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THE NUMERICAL ERROR IN NONLINEAR PARAMETER ESTIMATION 

Arie ten Cate * > 

Abstract 

The iterative nonlinear estimation of the parameters of 

a statistical model is studied. The numerical error of 

the parameter estimates is considered from a statis¬ 

tical point of view: this numerical error is linked to 

the standard error of the parameters, via the conver¬ 

gence criterion of the objective function. 

1. Introduclion 

The estimation of the parameters of a nonlinear statistical model requires a 

numerical optimisation: the value of some objective function of the parameters 

is maximised (or minimised) in a series of iterations. In this paper we will 

consider two types of objective functions: the log likelihood (to be maximised) 

and the residual sum of squares (to be minimised). 

Since the number of iterations is necessarily finite, there will usually be 

a (small) difference between on the one hand the optimal parameters values and 

the function value, and on the other the computed values of the parameters and 

the function. let us call the modulus (absolute value) of such a difference the 

numerical error; both the parameter values and the function value have a nume¬ 

rical error. 
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For the sake of simplicity, the finite accuracy of the computer, which may 

be another source of numerical error, is ignored here. 

In this note, the idea is considered to link the numerical error of the 

parameters to their statistical accuracy, in particular their standard error. 

Consider for example a parameter which can be estimated with a very high sta¬ 

tistical accuracy; let us say with a relative standard error of 10-4. It makes 

sense to compute the estimate of such a parameter with more than four decimal 

digits precision. On the other hand, if the standard error of a parameter is of 

the same order of magnitude as the parameter itself (which is quite common in 

the social sciences), then such a precision is nonsensical. 

In the sequel it is shown how this idea can be made operational. Results for 

the two types of objective functions mentioned above - the log likelihood and 

the residual sum of squares - are derived in sections 4 and 5 respectively. 

Each of these sections has a verbal conclusion. The results are based on a 

lemma which is presented in section 3, after a discussion of convergence and 

convergence criteria in section 2. Section 6 gives a discussion of the results. 

In an appendix a proof of the lemma of section 3 is given. 

Interested readers who are not familiar with nonlinear estimation are refer¬ 

red to Goldfeld and Quandt (1972), Bard (1974), and chapter 6 of Judge et al 

(1985). 

2. Convergence 

With most optimising computer programs, the user can control the number of 

iterations, and hence influence the numerical error of the result, through con¬ 

vergence criteria. A convergence criterion may be applied to the objective 

function, or the parameters, or both. A convergence criterion for the para¬ 

meters usually applies to all parameters uniformly. 

For instance, the user may require that the iterative process continues 

until the. first four decimal digits of the parameters are no longer changing 

from one iteration to the next. This is implemented in the software by testing 

at the end of each iteration if the relative changes of all parameters are less 

than some (small) user defined number - in this case 10~4. One hopes then that 

the parameters are correct in about four decimal digits. Or, in other words, 

one hopes that their relative numerical error is about 10-4. 
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There is little theory about the relation between convergence criteria and 

numerical errors. Further discussion of this problem is, however, beyond the 

scope of this paper: whether or not the results presented below are used, this 

problem exists. Here, we will assume that, through the convergence criterion of 

the objective function, the user can control the numerical error of the objec¬ 

tive function. As we shall see, this leads in turn to control of the numerical 

errors of the parameters. 

3. A lemma 

Throughout this note, it will be assumed that the objective function around its 

top (or bottom) can be adequately approximated by a quadratic function. The 

following lemma is about the behaviour of such a function. It shows how a 

deviation of a quadratic objective function from its maximum (or minimum) value 

can lx? translated to a deviation of the parameters from their optimum value, as 

follows. 

Let F(9) be a quadratic function of a real vector 9; say 

F(9) = a - (9-b)’H(9-b)/2 . (1) 

Here a, b, and H are a scaler, a vector and minus the Hessian matrix respecti¬ 

vely. Let H be symmetric and positive definite, from which it follows immedia¬ 

tely that F(9) reaches the maximum F(9)=a for 9=b. Then, for every real posi¬ 

tive c the following holds. If 

a - F(9) < c (2) 

then for every element 9k of 9: 

(3) 

A proof of (3) is given in the Appendix. 

4. Maximum likelihood 

In this section the maximum likelihood estimation of the parameter vector 9 of 
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a nonlinear model is discussed. It is assumed that the log likelihood function 

around the optimum, given the observed data, can be adequately approximated by 

a quadratic function. In most cases, this gives a better approximation than ap¬ 

proximating the likelihood function itself (a non-negative function) with a 

quadratic. Also, think of the standard linear regression model with normally 

distributed disturbances, where the log likelihood function is everywhere 

exactly quadratic. 

Let the log likelihood function near its maximum be given by the right hand 

side of (1). Then 9=b gives the maximum likelihood estimate of 0. The idea dis¬ 

cussed in the introduction can now be written as 

(4) {0i - bi| < sif , 

for all elements 0i of the vector 0. Here f is some small positive number which 

relates the numerical error of the parameter 9i to its estimated standard error 

Si . 

The Si values can be derived from the well known theorem that under certain 

regularity conditions the inverse of H in the optimum is a consistent estimator 

of the covariance matrix of the parameter estimates: Si2=(H_1)ii* Substitution 

into (4) gives 

(5) 

The lemma of section 3 shows that condition (5) is met if the distance between 

the log likelihood and its maximum is not greater than 

(6) c = f2/2 . 

In words: the numerical error of the parameters in a nonlinear maximum like¬ 

lihood problem will be less than or equal to a fixed fraction of their esti¬ 

mated standard error - this fraction being the same for all parameters - if we 

put the numerical error of the log likelihood function less than or equal to 

one half of the square of this fraction. 

Notice finally that the absolute numerical error of the log likelihood func¬ 

tion is at stake here (and the relative numerical error of the likelihood func¬ 

tion itself). Since usually the log likelihood is maximised (not the likelihood 

itself), the application of the result given above requires an absolute fune- 
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lion convergence criterion in optimising software. As far as I know the avail¬ 

able standard optimising software (in the NAG and IMSL libraries), only a 

relative criterion is allowed for. 

5. Least squares 

Consider the following nonlinear regression model, in conventional notation: 

y t = f (9; x t) + u t , (7) 

for t=l,..,n. The disturbances ut are stochastic variables. They are indepen¬ 

dently and identically distributed, with expectation zero. Conditions have been 

given in the literature under which the least squares estimator of 0 is con¬ 

sistent, both with and without the specification of the form of the distri¬ 

bution of the disturbances ut. In the first case, if the disturbances are nor¬ 

mally distributed, then the least squares estimator is the maximum likelihood 

estimator; in the second case there is no likelihood function. In both cases, 

the covariance matrix of the least squares estimator of 0 is consistently 

estimated by 

2s 2H~1 (8) 

where s2 is a consistent estimator of the variance of ut (for all t), and H is 

here the Hessian matrix of the residual sum of squares in the optimum. 

We now proceed along the same lines as in the previous section. It is 

assumed that the residual sum of squares near the optimum can adequately be 

approximated by a quadratic function. Let minus the right hand side of (1) be 

this function. 

Next, consider again the inequality (4). We replace Si in (4) by the con¬ 

sistent estimate according to (8): 

(9) 

The lemma of section 3 shows that condition (9) is met if the distance between 

the sum of squares and its minimum is not greater than 

c = s2f2 . (10) 
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The usual s2 estimator is the residual sum of squares divided by n-k, where 

k is the number of parameters. Then we have a relative numerical error of the 

sum of squares equal to 

f2 / (n-k) . (11) 

In words: the numerical error of the parameters in a nonlinear least squares 

problem will be less than or equal to a fixed fraction of their standard error 

- this fraction being the same for all parameters - if we put the relative 

numerical error of the least squares function less than or equal to the square 

of this fraction divided by n-k, the denominator of the estimator of the error 

variance. 

6. Discussion 

In this paper, the numerical errors (the errors due to the numerical optimi¬ 

sation procedure) in the estimation of nonlinear statistical models have been 

studied from a statistical point of view. The results are very simple and 

applicable to all maximum likelihood problems (if the software has an absolute 

convergence criterion, in stead of a relative one) and to most least squares 

problems. 

As far as I know, the results in sections 4 and 5 are new. However, it must 

be noted here that Cramer (1986, p. 73) also suggests to link the numerical 

error in nonlinear maximum likelihood problems to the standard error of the 

parameters - though he presents no way to do so. 

The method presented here is most useful in cases where the cost of an iter¬ 

ation is very high (for instance with numerical procedures within an iteration, 

or with a vary large amount of data), and the relative standard error differs 

greatly between the parameters. In such cases, the usual approach - with one 

convergence criterion for all parameters - may lead to a waste of computer 

time: for the parameters with a large standard error, the criterion is too 

sharp. A convergence criterion with respect to the objective function, as pre¬ 

sented in the previous two sections of this paper, does not have this defect. 
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Appendix■ Proof of the lemma of section 3 

This proof of the lemma in section 3 is due to F.J.H. Don. (My original proof 

was about three times as long.) 

Since the matrix H in (1) is symmetric and positive definite, inequality (2) 

describes a solid elipsoid. The extreme points of the ellipsoid in the direc¬ 

tion of, say, 0, can be derived from the first order conditions for a maximum 

or a minimum of 9i under the restriction of (2), written as an equality: 

(9-b)’H(9-b)/2 - c - 0 . (Al) 

The relevant Lagrangian is 

L - 9; + m[(9-b)’H(0-b)/2 - c] = ei’9 + m[(9-b)’H(9-b)/2 - c] . (A2) 

Here, m is the Lagrange multiplier and e, is the ill> unit vector. Then 

dL = ei’(d9) + m(d0)’H(9-b)/2 + m(9-b)’H(d9)/2 

+ (dm)[(9-b)’H(0-b)/2 - c] . (A3) 

Requiring dL-0 for any d9 and dm gives the desired first order conditions: 

equation (Al) and 

ei + mH(9-b) = 0 . (A4) 

Equation (A4) implies 

9-b = -(l/m)H- le ■, . (A5) 

Substitution of (A5) into (Al) gives 

(l/mz)ei’H-‘HH-iei/2 - c =: (l/ra* )e,’H-»e i/2 - c - 0 (A6) 

or 

1/m2 = 2c/(ei’H-iei) . (A7) 

Then, with (A5) and (A7), we have 



12 

(0i-bi)2 = [ei’(0-b)]2 = (l/m2)(ei’H-*ei)2 

= 2c(ei’H-'ei) = 2c(H-*)ii . (A8) 

Taking the square root of the first and last member of (A8) gives 

(A9) 
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