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1. INTRODUCTION 

Multidimensional demographic models describe transitions which individuals 

experience during their lifetime, as they pass from one state to another: for 

example, from being alive to being dead, from living in one region to residing in 

another, from being single to being married. Multidimensional life tables or 

multidimensional projection models are often viewed as parts of an underlying 

time-continuous Markov-model, which can be estimated with the aid of observed 

data. Even when the Markov assumption is not made explicitly, life tables are 

often computed and projections are often carried out as if the process were 

Markovian. In order to facilitate estimation of the model, simplifying 

assumptions are usually made. Demographers often employ the so-called "linear 

integration hypothesis" (also known as the assumption of a linear survival 

function) which follows from the assumption of a uniform distribution of events 

over age or time intervals. This linear integration hypothesis states that the 

total amount of time a group of individuals experience the risk of making a 

transition from one state to another (e.g. from being divorced to being 

remarried) in a certain age (time) interval, may be found by computing the 

simple average of the numbers of persons at risk (divorced persons) at the 

beginning, and at the end of the interval. However, it has been argued that such 

"linear integration models" may produce implausible results, including negative 

transition probabilities. Examples may be found in Hoem and Funck Jensen (1982, 

pp. 156, 157, pp. 198-201) and in Nour and Suchindran (1984, p. 325). As an 

alternative to the linear integration approach, an assumption often proposed is 

that of constant transition intensities over age or time intervals. This approach 

leads to estimators for the transition intensities which have good properties 

under quite weak conditions. But not all types of data are suitable for this 

approach. 

In this paper we investigate the estimation of multidimensional demographic 

models and their underlying Markov processes when population registration data 

are available. It is argued that such data, in which individual information is 

aggregated over time as well as over individuals, do not permit maximum 

likelihood estimation using the assumption of constant intensities. As an 

alternative, the linear integration approach is discussed in detail and reasons for 

implausible results are given. Since neither the assumption of constant 

intensities nor the linear integration hypothesis facilitates the estimation by 

traditional methods of a time-continuous Markov process when population 



registration data are available, a new estimation algorithm is proposed. Some 

preliminary results on the mathematical and statistical properties of this method 

are given. The method is applied to Dutch nuptiality data. 

The outline of this paper is as follows. Section 2 reviews a simple Markov process 

with two states and only one transition possibility. We discuss the type of data 

currently used for the estimation of such simple Markov processes and the 

estimation of the constant intensity model and of the linear integration model. 

Section 2 serves as an introduction to section 3, in which the same issues are 

studied for a general multidimensional increment-decrement model. Next, 

section 4 discusses the new estimation algorithm for population registration data 

and section 5 contains a numerical illustration with Dutch nuptiality data. We 

reanalyse the marital status model, containing five states, which was introduced 

by Schoen and Nelson (1974), and recently criticized by Nour and Suchindran 

(1984). The main findings of this paper are given in section 6, where they are 

placed in a proper perspective. 

The framework chosen for our analysis is that of a continuous-time stochastic 

process, usually, but not always, assumed to be a Markov process. The reason for 

this choice was that many issues which have been discussed in the literature on 

deterministic multidimensional demographic models may be studied in greater 

depth by constructing an underlying stochastic process. However, we present our 

findings mainly in terms familiar to demographers; for technical details we refer 

the reader to the references. 

A SIMPLE MORTALITY MODEL 

In many statistical studies three elements are involved: there is a model 

describing some part of reality, an observational plan describing how the data 

relate to the model and a set of statistical algorithms determining how 

inferences are made from the data. This section discusses each of these three 

elements in the context of a simple Markov process with only two states and one 

transition. 
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2.1. The model 

Let x denote a continuous duration parameter describing age or time. Consider 

an individual and let the random variable L(x) take the value 1 if this person is in 

state i at duration x, and take the value 0 otherwise. Let i = 1 correspond to the 

state "alive" and i = 2 to the state "dead". The collection of random variables 

I.(x) for all considered values of x and i forms a stochastic process representing 

an individual's life history. The probability of being in state j at duration y, given 

that the individual was in state i at duration x< y is 

P..(x,y) = Pr{ I.(y)= 1| I.(x)= 1} 

and the corresponding intensity is 

p ..(x) = lim P..(x,y) / (y-x) , i ^ j . 
‘J y 4-x ‘J 

(We assume that PjXx,y) is a smooth enough function of y for this limit to exist). 

In this pure mortality model we see that P^(x,x+t) equals the familiar survival 

probability ^p^, whereas Pj2(x,x+t) is the probability of dying tqx and 

P22(x,x+t) = 1. The state "dead" is an "absorbing state" and P21(x,y) = 0. Finally, 

y l2(x) is the death intensity or force of mortality for age x, sometimes denoted 

as yx. 

The process defined above is a Markov process. For, in a Markov process the 

conditional probability of a transition from i to j in a duration interval (x,y), 

given the complete history of the individual up to duration x, depends only on his 

state at duration x. For instance, for z < x< y 

Pr { I.(y) = 1 | I.(x) = 1, I. (z) = 1} = Pr { I.(y) = 1 | I.(x) = 1 } . 
J IK ) 1 

It can be readily verified that in this simple model the Markov property holds. 

For the more complex multidimensional increment-decrement model in section 3 

it will be assumed that the process is Markovian. 

We introduce the initial distribution 

1.(0) = Pr { 1.(0) = 1} 



and define 

l^x) = Pr { LM = 1} . 

In a life table lj(0) = 1q = 1 (usually multiplied by some factor like 10^) is called 

the radix, whereas lj(x) = 1^ is the probability of surviving to age x. 

When P..(x,y) is a so-called absolutely continuous function of y, the probability of 

surviving over the duration interval (x,x+t) is 

tPx = exp{ - / y(x+s)ds } 

~V 

with the obvious relation .. p = p . p , . t+sKx r x sKx+l 

A useful variable is the model occurrence/exposure rate m..(x,x+h), which in 

general is defined as 

the expected number of jumps from state i to state j in a given 

duration interval (x,x+h), divided by the expected total time of 

exposure in state i during the interval. (1) 

In a Markov process one has in particular 

rrn.(x,x+h) I.(x+s)ds , i ^ j . 

In our simple model, coincides with the familiar mortality rate [1mx. 

Several other quantities may be derived from y , p , 1 and/or , m . These need 
x x x x n x 

not to be given here, since they appear in standard text-books. 

Observational plan 

The data needed to estimate model parameters may be collected in many 

different ways. The observational plan describes a number of different aspects: 

have the data been obtained for individuals or only for groups of persons? Was 

the information collected over discrete time intervals or in a continous 

registration? Were the data used cohort data, period data or period-cohort data? 
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Have ail the members of the target population been included or has only a 

sample been surveyed? Have the data been collected retrospectively or 

prospectively? These questions demonstrate that the observational plan acts as a 

kind of filter between what is potentially observable and what is actually 

observed (Hoem and Funck densen, 1980, p. 168). 

The observational plan influences the statistical analysis in many subtle ways 

which need to be investigated for each separate case. The purpose of this paper 

is to investigate the estimation of time-continuous, finite state-space Markov 

processes using population registration data. Such data are found in countries 

where a population registration system exists. The observational plan for data of 

this type may be characterised as follows: 

data are obtained for groups of persons, not for individuals; 

the information is collected over discrete time intervals; 

the data consist of stocks (the population distributed over the states) at the 

end-points of the time intervals and flows (events) within these intervals. In 

particular, we have occurrences, but no exposures; 

when speaking in terms of the Lexis diagram, the data are of the period- 

cohort type. They apply to the behaviour of the members of a particular 

cohort during a certain period. The lifelines of these persons cover two 

successive age intervals; 

the data pertain to a complete (sub-)population; 

they are collected in a prospective manner, i.e. there is no selection of 

individuals according to the events of interest. For instance, persons dying 

during the particular interval under consideration should not be omitted from 

the study. 

Such an observational plan is just one possibility out of a multitude of data 

collection strategies. Ledent and Rees (1986) discuss the construction of 

(deterministic) multiregional life tables using various data types. They compare 

life tables derived from so-called migration or movement data with those based 

on what they call migrant or transition data. The former data are derived from a 

registration of all changes in states (also called moves, direct transitions, events 

of jumps) in a given period, as in the case of a population registration system. 

The latter data are taken from population censuses, for instance, when 

respondents are asked to report their current state as well as the state they 

occupied at some earlier time ("transitions"). Lee, Judge and Zellner (1970) have 

investigated the situation in which a sequence of stock vectors (the distribution 



of a group of individuals over the states of the Markov chain) are available. 

Similar types of aggregate data are being handled by Kalbfleisch, Lawless and 

Vollmer (1983), by Van der Plas (1983) and by Kalbfleisch and Lawless (1984). 

Other observational plans are discussed by Hoem and Funck Jensen (1982, pp. 

219-236) in the context of Markov processes. Their review includes transition 

data, retrospectively collected data, data involving a few recent events and data 

which involve occurrences with sufficient subspecifications by relevant type of 

risk, but in which the distribution of corresponding exposures over the same 

categories of risks is unobtainable ("incidence data"). Finally, we mention 

observational plans in which only a segment of the life history of each individual 

is collected. The treatment of censored data of this kind may be found in any 

text on life-history analysis. 

Estimation procedures 

This subsection discusses the statistical procedures which allow estimation of the 

model parameters of the simple mortality model in 2.1 using population 

registration data. The statistical properties of these estimators will be treated 

too. 

Before estimation can be carried out, a few additional model assumptions have 

to be made. First, we assume that the model applies to a homogeneous 

population in which all individuals are subjected to the same intensity of 

mortality (Assumption 1). Second, one individual's behaviour is supposed to be 

independent of that of any other person in the group (Assumption 2). For 

Assumption 3 there are two common options. The first option is that we assume 

that the intensity of mortality Px is constant on a duration interval (x,x+hj. An 

alternative choice assumes that the probability of surviving 1^ declines linearly 

for x<t^x+h. Equivalent to this second option is the assumption of a uniform 

distribution of events (deaths) over (x,x+h7. Estimation procedures for these two 

options will now be discussed in turn. We estimate these models in the simple 

case of one duration interval. Extensions to situations in which a number of 

successive intervals are studied (as in a life table), or in which several duration 

intervals are analysed simultaneously (as in a projection model) are straight¬ 

forward. 
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A maximum likelihood estimator for hx in the case of a constant intensity can 

be derived as follows. Imagine we observe Y individuals and D of them die during 

an interval (0,hf (we drop the duration index x for the sake of convenience). 

Suppose that individual no. k di^s during (0,h). We then set a corresponding 

indicator function equal to one. If he survives at time h, we write = 0. The 

probability that we observe = 1, assuming p t = P for 0<t<h, equals 

Pr ( = l) = P^Oih) = ^ = = 

whereas 

Pr f = o} = h13 = exP(~ ' 

Therefore, the likelihood function based on all Y individuals may be written as 

L = { (l-exp(-y h)'} D {exp(-y h)} Y“D, with D = £ D, . 
k=l k 

Hence, the1 estimator p which maximizes L is 

y = - {ln(l-D/Y)}/ h . 

From mathematical statistics we know that for large Y, the distribution of p is 

approximately normal with mean P and variance 

„ S2 in L 
V(p ) = -1/E{-}• 

y 2 
3 y 

Therefore, V( py) = 1 / E { hp . h2 D/hq2 } = hq ^ ^hp ^ ' 

It should be noted that routine calculation of the ML-estimator p with data 

which cannot arise from the model results in undefined parameter values. For 

instance, in extreme situations, a population registration system could produce 

values D/Y exceeding one. This is the case when a large number of immigrants 

with high mortality risks leads to an excessive number of deaths. Of course, 

under these circumstances a simple closed model (a model which explicitly 

excludes the possibility of moving into or out of the system) presents an 

unrealistic picture of reality and it would be necessary to take account of 

immigration in the model. For a population which is closed for migration, P 
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leads to proper transition probabilities. It is just possible to obtain D/Y = 1 and 

U =■»> with data from the model. However, if p is finite, the probability of this 

eventuality tends to zero exponentially fast, as Y tends to infinity. 

We now derive ML-estimators for the model parameters under the linear 

integration hypothesis. Assume that the survival probability may be written as 

l(t) = 1 + bt (Ojt^h, b^O). Then we have, for the intensity, a hyberbolic function 

of time 

b (t) = -b / (1+bt) 

and for the probability of surviving at duration h 

hr 
hP = exp{ - / P (s)ds } = 1 + bh . 

*0 

The likelihood function for Y individuals is 

L = (l+bh)Y'D (-bh)D . 

Therefore, a ML-estimator for b is b = -D/Yh and hence ^p = 1 - D/Y and 

hq = D/Y. 

Since D has a binomial distribution with mean ^qY, we see that b, ^p and hq are 

unbiased estimators and that the variance of b equals 

V(b) = hP • hq / (h2Y). 

These results show that the ML-estimators hp and ^q under the linear integration 

hypothesis are the same as those found when a constant intensity is assumed. 

This is caused by the fact that the likelihood function, expressed in terms of ^p 

and ^q, is identical in the two models. In fact, the two models are identical in 

terms of the class of probability distributions they imply for observed quantities. 

Hence in both models, when the extreme (and, according to the model, 

impossible) condition of D/Y > 1 is encountered, a negative survival probability 

will result. Therefore, when dealing with population registration data, it is not 

the choice of option for Assumption 3 that may produce anomalous estimates for 

this simple model, but rather the fact that immigration is omitted from the 

model. 
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The linear integration model produces ML estimates of hp and hq that coincide 

with ML estimates of the same quantities in the constant intensity model. Other 

corresponding variables differ from each other. For instance, for the constant 

intensity model the occurrence/exposure rate of mortality is equal to the 

corresponding intensity, i.e. m = p . For the linear integration model definition 

(1) leads to 

m = - b/(l + jbh) , 

since i(t) = 1 + bt and y (t) = - b/(l+bt) for 0<t<h. This implies that for the 

constant intensity model the estimated occurrence/exposure rate of mortality 

equals 

iti = -{ ln(l - D/Y)}/h 

whereas for the linear integration model it is 

iti = D/{ h(Y-iD)} . 

Denoting the former estimator by ifij and the latter by we find 

ihrti2 = tanh(jhrfij) 

when and ih2 are estimated from the same data set (D,Y). In this expression, 

the hyperbolic tangent of u is defined by 

tanh(u) = { exp(u) - exp(-u) } / { exp(u) + exp(-u)} . 

Since for small u, tanh(u) may be approximated by u - u-^/3, we have 

!ti2=rfi1-h2(iti1)3/12. 

Hence there are only minor numerical differences between results produced 

when the two methods are applied to the same data in the case of short duration 

intervals and/or small mortality risks. 



MULTIDIMENSIONAL MODELS 

After the simple death model with two states and only one decrement we now 

turn to the more general case of several intercommunicating states. A number of 

names are used for these types of models: multidimensional models, increment- 

decrement models and multistate models. We shall treat them as being 

equivalent. 

Much of what follows will be described in terms of P-(x,y) and l.(x), as in section 

2. Note that these two quantities are defined for general stochastic processes, 

not necessarily Markovian. In this section, i and j may take on values greater 

than two, provided they are integers and bounded. 

One often assumes that the process under consideration is a continuous-time, 

finite state-space Markov process with absolutely continuous transition 

probabilities. Then the transition probabilities satisfy the Kolmogorov forward 

differential equations 

- pij(x’y) = - pij(x>y)n j(y) + L pik(x-y)p kj(y) - (2) 
By * 

with P (x,x) = 1 for i = j and P..(x,x) = 0 otherwise, and with y . = S y (x), H). 
aj ij J k 

A complete knowledge (for all y) of the matrix P(x,y) with elements P..(x,y) 

and the vector 1(0) with elements L(0) enables one to compute such model 

variables as the model occurrence/exposure rates, the expected duration in state 

j over the duration interval [ x,x+hf for those who were in state i at duration x, 

the mean duration elapsed since x for those who make a jump from i to j during 

f x,x+hj, the expected number of (i,j)-jumps during (x,x+h)7, and so on. Formulas 

for such indicators are given by Rogers (1975) for multiregionai models, 

Krishnamoorthy (1979), Schoen and Land (1979), Willekens et al. (1982) for 

marital status models, by Hoem (1977), Willekens (1980), Schoen and Woodrow 

(1980), Brouard (1981) for working life tables, by Oechsli (1975), Chiang and Van 

den Berg (1982), Feichtinger and Lutz (1983) for fertility tables including parity, 

and surely by many others. Hoem and Funck Tensen (1982) give a comprehensive 

review of the increment-decrement model and its Markov process formulation. 

The P(x,y) may be solved from the Kolmogorov differential equations when the 

matrix y (x) with elements y .j(x) (i/j) is specified (and y ..(x) = - y.(x)). In some 

special situations a compact analytic solution for P(x,y) in terms of U (x) may be 
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found. This is the case for any hierarchical modei, in which all p.j(x)'s are zero 

whenever i> j. The simple mortality model discussed in section 2 is an example 

of such a hierarchical model. Other special models for which an analytic solution 

exists are given by Hoem and Funck Tensen (1982, p. 178). 

In general, an analytic solution for equation (1) is unknown (although we always 

have P(x,y) =11 (I -y(t)dt) which may be computed as accurately as desired 
x^t$y 

by numerical methods). Hence additional assumptions are required in order to 

find P(x,y). As we did with tho simple mortality model, we shall here treat two 

cases: the assumption ox constant intensities and the linear integration 

hypothesis. 

The assumption of constant intensities figures prominently in statistical 

literature. Models of this type are known as "time-homogeneous Markov 

processes". They are much more simple than the general Markov process 

described by (1). Assume that p ^(x+t) = for i^j and 0<t^h. Let p ^^ =- 

E u Mj, and let p be the matrix with elements p ... Then 
i ') !) 

P(t) = exp(pt) 

where P(t) denotes the matrix of transition probabilities with elements P.j(x,x+t), 

0<Kh, see for instance (pnlar (1975, p. 255). (The exponential of a matrix is 

defined by the usual power series). Note that we adopt the notation generally 

used in the statistical literature in the definition of p . This leads to row vectors 

with elements L(x). It is much more convenient than the notation in demographic 

literature, which employs column vectors (see, for instance, Rogers and Ledent, 
T 

1976). In the latter notation one would use a matrix p*which is equal to (-p) 

and arrive at a transposed transition matrix. With the results for the transition 

probabilities further calculations of expected sojourn times, survival 

probabilities and so on are straightforward. 

The estimation method of the constant intensities model depends on the 

observational plan at hand. When complete life histories of all individuals are 

observed, any intensity p ^ may be estimated by the corresponding observed 

occurrence/exposure rate m^. The numerator of m^ consists of all (i,j)-jumps 

recorded during the relevant interval; its denominator is the total amount of 

time spent in state i. Under quite weak conditions, the observed o/e rate m.^ is 

the Maximum Likelihood estimator of the unknown intensity y It is 
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asymptotically, normally distributed with known asymptotic variance (Aalen and 

Hoem, 1978, p. 97). 

In many cases individual life histories are not available. For instance the data 

may instead consist of counts of individuals N..(x,x+h) who were in state i at 

some exact duration x and in state j at duration x+h (transition data). Since the 

the number set N.j(x,x+h) is multinomially distributed, given 

Y.(x) = 8 N..(x,x+h)>0 of individuals in state i at duration x, an ML-estimator of 
1 i *) 

the transition probability p..(x,x+h) is 

p..(x,x+h) = Nj.(x,x+h) / Y.(x) 

(provided that the corresponding matrix P is of the form exp(Q) for some 

"intensity matrix" Q). Its variance is p^G-p^) / Yj(x), which can be estimated 

when p.. is replaced by p..(x,x+h). The assumption of constant intensities comes 

in when P(t) must be determined for durations t different from integer multiples 

of h. One may try to find a matrix C which satisfies the exponential relation 

P(h) = exp(C h) 

for a given P(h) and next calculate functions derived from the transition 

intensities. Neither existence nor uniqueness of such a matrix C are guaranteed. 

Problems arising in this context were discussed by Singer (1981). 

Still other observational plans are possible. For instance, Lee, fudge and Zellner 

(1970) give a full account of the situation in which a sequence of stock vectors 

with elements Y.(x) is available. They estimate the matrix P(h) by choosing the 

value which would have produced the best approximation of the observed stocks. 

Similar types of aggregate data are treated by Kalbfleisch, Lawless and Vollmer 

(1983), by Van der Plas (1983) and by Kalbfleisch and Lawless (1984). In this 

paper we discuss the estimation of the constant intensities model when we have 

stock data and flow data (direct transitions) from a population registration 

system. No estimator is available in the literature for this type of data, as will 

be argued in section 4. Therefore, a new estimation algorithm was developed. 

However, we shall first discuss the linear integration hypothesis. 

Recall the forward Kolmogorov differential equations (2). Integrating these 

between y = x and y = x+h, noting that P.j(x,x) = 1 for i = j and P..(x,x) = 0 for 
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i ^ j and multiplying the result by L(x) leads to a set of equations, which, added 

over i yields 

l.(x+h) = l.(x) - £ d..(x,x+h) + £ d .(x,x+h), 
J 1 Wj )K k#j kJ 

see Hoem and Funck Jensen (1982, p. 174). This so-called accounting equation for 

state j may be written simultaneously for all p states using matrix representation 

l(x+h) = l(x) + 1 D(x,x+h) (3) 

In this expression, l(x) and l(x+h) denote row vectors for the initial and the final 

distribution of the process, respectively. Further, 1 is a row vector of i's and 

D(x,x+h) is a matrix with elements d^x.x+h), being the expected number 

of direct transitions from state i to state j during (x,x+h; , i ^ j and d..(x,x+h) = 

- £ d.,(x,x+h) (observe that property (3) holds in general for stochastic 
if i *1 

processes which exclude the possibility of leaving the system). 

The model occurrence/exposure rate can be written as 

/ hr m..(x,x+h) = d..(x,x+h)/ J l.(x+t)dt = d..(x,x+h) / L.(x,x+h) . 

The variable L.(x,x+h) represents the total exposure time in state i during 

(x,x+h7 . Define the row vector L(x,x+h) with elements Lj(x,x+h) (i = 1,2, ..., p). 

Then the linear integration hypothesis involves the assumption 

L(x,x+h) = jh {l(x) + l(x+h)} . (4) 

In view of expression (3), a uniform distribution of the events d.j(x,x+t) for 

x< t^x+h is a sufficient condition for (4) for a certain h. Note that an estimate 

of L(x,x+h) according to (4) may be obtained with knowledge of the stock vectors 

at durations x and x+h only. 

The occurrence/exposure rates m..(x,x+h) may be collected in a matrix M(x,x+h) 

with the same configuration as the matrix of transition intensities C. Then (3) 

can be written as 

l(x+h) = l(x){ I + jh M(x,x+h)} { I - jh M(x,x+h)} -1 
(5) 



see Rogers and Ledent (1976). Note that in this derivation we did not use the 

Markov assumption. Because of (5), authors using the linear integration 

hypothesis estimate the matrix of transition probabilities by 

P(h) = { I + ih M(x,x+h) } {I - jh M(x,x+h)} , (6) 

where M(x,x+h) is the matrix of observed occurrence/exposure rates under the 

linear integration hypothesis and I is the identity matrix. 

It has been pointed out that this approach contains a number of drawbacks (Hoem 

and Funck Jensen, 1982, p. 157, p. 160, pp. 194-201; Land and Schoen, 1982, pp. 

316-320; Nour and Suchindran, 1984, p. 325; Waters, 1984, pp. 364-366). One is 

that P(h), as given by expression (6), may contain negative elements. This can be 

the case, when Z m..(x,x+h)>2/h, or equivalently under the linear integration 
)ti ‘J 

hypothesis, when L d..(x,x+h)>l.(x) +5 Z d..(x,x+h) for some i, see Appendix 
jfi 0 1 J1 

1 for a proof and an illustration. This result generalises the findings of Ledent 

(1980, p. 555) for the two-state model. Hence negative estimated transition 

probabilities can occur in the linear integration model when the total number of 

direct transitions out of state i during (x,x+hj exceeds the number initially 

present at duration x in state i by an amount of more than half the number of 

direct transitions into state i. This may be the case, for instance, when: (i) all 

individuals l.(x) leave state i before duration x+h and (ii) more than 50% of the 

individuals that enter (possibly re-enter) state i during (x,x+h7 leave state i once 

again before duration x+h. It will be clear that the chance of encountering the 

situation Z d..(x,x+h)>l.(x) + 1Z d..(x,x+h) is greater, the longer the interval 

[x,x+h] is, provided that (the "combined" intensity of leaving state i) is 

sufficiently large. Hence the linear integration hypothesis may lead to 

unrealistic model values, even when immigration is absent, and independently of 

the estimation algorithm. (We emphasise that immigration and emigration (and 

death) are to be taken into account by adding more states to the model). This 

constrasts with the findings for the simple mortality model described in section 

2.3. 

A more important point applies to the derivation of (6) from (5). Since l(x+h) and 

l(x) are vectors, the matrix P(h) cannot be solved from l(x+h) = l(x)P(h). 

Therefore, application of (6) implicitly assumes that the occurrence/exposure 

rates contained in M(x,x+h) are independent of the distribution of individuals 

over the states at duration x. In other words, we assume that the observed 
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origin-independent rates rfi.^XjX+h) are not only equal to their model 

counterparts, but also to the origin-dependent model rates. These rates, denoted 

by m... (x,x+h), are defined as 
1JK 

the ratio of the expected number of direct transitions from j to k, 

conditional upon being in state i at duration x to the expected 

total time spent in state j during (x,x+h ], conditional upon being 

in state i at duration x. 

In the special case of a Markov process the m... (x,x+h) can be given as 
1JK 

n n 

n...(x,x+h) = / P..(x,x+s)y (x+s)ds/ / P..(x,x+s)ds, Vi, j^k. 
*JK ‘1 JK Jr, *1 

(7) 

The assumption that origin-dependent rates and origin-independent rates are 

equal, which was discussed by Ledent (1980, p. 550-554) and Land and Schoen 

(1982, p. 292), leads to the estimator given in (6) when at the same time the 

strong linear integration hypothesis is fulfilled: for some suitable number b.^ we 

assume that (7) holds and that 

dijk(x,x+t) = ^jk-1 > 0<t^h> 

where d^(x,x+t) is the origin-dependent number of direct transitions from j to k. 

In the case of a Markov process this variable is equal to 

t 

d...(x,x+t) = l.(x) / P..(x,x+s) y .,(x+s ; i,x)ds, j^k. 
‘JK 1 Jq li JK 

However, as will be argued below, these conditions together (strong linear 

integration hypothesis and origin-dependent rates equal to origin-independent 

rates) rule out that the process is Markov! 

On the other hand, the weak linear integration hypothesis, which "only" assumes 

that 

d..(x,x+t) = b.. . t , 0<t«h 
‘J ‘J 

leads directly to condition (4). 



In Appendix 2 we prove that a stochastic process can be constructed with a given 

initial distribution and a given matrix of direct transitions, for which the two 

conditions discussed above hold. Hence they are mutually consistent, but the two 

conditions together are not consistent with the Markov assumption. For the 

constant intensities model, model origin-dependent o/e-rates are automatically 

equal to their origin-independent counterparts (and to the corresponding 

intensities). See Hoem and Funck Jensen (1982, p. 184). 

Statistical properties of P(h) given in (6) in the context of population registration 

data are not known but could in principle be derived. However, non-parametric 

inference may be drawn using the combinatorial matrix procedures suggested by 

Dow (1985). The key idea of this approach is as follows. Suppose one estimates a 

matrix B with elements b.. for the linear integration model. If a second matrix B 
/\ 

can be constructed, the empirically obtained matrix B can be tested against this 

"target" matrix using combinatorial matrix procedures. Such "target" matrices 

may be derived from different data sets, different time periods, or else they may 

be obtained according to a priori theoretical conjectures. 

A NEW ESTIMATION ALGORITHM FOR POPULATION REGISTRATION DATA 

In the situation of population registration data, consider the duration interval 

f0,h7. Then our data consist of the vectors Y(0) and Y(h) in which the population 

is distributed over the p states of the model. We are also given the matrix N with 

observations on direct transitions from i to state j during (0,hj, with 

Nii = * Njj. Similarly to (3), we have 

Y(h) = Y(0) + 1 N . (8) 

No entirely satisfactory estimator for the multidimensional model for data of 

this kind is known, neither when constant intensities are assumed, nor with the 

linear integration hypothesis. For instance, with constant intensities, a ML- 

estimator of the matrix of transition intensities would be based on the 

probability distribution of the data (Y(0) , N). But the joint distribution of Y(0) 

and N is so intractable that a maximum likelihood estimator of u cannot be 

computed. Therefore, one usually takes recourse to the "working approximation" 

L= L = jh(Y(0) + Y(h)). Hence one doesn't consider the linear integration 

hypothesis as part of the model, as in (4). Rather, it is used to obtain a numerical 
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approximation for L. Next, one estimates v by ji = (diag L)" N, where "diag" of 

a vector denotes the diagonal matrix with the corresponding elements of the 

vector on its diagonal. But this estimator is generally inconsistent, since L~ L is 

only a first-order approximation of the exposure time in the constant intensities 

model. Though in most situations its bias will be small compared with its 

standard deviation, and in any case the whole Markov process setup is itself only 

a "working approximation" to reality, it is felt that it is a failure that 

mathematical statistics did not yet provide a good statistical solution for this 

very common situation. Therefore, one of us developed a new algorithm, which 

will described only briefly here. Details can be found in Gill (1986). 

The statistical problem may be formulated as follows. We have stock data Y(0), 

Y(h) and flow data N for n individuals. We assume that each individual follows a 

Markov process during the interval (0,hj. These Markov processes are assumed to 

be independent of one another and time-homogeneous. We now have to estimate 

the matrix of transition intensities y on the basis of the observation of Y(0) and 

N, i.e. given the initial configuration and the total number of direct transitions 

during (0,h7. We assume that all other quantities, in particular the total exposure 

time / Y(t)dt, are not observed. We seek estimators which have good 

“0 
properties when n goes to infinity. 

With the assumptions stated earlier we have 

h b 

Ly = £ l(s)yds= 1(0) exp(y s)U ds =n(0) exp( ys)7 

= 1(0)7 exp( y h) - 17 = 1(h) - 1(0) . 

Since the model is closed, the elements in each row of y add up to zero and the 

inverse of y does not exist. However, when there is at least one state to which 

all p states have access, then for given 1(0) and y the equations in L, 

h 

L = f 1(0) exp( ys)ds (9) 

J0 

and 

Ly = 1(0)7 exp( yh) - 17, L 1T = h , (10) 
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are equivalent. The condition for the equivalence of (9) and (10) is both necessary 

and sufficient (Gill, 198->). From now on we shall assume that this condition has 

been fullfilled. An example is when "dead" is one of the states of the Markov 

process. More complex cases can be handled by appropriate decompositions of 

the state space, cf. Funck Jensen (1982) and Gill (1986, Appendix III). 

Let D denote the matrix with elements d^ being the expected number of direct 

transitions from state i to state j during (0,h/ , i j and d.. = - 2 d... Then 
11 j^i ') 

dij = ^ ij Li’ which we can rewrite (taking into account the diagonal elements of 

D and the definition of V given in section 3) as 

D = (diag L) P . (11) 

The approach proposed here is simply to equate the observed variables Y(0) and 

N to their expected values n 1(0) and n D and to solve the resulting equations in 

1(0) and y . This is equivalent to solving equations (10) and (11) considered for 

given 1(0) and D (equal to Y(0)/n and N/n) as equations in unknowns L and y . 

Various questions then arise. 

1. When, for given 1(0) and D, do equations (9), (10) and (11) have a solution in L 

and y, and when is the solution unique? 

2. What is a good algorithm for finding a (the) solution? 

3. What are the statistical properties of the resulting estimators? 

Investigations of these ideas appear in Gill (1986). In general, a solution exists 

(question 1). Under a further quite simple condition the solution is unique; 

however, we can only verify this condition when p=2. When the process is 

hierarchical ( y.. = 0 for i>j) it can also be shown that there is exactly one 

solution. We conjecture that there always exists exactly one solution. This means 

that the first question has largely been answered, though not completely. 

Regarding the second question, an obvious iteration method is based on cycling 

repeatedly through equations (10) and (11): first computing L for given 1(0) and 

y , then y for given L and D. This resembles the EM-algorithm (cf. Dempster, 

Laird and Rubin, 1977), in that we compute in each cycle the expected total 

exposure time n L as a function of y, given Y(0) = n 1(0); the EM-algorithm 

requires one to compute n L as a function of y, given Y(0) = n 1(0) and N = n D. 

However, this superficial resemblance does not guarantee any convergence 
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properties of the iterations. On the other hand, in every example yet considered 

these iterations converge quickly and independently of the starting value, to one 

limiting value. These findings lend support to both the usefulness of the iteration 

method and the conjecture about the uniqueness of the solution. 

An alternative approach is to attempt to find a numerical solution, in L, for 

given 1(0), 1(h) and D, 1(h) being defined as in (3), of the equations 

1(h) = 1(0) exp f(diag L) 1 Dh/ , L 1T = h 

which is equivalent to solving L from 

hr -i 
L = / 1(0) exp (diag L) 1 Ds ds . (12) 

0 

In all the examples we tried a standard quasi-Newton method worked excellently. 

Observe that the maximum likelihood estimator U in the simple mortality model 

with constant intensity (section 2.3) is a special case of the solution of (9), (11) 

and (12). 

For practical purposes, the answers to the first and second questions may be 

considered as satisfactory. As regards the third one, a satisfactory mathematical- 

statistical theory of the proposed estimators can be given, in which their 

asymptotic properties can be derived and in particular their asymptotic 

optimality (among estimators which use only the same aggregate data) can be 

proved. If L is one solution for (12) for given 1(0) = Y(0)/n and D = N/n, then 

(L - L) nT is asymptotically multivariate, normally distributed with mean zero 

and with a covariance matrix which, in principle, can be computed. The same 

holds for (y-y)n5. However, an estimate of the covariance structure of the 

statistical estimators L andy would require rather complicated calculations. A 
^ ^ 2 

useful practical solution is to use for y the estimated covariance structure o 

for the occurrence/exposure rates applicable when the exposures L are observed 

too. This gives a lower bound to the asymptotic covariance matrix of the 

estimator actually used, since the matrix o gives the minimum variances when 

occurrences and exposures are observed. Therefore, we recommend using the 

off-diagonal elements of a = (diag n L) N as a lower bound to, and a rough 

estimate of, the variances of the corresponding elements of y . 
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5. NUMERICAL APPLICATIONS 

We consider here the marital status model with five states which was studied 

earlier by Schoen and Nelson (1974), Willekens et al. (1982) and by many others 

(see figure 1). 

Our example is based on nuptiality patterns of Dutch females born in 1945, 

observed during the period 1965-1969. The data used are of the population- 

registration type, generously made available to us by the Netherlands Central 

Bureau of Statistics. The duration interval 70,h7 now represents the period 

between 1 January 1965 and 31 December 1969. The input data are given in table 

1. Net immigration was disregarded and therefore the final population 

distribution Y(h) is not observed, but merely calculated. The initial number of 

persons in the state "dead" was taken as zero for the sake of convenience. 

Figure 1. Marital status model 

Table 1. Input data, nuptiality patterns of female birth cohort 1945, the 
Netherlands, 1965-1969 

s m w v d 

Initial distribution Y(0) 81773 10296 57 

Direct transitions N 

single 
married 
widowed 
divorced 
dead 

58673 
0 
0 
0 
0 

58540 
1116 

30 
342 

0 

0 
136 

31 
0 
0 

0 
921 

0 
343 

0 

133 
59 

1 
1 
0 

Final distribution Y(h) 23100 68092 110 635 194 

Source: The Netherlands Central Bureau of Statistics. 
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Three different estimates of the matrix P of transition probabilities were 

computed, namely the "linear solution" Pj = (I + jh Mj)(I - jh Mj) , where 

Mj = (diag Lj) ^N and Lj = ih(Y(0) + Y(h)); the "exact exponential solution" 

P2 = exp(M2 h) where M2 = (diag L^) and L2 is the (a?) solution to the 

equations^ 1(h) = l(0)exp(M2 h), L2 . 1 = h; and the "approximate exponential 

solution" P^ = exp(Mj h). Besides these three transition matrices we also present 

the corresponding exposure times per individual. From these results Mj and M2 

can be easily computed for all 92131 women. 

Table 2. Solutions: exposures and transition probability matrices 

Marital status s m w v d 

Approximate exposures 

Exact exposures I_2 

Linear solution P^ 

(per cent) 

Exact exponential 

solution P2 

(per cent) 

Approximate exponential 

solution P^ 

(per cent) 

(yrs) 2.8458 2.1271 

(yrs) 2.5189 2.4561 

s 28.25 70.88 

m 0 98.02 

w 0 40.67 

v 0 65.43 

d 0 0 

s 28.25 70.83 

m 0 98.43 

w 0 44.81 

v 0 66.34 

d 0 0 

s 32.66 66.35 

m 0 98.11 

w 0 39.86 

v 0 61.94 

d 0 0 

.0031 .0188 .0053 

.0027 .0167 .0057 

.10 .56 .22 

.27 1.56 .15 

57.60 .32 1.41 

.09 34.23 .25 

0 0 1 

.10 .60 .22 

.22 1.21 .13 

53.30 .35 1.54 

.10 33.32 .25 

0 0 1 

.11 .67 .21 

.27 1.47 .15 

58.39 .37 1.38 

.10 37.72 .24 

0 0 1 
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Since both and are exact solutions, we see that they fit the data exactly, 

i.e. KCDPj = 1(0)P2 = 1(h). 

Table 2 shows differences in exposure times of 12-14 per cent except for the 

state "dead", where the exact exposure is 7 per cent higher than the approximate 

exposure. Transition probabilities obtained by the "linear solution" are very close 

to those obtained by the "exact solution", the largest difference being 4 

percentage points (cf. the remarriage probability and the retention probability of 

widows). The latter is caused by the relatively high remarriage intensity of 

widows, for which a value of 12 per cent was found. Differences between "exact 

exponential" transition probabilities and "approximate exponential" transition 

probabilities are of the same magnitude, although they appear somewhat more 

frequently. 

When considering the differences between the three methods one should, 

however, bear in mind that variances of estimated intensities for the states 

widowed and divorced are rather high. When using the off-diagonal elements of 

a = (diag n L2) N, one finds, for example, for the remarriage intensity of 

widows (having a value of .12) a lower bound of the corresponding standard 

deviation of 0.02. The extremely short exposure times spent in the widowed state 

are responsible for these and other large standard deviations. 

Besides the nuptiality example reported here, we also analysed a multiregional 

model. Observed population registration data on migration and mortality from 

the year 1980 for Dutch males born in 1956 were used for the 11 provinces of the 

Netherlands. Together with the state "dead" this resulted in a 12-state Markov 

model. Again, three solutions were computed. Bot they did not differ much, due 

to the low migration intensities of the males involved. For instance, the 

maximum value of the observed migration rates (approximated by the linear 

integration hypothesis) was 27 per thousand. However, it is worth mentioning 

that the convergence properties of the exact exponential algorithm were 

comparable to those of the 5-state marital status model. 

6. CONCLUSIONS 

In this paper we investigated the estimation of multidimensional demographic 

models when population registration data are available. Data of this kind consist 

of stocks and flows. The latter are aggregated over time and over individuals. In 
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particular, this means that for each event information on the total number of 

occurrences (direct transitions) is known, but that we have no exposures. This 

means that the Markov model with constant intensities cannot be estimated by 

methods developed earlier. On the other hand, we argued that the linear 

integration model, based upon the assumption of a uniform distribution of events, 

may lead to transition probabilities outside the f0,1.7 -range. Conditions which 

lead to such unreasonable parameter values were discussed. Moreover, it was 

argued, that the derivation of an expression for the transition probabilities in the 

linear integration model requires the so-called strong linear hypothesis (for each 

type of direct transition, for each initial state subpopulation, direct transitions 

are uniformly distributed over time) and the assumption of origin-independent 

occurrence/exposure rates. But his rules out the Markov assumption. Since one 

makes projections by multiplying successive transition probability matrices, this 

makes the linear integration model aesthetically unsatisfactory. 

Because of the deficiencies of the linear integration model and the fact that 

known estimation methods for the constant intensities model cannot be applied 

to population registration data, we presented a new estimation method. It is 

based on a Markov model with constant transition intensities. It uses an iterative 

algorithm for which a solution always exists; uniqueness of the solution could 

only be verified for some special cases (and convergence not at all). However, in 

all practical examples the iterations converged quickly to one limiting value, 

independently of the initial value. Therefore, we conjecture that the new 

estimation method always has exactly one solution. Asymptotic distributions of 

the proposed estimators were given. 

Our findings indicate that in most practical cases there is little difference 

between the solution of the proposed method and that of the linear integration 

method. Moreover, the solution of a third approach, the approximate exponential 

model, is very similar to these two solutions. The approximate exponential model 

involves a Markov process with constant intensities. It is estimated by 

approximating the exposures using the linear integration hypothesis. 

When a multidimensional demographic model and its underlying Markov process 

have to be estimated from population registration data we recommend the 

following approach. When transition intensities are moderate or small, it is a 

good strategy to approximate the exposures by the linear integration hypothesis 

and next to estimate the intensities of the Markov model (with constant 



intensities) using "observed-approximated" occurence/exposure rates. When 

particular emphasis is placed on an exact solution of the model, i.e. an accurate 

simulation by the model of the observed data, the linear integration hypothesis 

may be used. However, large transition intensities will produce an unrealisitc 

behaviour of this model, and its non-Markovian character makes a projection by 

multiplication of successive transition probability matrices aesthetically 

unsatisfactory. In such situations, application of the estimation algorithm 

proposed in this paper will be useful. 

Finally, the main findings of this paper should be placed in proper prospective. 

First, we only considered two types of models: the constant intensities model and 

the linear integration model. Many more possibilities exist, for which the 

accompanying models exhibit different local behaviour of the intensity functions 

over the duration interval. For instance, Land and Schoen (1982) investigate 

Markov-generated multidimensional models with polynomial direct transitions, 

leading to rational polynomial intensity functions. Such an assumption may be 

useful for long duration intervals or strongly fluctuating intensities (e.g. infant 

mortality in the first few months after birth or seasonal patterns in marriage 

behaviour). But in most practical cases the solution of a more refined model of 

this type will be very close to that of the constant intensities model or the linear 

integration model. 

Second, when small data sets are used, the randomness of estimates of model 

parameters may be important and a statistical approach should be used. 

However, for large data sets, estimates of standard deviations will generally be 

small compared to those of model parameters and functions thereof and a 

strictly deterministic analysis will often be sufficient. 

Third, we want to stress the fact that a Markov model with constant intensities 

should often be seen as no more than a rough approximation of reality. 

Therefore, an "exact" statistical solution for this model is usually not very 

important. However, the contribution made in this paper has a methodological 

nature. We hope that it helps to clarify the controversy surrounding the linear 

integration hypothesis. Also, this paper illustrates the value of choosing a 

mathematical model with the aid of which elements of the probabilistic model, 

questions of numerical approximations and problems of data availability can be 

discussed systematically. 
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APPENDIX 1 

This appendix contains the proof of the following lemma given in section 3. For a 

matrix M = (m.j) of occurrence/exposure rates and a duration interval of length 

h, the condition 

-m.. = m..^ 2 / h 
11 tfi ‘1 

implies that 

P = (I + ih M)(I - ih M)'1 (Al) 

is a transition matrix i.e. a matrix with nonnegative elements that add up to one 

rowwise. 

We use the following notation: vectors are column vectors, 1 and 0 are vectors 

with all elements equal to 1 and 0 respectively, and for a vector x or a matrix A 

we write 

x >. 0 (A^O) if the inequality holds elementwise; 

x > 0 if x^.0 and x ^ 0; 

x » 0 if we have elementwise strict inequality. 

Furthermore, ZpXp = { A = (ai.)eRpxp : a^O, i ^ j}, i.e. Zpxp is the set of all 

real (pxp) - matrices with non-positive off-diagonal elements 

Berman and Plemmons (1979), in chapter 6 on "M-matrices", give 50 equivalent 

necessary and sufficient conditions for Ae Zpxp to be a "non-singular M-matrix". 

Two are: 

(I 27) 3 x » 0 with Ax » 0, and 

(N 38) A ' exists and A * 5 0. 

Now the proof is as follows: 

Let M be a pxp intensity matrix, that is -Me Zpxp and M 1 = 0. If -m.^S 2/h Vi, 

then (I + |h M) is a transition matrix. The product of two transition matrices is a 

transition matrix, so it suffices to show that (I - jh M) ^ exists and is a 

transition matrix. But we have I - ih Me Zpxp and 1>> 0. Therefore (1 - 

ih M)1 = 1»0. So by the equivalence of conditions (I 27) and (N 38), we find 

that (1 - ih M)'1 exists and that (I - ih M)"1 £ 0. Since (1 - ih M)1 = 1 we find by 

premultiplying with (I - ih M) * that 1 = (I - ih M) *.l. Hence (I - ih M) * is a 

transition matrix and so is (1 + ih M)(I - ih M) *. This completes the proof. 



It should be noted, that in the linear integration model 
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m..(x,x+h) = 2djj(x,x+h) / { h(lj(x) + lj(x+h)} . 

Therefore, the condition -m..(x,x+h) = 2 m..(x,x+h)12/h is in this model 
M jjfi i) 

equivalent to 

^ d..(x,x+h)^ l.(x) + l.(x+h) . 
)h i] i i 

But l.(x+h) equals l.(x) - £, d..(x,x+h) + ? d..(x,x+h) and therefore 
■ ‘ jjfi ‘I Mj )i 

-m. j(x,x+h)'?2/h is equivalent to 

T d..(x,x+h)Sl.(x) + i T d..(x,x+h) . (A2) 
jiti 1 if) J* 

Hence, when in the linear integration model condition (A2) is not fulfilled, then 

the matrix P according to (Al) is not necessarily a transition matrix. 

As an illustration, consider a small part of the data set given by Schoen and 

Nelson (1974) which has recently been used by Nour and Suchindran (1984) to 

illustrate the occasional breakdown of the linear integration model (Al). The 

latter authors started from the following matrix M belonging to a five-state 

nuptiality model for the U.S. male population in the age interval (20, 25) in 1960: 

M(20, 25) 

--.2313 

0 

0 

0 

0 

.2291 

.0172 

.1551 

.4860 

0 

0 

.0007 

.1603 

0 

0 

0 

.0153 

0 

.4897 

0 

.0022 

.0Q12 

.0052 

.0037 

0 

(1) (2) (3) (4) (5) 

(1) Never married 

(2) Currently married 

(3) Widowed 

(4) Divorced 

(5) Dead 
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(Note that we adapted their notation to ours). It may be observed that the 

diagonal element for divorced males -m^ exceeds 2/h = .40. Indeed, the 

corresponding transition matrix P computed according to (Al) is 

P 

2672 .7104 

0 .9577 

0 .5419 

0 1.0694 

0 0 

0009 .0122 

0025 .0337 

42S5 .0093 

0013 -.0824 

0 0 

.0093 

.0061 

.0203 

.0117 

0 

which is not a transition matrix. This is caused by the value of the matrix of 

direct transitions 

D(20, 25) = 

-40176 

0 

0 

0 

0 

40043 

-6537 

146 

4009 

0 

0 0 133 “ 

373 5971 193 

-148 0 2 

0 -4021 12 

0 0 0 

and that of the initial distribution 

1(20) = (54177 41955 59 544 3265) . 

We observe a number of remarrying or dying divorced males (4021) which 

exceeds the initial number of divorcees (544) by more than half the number of 

new divorcees (5971). This may be due to estimations carried out by Schoen and 

Nelson which were necessary because their initial data were partly defective. 

They consider the accuracy and adequacy of their data and state that the number 

of divorced seems to be underreported and that their remarriage figures are 

probably high (Schoen and Nelson, 1974, p. 289). On the other hand, even when 

accurate figures could have been obtained, unrealistic remarriage patterns are 

likely to have been produced by the linear integration model, for remarriage 

rates may well have exceeded 40% for young divorced males in the 1960's. The 

constant intensities model will cure this anomaly; as an alternative, one may 

consider the linear integration model for single ages. 
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In this appendix we prove that under a natural condition the two conditions (i) 

the strong linear integration hypothesis, and (ii) origin-independent 

occurrence/exposure rates, are consistent, but are not consistent together with 

the Markov assumption. Suppose 1(0), D and 1(1) = 1(0) + 1 D are given, such that 

the transition matrix P = (I + j M)(I - { M)"1 is a stochastic matrix, with M a 

matrix of occurrence/exposure rates for the interval fO, l] defined as M = (diag 

L) 1 D. Now a (stochastic) jump process can be constructed with initial 

distribution 1(0) and expected number of direct transitions D, such that for each 

initial state i the (weak) linear integration hypothesis holds and the 

occurrence/exposure rates are the same. However, this process is not Markovian. 

The argument is as follows. 

Since we know P, we also know 1^(1), that is the final distribution conditional on 

state i at duration 0. For the rows of P are the conditional distributions of "state 

at duration 1" conditional on "state at duration 0". Now condition (i) implies that 

= y(1^(0) + 1^(1)) for each i. Here 1^(0) is the vector with value 1.(0) in the 

i-th element and zeros otherwise, whereas is the vector of exposures 

conditional on being in state i at duration 0. Furthermore, condition (ii) means 

that the matrix of occurrence/exposure rates conditional on state i at duration 0, 

denoted by M^, is independent of i and therefore M^ = M for each i. Then we 

compute a matrix with direct transitions conditional on state i at duration 0 as 

= (diag L^)M. For each i a jump process exists with this 1^(0) and which 

satisfies the (weak) linear integration hypothesis, namely the process with initial 

distribution l^\o) and time-dependent (hyperbolic) intensities P ^ (t) = diag 

(l^\o) + t 1 D^) * D^. Thus we can construct a stochastic process with 

properties described by conditions (i) and (ii), which means that these conditions 

are mutually consistent. But any process satisfying (i) and (ii) cannot be 

Markovian. For, conditions (i) and (ii) together with the Markov assumption lead 

to hyperbolic intensities, P^*\t) given above, which are different for each initial 

state i, whereas for a Markov process intensities are independent of initial 

states. 
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