4) 

and f£(«|G) is estimated by the derivative f|(») of f^f*). Now, 

an e.B. estimator is given by 

f{(y) 
di(y) = y + ^ -- . (3.5) 

fi(y) 

In order to show that (3.5) is a reasonable estimator of d„ ., we 
'GT / 1 

let see that the estimators f.(y) and f!(y[G) are unbiased 

estimators of f. (y|G) and f ;(y|G), respectively. Let (5 , = (a?-0?)^, 
r i j r j 

then the expectation of the summand corresponding to cr^. in (3.4) 

can be written as 

E[ h((y-y.)/p.) ] = Eg[ E[ h((y-yj)/pj)(0j] ] = 

EgC J |= h((y-u)/pj) i= hffu-e^/a^ du ] = (3.6) 

The expression between square brackets in (3.6) is recognized as 

the convolution of a N(0,p^) and a N(6j,CT^) distribution. Hence 

(3.6) is equal to (cf. (3.1)) 

EgC = h( (y-e j)/^)] = j h((y-ej)/ai) dGfej) = f.(y|G) 

So each summand in (3.4) is an unbiased estimator of f^(.|G). 

Hence f^ is unbiased. The same follows analogously for f|. 

Unfortunately, the e.B. estimator given by (3.5) has the unat¬ 

tractive property that it is not necessarily a nondecreasing 

function of y. It is known that the class of monotone estimators 

is essentially complete if the conditional distribution of yi 

given 0^ has monotone likelihood ratio in 0 (Berger (1980), 

theorem 8.7). Hence the e.B. estimator (3.5) is not admissible. 
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Therefore we smooth d. using the following monotonisation proce- 
^ i 

dure due to van Houwelingen (1973). Let ('’I®) denote the 

inverse of the cumulative distribution function of given 0, 

and let a(6) be defined as 

(3.7) 

where I [A] denotes the indicator function of a set A. Then the 
•k 

e.B. estimator d^ given by 

d^(y) = sup{0: FT-^o^e) He) < y> (3.8) 

is nondecreasing in y and has smaller risk than d., i.e. 
* 

EJd^y^J-e^) * < EfdjJy^J-e^)2. For a proof the reader is referred 

to van Houwelingen (1973,1977) or Brown e.a. (1977). 

In the next section we apply the above methods to the data of a 

series of clinical trials from the medical literature. 

4. Example 

Our example of the use of the e.B. methods from section 3 con¬ 

cerns a series of 25 randomized clinical trials reported by 

Collins and Langman (1985). In each trial a group of patients 

with acute upper gastrointestinal bleeding treated with a 

histamine Hj antagonist was compared with a control group treated 

with a placebo. The data consist of the number of patients in the 

treatment and control group, nT and nc, and the number of pa¬ 

tients with persistent or recurrent bleeding in each of the 

groups, dT and d^. As a measure of the treatment effect we choose 

the (natural) logarithm of the odds ratio 0 = 

l°g{PT(l-Pc)/(Pc(l-PT))}, where pT and pc are the probabilities 

of persistent or recurrent bleeding in the treatment and control 

group, respectively. The effect size 0 in each trial is estimated 

by (Fleiss (1981), p. 67) 

y = log 
(dT+.5)/(nT-dT-H.5) 

. (dc+.5)/(nc-dc+.5) 
(4.1) 
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Given 0, the observed log odds ratio y is approximately normally 

distributed with mean 8 and estimated standard error (Fleiss 

(1981), p. 67) 

r + i + „_l, + i i 
[ dT+.5 nT-dT+.5 dc+.5 nc-dc+.5 j 

1/2 
(4.2) 

Collins and Langman report that the usual chi square test for 

heterogeneity indicates that there is some heterogeneity 

(X2j24j=38.1, p=0.02) and they compute a 'typical' odds ratio of 

.89 with an approximate confidence interval of (.73 , 1.08). 

In table 1 for each trial the data are given, together with the 

observed log odds ratio and the e.B. estimates obtained with the 

two methods described in the previous section. For illustration, 

also the parametric e.B. estimator given by (2.3)-(2.5), which is 

based on a normal distribution of treatment effects, is given. 

The estimates of p and cr2 were p = -.103 and = .100. 

In table 1 the trials have been sorted by the size of the esti¬ 

mated standard error of the observed log odds ratio. Obviously 

all e.B. estimators exhibit considerably less variability than 

the observed log odds ratios. The Pearson correlation coefficient 

between the two series of nonparametric e.B. estimates is equal 

to r=.89. The correlation between the parametric and the 

nonparametric e.B. estimators is equal to .90 and .88 for method 

I and II, respectively. The correlation coefficients of the two 

nonparametric and the parametric e.B. estimates in table 1 with 

the original observed treatment effects y^ are .79, .88 and .83, 

respectively. 

When considering the e.B. estimates produced with method II, one 

has to remember that for each trial the estimate is based only on 

the observed log odds ratios of the trials with smaller ck . 

Therefore the method II estimates on the first few lines of table 

1 have to be rather unreliable. 

The maximum likelihood estimate of the prior distribution needed 

for method I has two mass points (0,, 09) = (-.98, .003) with 

probabilities (t^, tt2) = (.17, .83). Given the estimated prior 

distribution, the e.B. estimates are easily computed with formula 

(3.2). The estimated distribution of the effect sizes suggest 

that in the majority of the trials there is no treatment effect 



at all, but there seems to be a minority of trials in which there 

might be a substantial treatment effect. 

TABLE 1. Observed log odds ratios and empirical Bayes estimates 
of the true log odds ratios for the series of clinical trials of 
Collins and Langman. 

5. Discusssion 

In this paper we described two nonparametric e.B. methods for 

estimating the treatment sizes in the individual trials of a 

series of clinical trials comparing the same experimental treat¬ 

ment with a control treatment. Both methods have the property of 

shrinking the observed effect sizes to some weighted average, and 

therefore considerably reduce the variability in the observed 

treatment effects. Based on nonparametric maximum likelihood 

estimation of the underlying distribution of the effect sizes, 

method I has the attractive property of giving an explicit 
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estimate of this distribution. However, this method seems to be 

rather rigid and might shrink to drastically. We applied this 

method to several other series of clinical trials reported in the 

medical literature. In all cases the estimated distribution had 

at most two mass points. Notice that (3.2) implies that the e.B. 

estimate always lies in between these two mass points. For 

instance, in the example of section 4, this method cannot produce 

estimates that are positive. The second method (II) does not have 

this disadvantage, but this method has the unattractive property 

of not using all the available data. Since only data of larger 

trials are used, this disadvantage is most serious for the large 

trials. However, since large trials can give a precise estimate 

of their treatment effect on their own, there is less need for 

improved estimates for large trials. Method II seems to behave 

somewhat more flexible than method I. It produces in our example 

estimates which are higher correlated with the original observed 

effect sizes than the estimates produced by method I. 

Since no theoretical results are known, the nonparametric e.B. 

proposed in this paper have to be regarded as exploratory. 

Deriving analytic results for method I seems to be very diffi¬ 

cult. For method II, at least for the non-monotonized version, 

asymptotic results concerning the variance of d. and the rate of 

convergence of d^ to ^, can be derived more easily. Much 

research has to be done, for instance to construct confidence 

intervals for the effect sizes of the individual trials, or to 

incorporate covariate information into the model. 
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