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COMPARISON OF SEVERAL MEAN VALUES IN THE PRESENCE OF OUTLIERS 
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Abstract 

The behaviour of several methods for one-way analysis of variance is 

examined for contaminated normal data. The test are: Classical Anova, 

Van der Waerden, Trimmed and Winsorized Anova and Huber's method. Two 

kinds of contamination are considered: symmetric and one-sided. 
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1. Introduction 

The model in classical one-way anova is . = y + . where the errors 
ij 1 ij 2 

e. . are supposed to be independently distributed as N(0, o ) for 

unknown a2. The index 1 denotes the group-number (i = 1.. and j 

identifies the elements within the groups (j = 1.n^. The 

hypothesis of interest is H0: p1 = ... = pfc. According to the above 

conditions, this hypothesis can be tested with 

l n.(y.- y)2/(k - 1) 
i-1 __ 

k i 

l 1 (yl1 - - >0 
i=l j=l J 

k _ 
where N = £ n., y is the sample mean within the i-th group and y is 

1=1 1 
the overall sample mean. The decision rule is to reject if 

k—i 
F > F , (a) for some chosen size a. 

N—k 

For contaminated normal data we consider the following modification: 
2 

with (small) probability e the distribution becomes e ~ N(0, a o ), 
1J 2 

where a >> 1, and with probability 1-e the distribution remains N(0, a ). 

This contamination is symmetric; in the asymmetric case, multiplication 

by /a is performed on the positive errors only, with probability 2c. In 

both cases, the expected fraction of outliers is e. 

In practice, errors of this form with a high value of a may be caused 

by misplacing or forgetting a decimal point. And once fed into a 

computer file they are never seen by human eyes again. 

Classical one-way anova is not designed for contaminated normal data. 

Using this test here might result in a probability of rejecting when 

true that differs from the chosen size a, or in a serious loss of 

power. In the next sections some alternatives are presented that seem 

to be more robust in these respects. A comparative study concerning the 

size and power of all the tests under consideration will be given, 

where the effect of symmetric and one-sided contamination is 

demonstrated by simulation. 
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2. Nonparametric Anova 

In a nonparametric test the hypothesis is not the same as in the 

previous section, but it can be expressed as "all samples come from the 

same continuous distribution". Nonparametric anova has little power for 

the comparison of shapes, but it can be used to test the equality of 

location parameters. The density in case of symmetric contamination is 

given by: 

.2 2 
f(x) = e - eXp[- + (1—e) —i- exp[- ^—] 

0/117 2aa2 ^ 2a2 

and this represents a continuous distribution. Therefore the 

application of nonparametric anova is permitted. It is easily seen that 

this also holds for one~sided contamination. 

Several nonparametric tests are available, but here we will use only 

the Van der Waerden test (1952). This test is based on the following 

statistic: 

Q = 
N-l 

k 

l 
i=l 

[ l 
les. 

i 

-iA 2 
51 wJ > where h 

N -! 5 2 H* (ufr)] . 
i=l 

Here y^, Yn represents the combined sample, where the groups are 

is the rank of 

denotes the standard normal distribution. Q is asymptotically 

represented by sets of indices S. for i = 1, 

and 

distributed as x^_1 and for small samples the critical values for Q are 

tabulated. 

The reason for choosing the Van der Waerden test from the large 

collection of methods for nonparametric anova, lies in the fact that 

this is the only test that has for e = 0 asymptotically the same 

efficiency as the classical test [hajek (1969)}. By using this 

nonparametric method one is insured against the possible presence of 

outliers, and the premium one has to pay is the loss of power for small 

samples. For k = 2 this loss has already been shown to be moderate 

[Van der Laan and Oosterhoff (1967)]. 

3. Winsorizing and Trimminy 

Applications of these methods to the t-test for two samples have been 

published already. The t-test uses the statistic 
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t = 
*2 

/ SS1 + SS2 ' /L+l_1 

where SS. 

" 2 

ome The hypothesis Hgi p1 = u2 is rejected if | 11 > tN_2(20i) for s 

chosen size a. This method is equivalent to classical one-way anova for 

k = 2: t2 equals F and for the critical values the same relation holds 

(t2 = F1). 
v V V 

Fung and Rahman (1980) Winsorized the t-test in an attempt to make it 

robust against the presence of outliers. This is done as follows: let 

a^, •••> a be an ordered sample. Then the mean and sum of squares of 

this sample, after two-sided Winsorizing with parameter g, are defined 

as: 

wg i {(^l)Vl + V2 + •" + an-g-l + (8+1)an-g] 

SSwg = (g+1) (ag+l 

- 2 - 2 
a ) + (a , - a ) + ... 
wg g+2 wg 

... + (< 
n-g-1 

a )^ + (g+l)(a - a )Z 
wg7 vs n-g wg 

The number of relevant observations hereby reduces to h = n-2g. 

Application of this technique to the t-test gives the following 

formula: 

t 
wg 

_ylwg y2wg 

,/SSlwg + SS2wg /j_ + I 

h + h, - 2 h h 
12 1 2 

This statistic approximately follows a t-distribution with + h^ 2 

degrees of freedom. Fung and Rahman used n^ instead of h^ under the 

second square-root sign, but that appears to be have been a typing 

error as can be concluded from a study by Yuen and Dixon (1973) on 

which they based their approach. 

Winsorizing means replacing the tail—elements by the most extreme 

elements that are not considered to belong to the tails. Trimming is a 

different technique in which the tail-elements are simply deleted. 

Yuen and Dixon examined the behaviour of the trimmed t-test, where the 

numerator is based on trimmed means, but the denominator still contains 
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Wlnsorized sums of squares. In a simulation study with n. > 10 both 

methods show the same qualities: The probability of rejecting H0 when 

true is almost equal to the chosen size, and the power for normal 

distributions is only slightly below that of the classical t-test. For 

distributions with heavier tails the Winsorised and trimmed t-tests are 

even more powerful than the classical t-test for moderate values of g 

[Fung and Rahman (1980)]. 

Therefore it could be attractive to apply these techniques to classical 

one-way anova, which is nothing more than a generalisation of the t- 

test for 1c > 2. The Wlnsorized F-statistic is given by 

F 
wg 

I My 
i»l 

i iwg v z^-1) 
iIissiwg/(H-k) 

_ k _ k 

where y = l hy/H and H = I M For the trimmed F-statistic F 
s i=l wg i=l 1 tg 

only the numerator of F is modified; the Wlnsorized means are 
Wg _ 

replaced by trimmed means y and the trimmed overall sample mean is 
k s 

given by y = £ h.y, /H. It is assumed that both F and F are 
B i=l x w8 tg 

approximately distributed as F^_^. In a previous simulation [Dijkstra 

(1986)] it was found that the probability of rejecting HQ when true 

differed too much from the chosen size a for Winsorised and trimmed 

anova. But after correction of the above mentioned typing error in the 

paper by Fung and Rahman the behaviour of these tests improved 

remarkably as will be shown later in this paper. 

4. Robust Regression 

The model for analysis of variance can be rewritten as a regression 

model: 

= Slxl + • • • + Bkxk + _e. 

The observations are represented by y and for every observation the 

group to which it belongs is identified by the dummy—variables 

v ••• This is done as follows: x^ = 1 if y belongs to group i and 

otherwise x. = 0. If the errors were independently distributed as 
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N(0, o2) then testing Hgi = ... = 6k would be equivalent to testing 

H • u = ... = u in the model for classical one-way anova. The values 
O’ 1 k 

of F and the corresponding numbers of degrees of freedom would be the 

same. 

Several methods for dealing with outliers in regression models have 

already been published. Huber (1973) suggested a method with attractive 

properties that can be applied to the analysis of variance problem in 

this study. 
N T 2 

The objective of classical regression is to minimize £ (y^ - x^g) as 

T ^ T 
a function of g = (g1.6k) • Here xjL = (xjL1.x^) . 

It can easily be understood that outliers in y will have considerable 

influence on the estimation of g, because classical regression will 

square their residuals. 

In robust regression a different objective is used: 

N 
min l 
g i=l 

2 
In the classical case p(r) = r , but in robust regression one chooses a 

function that limits the influence of extreme residuals. Holland and 

Welsch (1977) mention eight different functions p with this desirable 

property. The objective will be at its minimum if 

N 

l 
i=l 

0 

for j = 1.k and f = p'. Several iterative methods for solving 

these equations can be considered. Initial estimates for g^, ...» gk 

can be obtained by ordinary least squares, whereafter o can be 

estimated as 

a = 1.4826 [med I (y. - xTg) - med (y1 - x|g)|]. 
j J 3 i 

Without restrictions on the weightfunction, convergence cannot in 

general be guaranteed if the estimation of 0 is part of the iteration. 

Huber (1973) found a p that allows iteratively re-estimating of a: 
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p(r) = — for [ r | < H 

2 
p(r) = H|r| - for |r| > H. 

2 

The sensitivity to outliers depends on the value of H. For H = 1.345 

the efficiency is 95% for normal distributions. If the absolute value 

of a standardised residual exceeds H, its influence becomes linear 

instead of quadratic. Although Huber's p does not yield an extremely 

robust estimate (some authors prefer a p that becomes a constant for 

big values of r ), this method is a considerable improvement on 

ordinary least squares in the presence of outliers. 

In this case Newton's method yields a very efficient algorithm, because 

f = p' is a broken linear function. 

For the construction of an outlier—resistant analysis of variance 

procedures we consider the above mentioned robust regression with 

Huber's p and H = 1.345. This approach results in fitted value y" and 

an estimate a for a. Huber (1981) suggested a test for the hypothesis 

of equal population means that uses these estimates. His suggestion is 

the topic of the next section. 

5. Hubert Method 

In the classical situation (without outliers) the test statistic for 

V *1 = Pk> is 

F = ■ 
I n.Cy, - y)2/(k-i) 

i-1 1 1 

I I (yjj - y± 
i=l j=l 1 

) /(N-k) 

Huber gave an F that is similar to F, but on which the outliers have 

less influence. In the numerator the first step is to replace y. by y'. 

In a more general model Huber suggests to replace y by an ordinary 

least squares fit using y' instead of y. In this case (without 

covariables) such a fit will yield the weighted mean 

k 

I ^ y' 
i=l 

After scaling this modified numerator follows under mild conditions 
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asymptotically a x^distribution with the same number of degrees of 

freedom as in the classical test. 

Dealing with the denominator is a bit more difficult: one single 

outlier can be the cause of an extremely high value, so that Hg can be 

accepted although the location parameters are very different. Huber 

proposes to replace the denominator by the following expression (where 

the influence of the outliers is reduced considerably): 

, . k v£r (r) 
c = 1 +- 

N [E( ¥' ) ]2 

i N r- 
E(r) = - l 

N 1=1 o 

, N r a 
var(r) =1 l [rHo - E(r)]z. 

N 1=1 o' 

Note that in case of Huber's p these formulae are simplified 

considerably, since ¥' can only take values 0 and 1. In this case we 

have 

= 1 + k Np 

where p is the number of observations for which = !• 
o' 

Just like in classical anova HqI = ••• = is to be rejected if 

jr* > some chosen size ou Huber claims that the 

approximation of F' by an F-distribution is reasonable if n± > 5 for 

i = 1, k. This is the same condition that is usually put forward 

for using nonparametric tests with a x -distribution. 
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This approach is very sensitive to "leverage points" (Belsley, Kuh and 

Welsch, 1980); covariables can be included in the model, but they may 

not contain outliers. The test can be generalised to more complex 

designs, including interactions. In this respect Huber's methods seems 

more promising than its nonparametric alternatives, where the concept 

of rank-interaction is a complex matter, even for a simple two-way 

layout [De Kroon and Van der Laan (1981)]. 

6. The Actual Size of the Tests 

We estimated the probability of rejecting when true by using a 

simulation with 2000 replications. This we did for 3 and 6 groups, 

symmetric and one-sided contamination and sample sizes of 10, 25 and 

40. The samples were generated from normal populations with p =0 and 
2 2 1 

0 =1. Symmetric contamination was simulated by using 0 =50 with 

probabilities 0, 0.03 and 0.1. For trimming and Winsorizing the 

constant g was chosen proportional to the sample sizes. The results of 

these simulations are presented in tables 1 and 2, where the estimated 

size for each situation is given as the percentage of rejections for a 

test with nominal size a = 0.05. 

n. e: g Anova 

10 

10 

10 

25 

25 

25 

40 

40 

40 

A 

A 

A 

0 

0.03 

0.1 

0 

0.03 

0.1 

0 

0.03 

0.1 

0 

0.03 

0.1 

2 

2 

2 

3 

3 

3 

5 

5 

5 

B 

B 

B 

4.95 

3.95 

2.85 

4.80 

3.25 

4.00 

5.15 

5.15 

4.35 

4.45 

4.85 

5.30 

VdW 

4.15 

4.10 

4.90 

5.05 

4.20 

5.05 

4.95 

5.20 

4.65 

3.80 

5.00 

4.75 

Trim Wins Huber 

5.25 

5.00 

5.70 

5.40 

4.80 

4.95 

5.15 

5.30 

4.70 

3.90 

4.10 

4.25 

5.25 

5.20 

5.45 

5.05 

4.75 

6.40 

4.65 

4.80 

5.45 

3.85 

4.40 

4.95 

5.45 

5.15 

5.25 

5.35 

5.20 

5.40 

5.00 

5.25 

4.60 

4.40 

5.70 

5.25 

Table 1: Symmetric Contamination, k = 3 



Anova Trim Wins n. £ 
1 

g 

10 

10 

10 

25 

25 

25 

40 

40 

40 

C 

C 

C 

0 

0.03 

0.1 

0 

0.03 

0.1 

0 

0.03 

0.1 

0 

0.03 

0.1 

5.25 

3.10 

3.20 

4.40 

4.25 

3.95 

5.90 

4.20 

4.30 

4.75 

4.45 

6.20 

VdW 

4.50 5.65 

3.50 5.35 

3.85 5.20 

4.20 4.50 

4.95 4.95 

5.00 4.35 

5.65 5.90 

4.70 5.30 

4.35 4.20 

4.65 3.95 

4.55 4.75 

5.15 4.00 

Huber 

4.95 6.05 

4.70 5.45 

5.25 5.20 

3.95 5.05 

4.70 5.30 

7.20 5.15 

5.30 6.05 

5.05 5.30 

6.10 4.15 

3.40 5.25 

4.20 5.75 

5.85 5.55 

Table 2: Symmetric Contamination, k = 6 

In the case of one-sided contamination the use of O =50 was 

restricted to positive observations. At the same time, the probability 

of a multiplication by /50 was doubled to 2e, in order to get the same 

expected number of outliers as with symmetric contamination. The 

results of this simulation are presented in tables 4 and 5. 



Anova Trim 

10 

10 

10 

25 

25 

25 

40 

40 

40 

A 

A 

A 

0 

0.03 

0.1 

0 

0.03 

0.1 

0 

0.03 

0.1 

0 

0.03 

0.1 

2 

2 

2 

3 

3 

3 

5 

5 

5 

B 

B 

B 

4.75 

4.00 

3.75 

5.65 

3.80 

3.50 

4.85 

4.75 

4.95 

5.10 

4.35 

4.90 

VdW 

4.15 

4.75 

5.00 

5.20 

4.40 

4.90 

4.70 

5.25 

5.60 

5.35 

4.80 

4.55 

5.60 

5.75 

5.20 

5.30 

4.75 

3.90 

4.60 

5.45 

4.75 

4.60 

4.40 

3.60 

Wins Huber 

5.45 6.35 

5.70 5.65 

5.35 5.65 

5.20 6.00 

4.65 5.20 

7.50 5.15 

4.10 4.60 

5.15 5.80 

9.40 5.55 

4.50 5.65 

4.50 5.30 

6.05 5.35 

Table 4: One-sided Contamination, k = 3 

E g Anova 

10 

10 

10 

25 

25 

25 

40 

40 

40 

C 

C 

c 

0 

0.03 

0.1 

0 

0.03 

0.1 

0 

0.03 

0.1 

0 

0.03 

0.1 

5.80 

3.95 

3.15 

4.55 

5.55 

4.15 

4.15 

4.40 

4.35 

5.55 

5.20 

5.90 

VdW Trim 

4.65 4.85 

4.60 5.90 

5.05 4.85 

4.15 5.00 

5.20 5.35 

4.90 4.25 

4.35 4.30 

4.90 4.55 

4.10 3.55 

4.95 4.60 

4.80 3.95 

5.15 4.05 

Wins 

5.10 

5.75 

5.20 

4.55 

6.00 

11.80 

3.55 

4.90 

12.70 

4.55 

4.30 

9.15 

Huber 

6.10 

6.15 

6.35 

5.20 

5.90 

5.65 

4.30 

4.95 

4.10 

6.20 

5.55 

6.15 

Table 5: One-sided Contamination, k = 6 

The tables are not very clear if one wants to compare these tests. 

The standard deviation of the estimated size is (0.05 x 0.95/2000)^ 

0.004873 or 0.4873%. Let d be the percentage of rejected hypotheses 

minus 5, divided by this standard deviation. Tables 6 and 7 show the 
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values of d for each test. Three categories have been separated by 

dotted lines: d < -2 (conservative), -2 < d < 2 (accurate) and 2 < d 

(progressive). 

Anova VdW Trim Wins Huber 

d < -3 4 

-3 < d < -2 3 

0 1 

3 2 

0 

0 

-2 < d < -1 

-1 < d < 1 

1 < d < 2 

7 6 5 2 2 

8 14 13 15 17 

113 1 3 

2 < d < 3 

3 < d < 4 

4 < d < 5 

5 < d 

1 0 

0 0 

0 0 

0 0 

0 2 

0 0 

0 1 

0 0 

2 

0 

0 

0 

Table 6: Symmetric Contamination 

Anova VdW Trim Wins Huber 

d < -3 

-3 < d < -2 

2 0 0 0 0 

4 0 4 1 0 

-2 < d < -1 

-1 < d < 1 

1 < d < 2 

5 5 4 4 2 

8 18 13 10 7 

5 13 2 8 

2 < d < 3 

3 < d < 4 

4 < d < 5 

5 < d 

0 0 

0 0 

0 0 

0 0 

0 2 

0 0 

0 0 

0 5 

7 

0 

0 

0 

Table 7: One-sided Contamination 

Tables 6 and 7 suggest the following conclusions: 

- Classical anova tends to be conservative in the presence of 

outliers 
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- The method of Van der Waerden is unaffected concerning the size by 

this kind of non-normality, which is just what might be expected 

from a nonparametric test. 

- The trimmed test seems slightly conservative in this situation, but 

less than classical anova. 

- Symmetric contamination does not seem to affect the Winsorized test 

very much, but this method is clearly not robust against one-sided 

contamination. Tables 4 and 5 show that the cases where 5 < d have a 

very high proportion of outliers: e = 0.1. Such values of e make it 

possible that outliers are found in the body of a sample and not only 

in its tails (as defined by g). It would be unreasonable to expect 

robustness against this situation in a Winsorized test, because a 

tail consisting of outliers can enter the computation. This problem 

can not occur in a trimmed test. 

- Huber's method seems the best for symmetric contamination, although 

the differences with the other tests are not convincing (only 

classical anova is too convervative). Against one-sided contamination 

the suggestion of a slight progressiveness exists. Values of d 

between 2 and 3 occured in 7 cases. It is interesting to note that 4 

of these cases contained no outliers (e = 0), so that the results for 

these rows in the tables for symmetric and one-sided contamination 

should be similar. An examination of all the results for Huber's 

method shows that indeed a very slight progressiveness exists, but 

that the contamination has almost no influence (see table 8). 

contamination estimated size in % 

none (e =0) 

symmetric 

one-sided 

5.437 

5.228 

5.528 

Table 8: Huber's Method 

The estimated sizes in table 8 are based on 16 x 2000 replications, so 

that their standard deviation is 0.4873/4 = 0.1218. Two of the three 

sizes differ significantly from 5%, and it is clear that the 

approximation of Huber's test statistic by an F-distribution can be 

improved. But for practical purposes these results are acceptable. 



7. A Comparison of Powers 

Here we present a simulation study that differs from the one in the 

previous section in only one respect: the samples were generated with 

unequal location parameters. Table 9 is based on symmetric 

contamination with three samples. 

n± e g P 

10 

10 

10 

25 

25 

25 

40 

40 

40 

A 

A 

A 

0 

0.03 

0.1 

0 

0.03 

0.1 

0 

0.03 

0.1 

0 

0.03 

0.1 

2 

2 

2 

3 

3 

3 

5 

5 

5 

B 

B 

B 

0, 8 

0, 8 

0, 8 

0, 5 

0, 5 

0, 5 

0. 4 

0, 4 

0, 4 

0, 8 

0, 8 

0, 8 

0.1) Anova 

. 16 

, 16 

. 16 

. 10 

, 10 

. 10 

. 8 

, 8 

, 8 

. 13 

. 13 

, 13 

88.05 

64.55 

36.75 

88.20 

59.50 

29.00 

89.55 

57.30 

27.45 

92.65 

64.75 

31.25 

VdW 

85.50 

75.95 

59.20 

87.25 

80.90 

63.25 

89.30 

82.15 

66.15 

92.10 

86.20 

72.00 

Trim Wins 

77.85 78.05 

74.05 73.95 

64.70 65.05 

84.45 84.50 

80.95 81.25 

69.05 69.15 

87.15 87.30 

82.95 82.90 

73.65 74.10 

86.95 86.85 

83.10 83.10 

74.80 75.55 

Huber 

84.50 

80.75 

68.25 

85.45 

82.45 

71.00 

87.05 

83.65 

75.50 

91.00 

87.35 

80.45 

Table 9: Symmetric Contamination, k = 3 

We also generated tables for symmetric contamination with k = 6 and 

one-sided contamination with k = 3 and k = 6, but the results were very 

similar and therefore they will not be presented here. A summary of 

these results is given in table 10, where the powers for uncontaminated 

data (e = 0) are the means of 16 separate simulations with 2000 

replications each. The other results are based on 8 simulations with 

the same number of replications. 

This table suggests the following conclusions: 

- Classical Anova is the most powerful test for normal data, but 

contamination reduces the power of this method considerably. It does 

not matter whether the contamination is symmetric or one-sided; only 

the number of outliers (for some chosen variance) appears to have any 

influence. 
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e Anova VdW Trim Wins Huber 

0 90.50 89.44 85.25 85.41 88.19 

0.03 59.63 82.06 81.70 81.70 84.68 

symmetric 

0.1 28.55 65.54 71.43 72.54 75.12 

0.03 59.59 82.99 81.71 81.78 85.19 

one-sided 

0.1 29.20 68.71 65.48 68.88 75.08 

Table 10: Comparison of Powers 

Table 9, as well as the tables that we did not include in this paper, 

show that the difference in power for normal data (e = 0) between 

classical anova’ and the test of Van der Waerden almost disappears as 

the sample size increases from 10 to 40. Even for small samples 

on Van der Waerdens test is considerably smaller than on classical 

anova, especially as their number increases. 

Trimming and Winsorizing give similar results, except for one-sided 

contamination with e = 0.1, where Winsorizing seems to provide a more 

powerful test. But that is just the situation where Winsorizing 

should not be trusted because outliers can occur between the tails of 

a sample (as defined by g) resulting in a probability of rejecting HQ 

when true that exceeds the chosen size a considerably. Table 7 shows 

that trimming is insensitive to this problem, at least with' our 

values of g. For the smaller values of e, the values of g could be 

lowered, which might result in a somewhat higher power. 

Huber's method yields the most powerful test, except when the data 

come from uncontaminated normal distributions in which case classical 

anova and Van der Waerden's test have slightly more power. 
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The aim of this study was to select a test for outlier-resistant one¬ 

way anova that could be added to the local collection of statistical 

software at Eindhoven University of Technology. Considering the 

accuracy of the actual size, and the superior power of Huber's method, 

we reached the conclusion that this test was the appropriate choice. 

However, the differences with Van der Waerden's test and trimming are 

small, and Huber's greater power may be partly attributed to its 

greater size. So Van der Waerden's test and trimming are equally 

acceptable choices. On the other hand, Winsorizing is not to be 

recommended. 

We like to thank prof.dr. R. Doornbos and prof.dr. P.J.M. Rousseeuw 

for their helpful comments on an earlier version of this paper. 
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