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A coefficient of deviance 

of response patterns 

K. Sijtsma 

Summary 

In the present paper a coefficient is discussed which expresses the 

degree to which a person's response pattern on a set of test items 

deviates from other person's response patterns. Some results based on 

simulated data are presented, which show that the coefficient is 

rather successful with respect to detecting deviating response pat¬ 

terns . 

Introduction 

Besides summary statistics on a test, e.g., the raw score, item 

response patterns of individual subjects may be used in order to 

obtain information for diagnostic use of tests. Summary statistics 

give an impression on the overall level of ability or achievement at 

which a subject operates. Once information has been collected with 

respect to the degree to which an individual's response pattern devi¬ 

ates from some criterion, more detailed conclusions can be drawn with 

respect to that individual. Such conclusions entail, e.g., membership 

in a specific population (e.g.. Van der Flier, 1982), deficiency of 

certain abilities needed to solve particular classes of problems that 

are represented in the test (e.g., Tatsuoka and Tatsuoka, 1983; Har— 

nisch, 1983), and cheating or guessing on educational tests (e.g. 
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Levine and Rubin, 1979). Consequently, subjects may be allocated to 

other groups, they may be given additional instruction, or their test 

performance may be reconsidered. 

Early attempts at analysis of response patterns on items or tests 

have been made by, e.g., Du Fas (1946), Osgood and Suci (1952), Gaier 

and Lee (1953) and Cronbach and Gleser (1953) in the context of pro¬ 

file analysis. In the recent years two approaches to the analysis of 

item response patterns have developed. 

One approach evaluates the likelihood of a response pattern given 

a probabilistic model (Wright and Stone, 1979; Levine and Rubin, 1979; 

Levine and Drasgow, 1982; Drasgow, 1982). In order to carry out this 

evaluation, estimates of the latent parameters of an item response 

model are needed. Tatsuoka and Linn (1983) and Tatsuoka (1984) pro¬ 

pose coefficients vdiich express the deviance of a binary-valued 

response vector from the corresponding vector containing an 

individual's success probabilities on the items in the test. In order 

to estimate these coefficients, one also needs the estimates of latent 

subject and item parameters, and consequently the test should conform 

to a parametric item response model. 

The other approach evaluates an array of observed dichotomously 

scored item responses against statistics which are usually based on 

the group to which the individual belongs (Kane and Brennan, 1980; Van 

der Flier, 1980; 1982; Harnisch and Linn, 1981; Tatsuoka and Tatsuoka, 

1982; Tatsuoka and Linn, 1983; Tatsuoka, 1984). In many cases, the 

latter approach concentrates on the fit of an individual subject's 

response pattern to the well-known deterministic Guttman model (1945; 

1950). 

In this paper we study deviating response patterns in the context 

of the second approach mentioned, i.e., deviation from ideal response 

patterns which conform to the Guttman model. The present study fol¬ 

lows the tradition of the general nonparametric item response theory 

proposed by Fokken (1971; also, Mokken and Lewis, 1982). Mokken's 

approach concentrates on item analysis, and proposes several item 

coefficients and procedures of item selection. The role of both per¬ 

fect and imperfect Guttman response patterns in nonparametric item 

response theory is discussed extensively (Mokken, 1971, p. 153-157). 



133 

No detailed analysis is made, however, of the problem of diagnosing 

individual response patterns. This study attempts to fill this gap in 

Nokken's development. 

A nonparametric item response model 

Nokken (1971, p. 115-169) has proposed a probabilistic approach for 

scaling persons and items on a single dimension. Actually, his 

approach to scaling entails two different nonparametrie item response 

theories for dichotomously scored items. Hie models are called non- 

parametric because the item characteristic curves (ICG's) and the dis¬ 

tribution of the latent attribute £ are not specified in terms of a 

parametric family of functions. In the present paper, only the most 

general of his item response theories is presented, where the general¬ 

ity refers to the restrictions placed on the ICC's. We use this 

presentation to define some quantities to be used in this paper. The 

general model is based on three assumptions: 

1. Measurement by means of the items in the test is unidimensional; 

2. Responses to different items made by a single subject are stochast¬ 

ically independent given the position of the subject on the attri¬ 

bute 

3. ICC's are monotonically nondecreasing in the latent attribute. 

In order to explain the third assumption we need the success probabil¬ 

ity 7T of a subject, say v, on an item, say i, and denote it by 

The third assumption means that for any two subjects, v and w, if 

there exists an item i for which < TT^ then < 7Twj for all 

j = 1.k, where k is the number of items in the test. Items con¬ 

forming to this model are called monotonely homogeneous, and their 

ICC's may intersect. The third assumption implies that each item 

(partially) orders subjects in the same way. 

It should be noted that is the expectation across independent 

replications of the binary item score xv£« Let t*16 observed raw 

scores be denoted by and respectively, then 
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k 
E(X /k|C„) = 1/k l TT . = 6 < 

v V . VI V — 
i=l 

k 
e(X /k|C ) = I/k Z tt . = 6 , 

w w . W1 w (1) 

using the third assumption. In random samples, 3 and 3 are 
V w 

estimated by their unbiased estimators (Mokken, 1971, p. 129) 

6 = X /k and 3 = X /k . 
V V w w (2) 

A coefficient of subject scalability 

Mokken (1971, p. 148) uses Loevinger's (1948) scalability coefficient 

H to assess the degree to which a data set conforms to the Guttman 

model. Since this coefficient concentrates on the scalability of 

items, no conclusions can be drawn with respect to the scalability of 

individual persons. In the present paper, we define H for two persons 

v and w, and arbitrarily assume that v is the less able person, and 

that his/her ability level is denoted by 3 so that 3 < 3 under the 
v v w 

monotonely homogeneous model. Furthermore, we let ft (1,0) denote 
vw 

the expected proportion of items answered positively by the less able 

person v and negatively by the more able person w, and 3^)(1, 0) 

denote the error proportion to be expected if the response patterns of 

v and w were independent across items: 

Bvw (1» 0) = Bv(l - 3W)• This would mean that the response patterns 

of two fixed persons v and w correlate zero, given their proportions 

of positive responses 3V and 3W» Hie error proportion 3VW(1, 0) is 

estimated by the unbiased and consistent estimator 

3VW(1. 0) = X^U, 0)/k, where X^O, 0) denotes the observed error 

frequency. The scalability coefficient for two persons is defined as 

H 
vw (3) 
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Of more interest is the scalability coefficient of one person v, 

, with respect to the population to which he/she belongs. It should 

be realized that when (3V > $w» the expected error proportion equals 

B (0. 1). When B = B » it is readily seen that 
vw v w 

B (1. 0) = B (0,1), and there is no problem choosing an error pro- 
vw vw 

portion. For v, w = 1, ..., n, the person coefficient is defined as 

V'C1 6vw(0*1)+ E BvwC. ^ ')+ s B^Cl.O)] , (4) 
w<v v<w w<v v<w 

where by definition w < v implies Bw < By and v < w implies By S. 

Van der Flier (1980, p. A3) presents in an equivalent form, 

which we have adapted to the present notation: 

h = xFb (i,!)-ee]/r2:e(i-e) + Eeu-B)], (5) v ,Lvw vwJLv w w vJ 
wrv v<w w<v 

where the numerator consists of the sum of the covariances between the 

response patterns of the subjects, and the denominator consists of the 

stun of the corresponding maximum covariances for fixed 

g (v = 1, ..., n). Tatsuoka and Linn (1983) discuss Sato's Caution 
My 

Index, which is rather similar to H . 
v 

It can be seen in formula (A) that H equals one when the error 
v 

proportions of person v all equal zero. It equals zero when the aver¬ 

age covariance of the response pattern of v with the other response 

patterns equals zero (formula (5)). Negative values indicate negative 

correlations with one or more other response patterns. 

Finally, it may be noted that the coefficients H and H can be 
J VW V 

used without the assumption of monotone homogeneity since they can be 

interpreted as normed average covariances. 

Recently, Jansen (1982; also, see Roskam, Van den Wollenberg & 

Jansen, 1986) has criticized the use of the item coefficient H in the 

context of the Nokken model. Others (e.g., Molenaar, 1982; Mokken, 

Lewis & Sijtsma, 1986) have critically responded to these criticisms. 

In this paper, we do not repeat the positions taken in this discus¬ 

sion. We only recall that Jansen (1982) has convincingly shown that H 

is not suited for the selection of items which conform to one of 

Mokken's item response models, from a larger set also containing items 



136 

which violate these models. Sijtsma and Prins (1986) have recently 

investigated how H can be used properly to select items within the 

context of Kokken's approach. 

Since the person coefficient is used to detect deviating 

response patterns, but not to select sets of persons complying with 

some probabilistic test model, we think that the criticisms of H do 

not apply to . 

Properties of the person coefficient 

It is well-known that the Guttman model implies perfect reproducibil¬ 

ity of response patterns conditional upon the raw scores of persons. 

This means that given X^, the easiest items have been answered 

positively and the remaining items negatively. When = 1 for some 

person v, it can be shown that this person's response pattern is per¬ 

fectly reproducible. For this purpose, we consider a datamatrix (Fig¬ 

ure 1(a)) containing the score pattern of person v. At the left of 

person v we order the persons for whom g < 3 , and at the right the 
w v 

persons characterized by < g^. The ordering of the items according 

to their difficulty is assumed to be unknown. We know, however, that 

= 1, meaning that person v does not share error patterns with the 

other persons. This knowledge determines the configuration of the 

data matrix as indicated in Figure 1(a). The other elements can be 

chosen given the constraints imposed by the g (w = 1, ..., n; w ^ v). 
w 

It is clear, however, that no matter which choice we make, items 2 and 

4 will always be the easiest, implying that perfect reproducibility 

holds for person v. 

Although = 1 constitutes a sufficient condition for perfect 

reproducibility, it can be shown that it is not necessary. In Figure 

1(b) a complete datamatrix is given. It is readily verified that 

< 1, although perfect reproducibility holds for the score pattern 

of person 4. 
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persons 

w < v v v < w 

Figure 1(a): Data matrix illustrating sufficiency of = 1 for perfect 

reproducibility. 

Figure 1(b): Data matrix illustrating that - 1 is not necessary for 

perfect reproducibility. 

Besides H and H , an overall coefficient can be defined which 
vw v 

expresses the global scalability of the group of persons with respect 

to each other: 

h(p) = 2 2 [e^o, 1) - evew] / £ £ evo - ew) • (6) 
v<w v<w 

This coefficient is the person counterpart of the overall scalability 

coefficient H of Loevinger (1948; see also Fokken, 1971, p. 148-153), 

which is defined as: 

E E 7T..(1, 1) - TT.1T.1 /EE TT. (1 - TT.) 
. . L 11 11 • ^ • 1 
1<J J J 1<J 

(7) 
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where 1) denotes the expected proportion of persons responding 

positively to both items i and j, and 71\ < TT^ (i, j = 1, ...f k). 

For given 8V and Bw (vf w = 1, .... n), we define the constant 

$0-8) if 6 <$ : v w pv - pw * 

0 - & )$ if 6 > 
v w v 

Using this definition, we rewrite (6) as 

z [ 1 C * £ {8 (1, 1) - 8 8 } / E C 1 
H(P) = v w^v TO wfv w_V W Mjiy wJ 

lie , vw 
V WfV 

l H l 
v w^v 

C 
vw 

lie 
vw 

V WfV 

(p ) 
Several properties of H can be deduced: 

Property 1: 

(8) 

(P) 
H > min(Hv) , v = 1 , ., n . (9) 

(p) 
This property says that H is always at least as large as the smal¬ 

lest of the individual person coefficients, which is readily seen in 

(8). 

Property 2: 

(P) 
Hv = 1 iff = 1 , for all v = 1, ., n . (10) 

(P) 
Necessity follows from the fact that H = 1 implies that there are 

no error patterns for any pair of persons. Sufficiency immediately 

follows from (8). 

Property 3: 

H(p) 
- 1 iff Guttman-homogeneity . <10 
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When = 1, the persons can be (partially) ordered without any 

errors. It is readily seen that at the same time the items are also 

(partially) ordered without any errors. 

Sufficiency follows by definition. 

Corollary: From properties 2 and 3 it follows that 

H =1, for all v = 1, .. n, 
v 

rX . = 1, i = 1,.. X , and ^ 
vi v 

iff / > for all v= 1, .. n . (12) 

LX .=0, i = X +1,.,k . J 
vi v 

Thus, when all person coefficients are perfect the property of repro- 
(p) _ 

ducibility holds. In this case also H = H = 1. 

Finally, Mokken (1971, p. 157-169; see also Goodman, 1959) has 

derived the asymptotic sampling theory for the item coefficients Ik. , 
(P ) J 

H. and H. Since the person coefficients and H are the 

analogues of the item coefficients when the data matrix is transposed, 

this sampling theory seems to be easily applied to the person coeffi¬ 

cients as well. The approximation of the empirical to the theoretical 

sampling distribution will probably be problematic for at least two 

reasons. First, the number of items k is always small, and second, a 

test usually is deliberately constructed, and the items are (almost) 

never sampled randomly. 

Detectability of abberant patterns by means of Hv 

The effectiveness of Hv as a means for detecting abberant response 

patterns was studied for two different cases. 

In the first case some persons in a larger sample are assumed to 

have guessed blindly for the correct answer on each item, while most 

persons have not. Several artificial data matrices were constructed, 

each containing response patterns which were either generated accord¬ 

ing to an item response model when persons had not guessed, or accord¬ 

ing to a constant success probability for each item when persons were 

assumed to have guessed. The simulated situation can be interpreted 

as one in which a group of students has studied a subject matter, and 
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then takes an examination on the basis of the ability level acquired. 

Another group has not even looked at the books and consequently 

guesses blindly for each item with a constant success probability. 

The latter group may, e.g., be interested in collecting items for 

training for future examinations, and has no serious intention of 

passing the exam at the present administration. 

In the second case, we consider a subgroup of respondents with 

ability parameters below the population mean: £ < e(£) = 0. During 

the exam, these respondents are assumed to have copied the correct 

answers to a few difficult items from their more able neighbours, or 

to have cheated in some other way. Thus, for a few difficult items 

7T . = 1, and the success probabilities on the other items are deter- 
vi 

mined by the item response model. 

These cases are only two out of a large number of situations one 

might be interested in. Nevertheless, we hope that our cases shed 

some light on the usefulness of coefficient H . 
v 

Method 

Subject parameters were randomly sampled from a standard normal dis¬ 

tribution. In each cell of the design of this study, there are always 

100 persons behaving according to the item response model, and the 

test always consists of nine items. The number of deviating persons 

is varied across three levels: 10, 20 and 40 persons, respectively. 

When no guessing or cheating is involved, item responses are simulated 

by means of the three-parameter logistic model: 

TTy. = Yi + (1 - Yi) exp[«£(Cv - / {1 + exp[o.(Cv - 6^]} , 

where 5^, ct ^ and y ^ denote the difficulty, discrimination and guessing 

parameters of item i, respectively. 

In the case of guessing behaviour, tests consisting of two- and 

four-choice items are studied. 

In the case of cheating on some items, the number of such items 

is varied: one and two items, respectively. These are always the most 

difficult items in the population where no cheating has taken place. 
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In the sample, the item scores on one or two items are all changed 

into ones for a subgroup of persons. As a consequence, when looking 

at sample statistics, these items often are no longer the most diffi¬ 

cult items. 

Within one data matrix guessing and discrimination (a^ = 2.0 for 

each item in each cell) are always kept constant across items, whilst 

the difficulties are equidistant between -2.0 and 2.0. In the case of 

cheating y. = .25 for all items, except the items on vhich the cheat¬ 

ing takes place. The data generation procedure has, e.g., been 

described in detail by Van den Wollenberg (1982). 

Results 

Persons are always a priori classified into n^ guessing and 

n - nD = 100 non-guessing persons. Accordingly, the person coeffi¬ 

cients are also classified into the nD lowest and the n - nD highest 

coefficients. It may be noted that n and nD change when By = 0 or 1 

and consequently Hv is undefined. The resulting two-by-two cross¬ 

classification contains the false and valid positives and the false 

and valid negatives, respectively. The relations among these classif¬ 

ications are expressed by the phi-coefficient, which is always signi¬ 

ficantly positive (Table 1). This means that, generally speaking, the 

guessing persons are characterized by the lowest person coefficients, 

and the opposite is true for the other groups. It can also be seen in 

Table 1 that the mean person coefficient is always markedly lower 

among the guessing persons than among the non-guessing persons. Thus, 

the positive relations among the classifications are not caused by 

outliers. 

Finally, although it is often significantly positive, the corre¬ 

lation between the raw score and the person coefficient is rather 

small, which means that the person coefficient adds information to the 

knowledge one has about persons based on their raw scores. 
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Table 1: Results with respect to the detectability of persons guessing 

blindly on each item. 

"d = 10 "D = 20 

o
 

<r ii cf3 

1 5 
i v 

n . = .25 1 <j>(D, H ) 
VI 1 T ’ V 

r(X , H ) 
| V V 

.02 .45 

.51* 

.21* 

.08 .40 

.38* 

.41* 

.00 .37 

.60* 

.39* 

1 H 
1 v 

"vi = -50 | V 
| r(V Hv) 

.02 .26 

.44* 

.08 

-.04 .19 

.57* 

.22* 

.08 .20 

.32* 

.33* 

Note: n^ : number of deviating persons. 

Hv : mean of in the deviating group (first entry) and the non¬ 

deviating group (second entry), respectively. 

(t>(D> Hy) : phi-coefficient based on the cross-classification containing 

the frequencies of the false and valid positives and the false 

and valid negatives, respectively. An asterisk means 

significance at 5% level (one-sided). 

, H ): pm-correlation between the raw score and H . An asterisk 
V V y 

means significance at 5% level (two sided). 

Table 2: Results with respect to the detectability of persons cheating 

on a few difficult items. 

nD = 10 

o
 

CN II o
 II 

1 5 
• V 

k = 1 1 <f>(D, H ) c . v 

1 r(V V 

.09 .45 

.56* 

-.09 

.20 .33 

.27* 

.27* 

.17 .37 

.31* 

.21* 

i “ V 
kc = 2 , 0(D, Hv) 

r(X , H ) 
( V V 

-.04 .39 

.45* 

.05 

-.01 .31 

.69* 

-.07 

.23 .31 

. 11 

-.21* 

Note: kc: number of items on which cheating takes place. 

Other notation is explained in Table 1. 
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Generally, the results for the cheating condition (Table 2) are 

closely comparable to the results for the guessing condition. In some 

cases the phi-coefficients are rather small. This can be attributed 

partly to the fact that the item(-s) on which cheating has taken place 

are not the most difficult ones in the sample. Another reason for 

small phi-coefficients is that behaviour is abberant on only one or 

two items. 

A replication study shows that the results in the guessing condi¬ 

tion may be considered valid, while the phi-coefficients in the cheat¬ 

ing condition seem less stable. The general conclusions of this study 

are maintained, however. 

Discussion 

The results from our simulation study lead to the tentative conclusion 

that the coefficient H is rather successful in detecting abberant 
v 

response patterns. An attractive feature of the coefficient is that 

it can be applied to data irrespective of the (non-) fit of an item 

response model. 

A problem which was not solved in this paper, is where to put a 

borderline between deviant and non-deviant patterns. Van der Flier 

(1980) has presented a coefficient with a known sampling theory, mak¬ 

ing possible significance tests of the null hypothesis that a response 

pattern is not deviant. Such a significance test is certainly a use¬ 

ful tool, but it does not supply a proof that a person has guessed or 

cheated, or that something else has occurred which has caused the 

response pattern to be deviant. Therefore, additional evidence is 

needed in order to explain why a person should be considered aberrant. 

This remark applies to all formal methods to detect aberrant response 

patterns. 

Compared to methods based on item response theory, the present 

method is attractive for its simplicity and independence of any under¬ 

lying formal model. From the literature one can hardly draw any con¬ 

clusions with respect to the relative effectiveness of different 

approaches. A comparative study on the effectiveness in detecting 

abberant patterns of different methods from different approaches would 

be highly interesting. 
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