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REGRESSION ANALYSIS OF SIMULATION EXPERIMENTS: 

FUNCTIONAL SOFTWARE SPECIFICATION 

Jack P.C. Kleijnen*) 

ABSTRACT 

Regression models are often used to analyze simulation models. However, 

simulation data have special problems and opportunities which are not 

easily handled by current regression software. This paper investigates 

the following five assumptions: (1) Non-collinearity of the matrix of 

independent variables X. In simulation, experimental design is used, 

possibly in a sequentially way, so that collinearity is no acute prob- 
2 2 

lem. (2) Constant variances (0^= a ): Simulation yields variance esti¬ 

mates, which often differ substantially. These estimates can be used (a) 

to Correct the covariance matrix of the ordinary Least Squares point 

estimator 6 (CLS), or (b) to compute Estimated Weighted Least Squares 

(EWLS), or (c) to derive a Sequential Least Squares design (SLS). (3) 

Independence: Common random-number seeds destroy the independence. Again 

CLS, EWLS or SLS applies. (4) Normality: Outliers can be eliminated af¬ 

ter running the simulation program with new seeds. Rank regression is 

another useful option. (5) No specification error: The validity of the 

regression model can be tested through cross-validation, accounting for 

non-constant variances which results in a maximum absolute Studentized 

forecast error. For deterministic simulation the relative error y/y is 

proposed as criterion. 

ADDITIONAL KEYWORDS: transformations, robustness, nonparametric, optimi¬ 

zation, applications, case studies. 
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1. INTRODUCTION 

There are many statistical packages (such as MINITAB, SAS, TSP) 

with modules for linear regression analysis and Analysis of Variance. 

These packages have provisions for econometric models (including auto¬ 

correlation, simultaneous equations, errors in variables, and so on) and 

experimental designs (including blocking, split plots, etc.). However, 

there is no software tailored to the needs of simulation analysts! And 

simulation experiments do have special problems and opportunities, as we 

shall see, and simulation is applied in many disciplines. Our experience 

shows ^hat when simulation analysts apply standard regression software 

to simulation data, they are easily led to erroneous interpretations, 

for example, they try to interpret a non-significant Durbin-Watson sta¬ 

tistic, without realizing that in their simulation experiment such a 

statistic makes no sense. 

Before proceeding we shall demonstrate why current regression 

software is inadequate for use by simulation practitioners. In Section 4 
~ 2 

we shall see that in simulation there are unbiased estimators at, of the 
2 2 " ? 

response variances oh, which may differ substantially (o^ * a ). We 

shall propose a combination of the Ordinary Least Squares estimator 8 

(see eq. 4) with the correct estimated covariance matrix (eq. 9 dif- 

—1*2 ^ 
fers from the ordinary formula (X'X) a ). This combination is an option 

not available in current software (we checked SAS, TSP and MINITAB manu¬ 

als). Actually this option is not even mentioned in textbooks; the op¬ 

tion is discussed in our own publications - for example, Kleijnen et al. 

(1979), Kleijnen (1983) - and in Nozari (1984). Of course, new formulas 

(such as eq. 9) can be added to any "open ended" package (that is, soft¬ 

ware with either an interface to a general purpose language such as 

Fortran, or its own language; for example, SAS has an APL-like langu¬ 

age). Practitioners, however, want to use existing options only! We note 

that some issues we shall discuss, are easily implemented in certain 

software but not in other software; for example, sorting - needed in eq. 

(13) - is easy in SAS, not in TSP. In this paper we shall discuss the 

characteristics of simulation experiments. The "Summaries" at the end of 

sections 3 through 7 provide the functional specification of a package 
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for Regression Analysis of Simulation Experiments (RASE). We plan to 

implement RASE in SAS, unless a software house announces that it will 

offer a package with the facilities of RASE. 

In the present paper we do not discuss in detail, why regression 

analysis of simulation data is advantageous. Suffices it to say that 

regression analysis is used for validation of simulation models, optimi¬ 

zation, what - if questions, and so on; see Kleijnen (1979, 1986). We 

use the following terminology; also see eq. (1). The simulation model fj 

has k parameters (or factors) z^,...,z^. A random (or stochastic) simul¬ 

ation model has an additional input, namely the random-number seed (or 

initial value) Tq. We shall concentrate on random simulation, and only 

when necessary we shall discuss deterministic simulation separately. A 

simulation model yields several time series, which are summarized by a 

few measures such as the average. We concentrate on a single measure y 

per simulation run. We may solve the multivariate problem, applying uni¬ 

variate regression analysis (per response y) in combination with the 

Bonferroni inequality; see Miller (1966, pp. 189-210). In summary, we 

represent the simulation model through the following function: 

y = fl (zl>z2.zk’rCp ^ 

This simulation model is approximated by a regression model; see the 

next section. 

2. BASIC REGRESSION ANALYSIS 

In this section we present the basic formulas of regression ana¬ 

lysis, in order to define our symbols and terminology. The regression 

model is linear in its parameters B and has additive errors e: 

^ = X B + e (2) 

where y = (y1,...,yN)' since there are N simulation runs (N > 1); X is 

an N X q matrix of independent (regression) variables x^j (i=l,...,N; 

j=l,...,q; 1 < q < N; see eq. 6 and Section 7); B = (Bj,•••,B^)' and 

e = (e^.we see -*-n Section 4, these N runs may con- 
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sist of n factor combinations h replicated times such that 

n 

E m, * N,) Obviously, this linear model is not necessarily linear in 

h=l h - 
the simulation factors Zp...,z^; for example, the regression model may 

be a second-degree polynomial in z (so that q = (k+1) (k+2)/2) or the 

variable x may equal log z. In our experience, linear regression is 

flexible enough to summarize simulation models (non-linear regression is 

applied to, for example, chemical experiments where enough theoretical 

knowledge is available to suggest a specific family of nonlinear mod¬ 

els) . 

The Classical Assumptions for the regression model are: the er¬ 

rors e are Normally and Independently Distributed (NID) with zero means 

~ 2 
and constant variances a , or 

e ~ N (0, a2I). (3) 

Under these assumptions the Ordinary Least Squares (OLS) estimator 

8 = (X' xfV i (4) 

has several attractive properties: j3 is the Maximum Likelihood (ML) es¬ 

timator, and it is the Best Linear Unbiased Estimator (BLUE; this prop¬ 

erty does not require normally distributed errors); confidence intervals 

for 6 can be based on the F statistic; and so on. The covariance matrix 

of Bis 

£2. = (X' X) 1o2. (5) 

~8 

2 
The unknown parameter a in eq. (5) is estimated through the Mean Squar¬ 

ed Residuals (MSR) 

~2 
a 

N 

E 

i= 1 
(Xi- 

N - q (6) 

where y^ is the ith element of y = X B* The individual regression para¬ 

meters 8^ are tested through the t statistic: 
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t. 
j 

f£.!i (j 1,...,q) (7) 

where is a Student t statistic with N-q degrees of freedom and 

a 8^ = where oj^ denotes the j th diagonal element of Q,*; see eqs. 

(5) and (6). We shall discuss each assumption of OLS in a separate sec¬ 

tion, concentrating on the characteristics of simulation data. 

Summary: The OLS estimator $ has attractive properties, provided 

the following assumptions hold: (1) X is not collinear; hence (X* X)-* 
~ 2 2 

exists. (2) The error variances are constant: ck = a . (3) The errors 

e are independent. (4) The errors are normally distributed. (5) The er¬ 

rors have zero expected values (the regression model is correctly speci¬ 

fied so that it is a valid model). 

3. NON-COLLINEAR MATRIX X 

In simulation there is usually no problem of collinearity, as we 

shall see in the next paragraph. In the social sciences, however, the 

analyst cannot fix the independent variables, but can only observe them. 

Consequently X may be exactly or "nearly collinear", i.e., minor changes 

in X yield major changes in 8. Actually the independent variables are 

random and may be highly correlated. Replication (of specific environ¬ 

mental conditions) is virtually impossible. Therefore the error varian- 
2 2 

ces are assumed constant (a^ = a ) and estimated from the residuals (^ 

- y^); see eq. (6). And if X is nearly collinear, ridge regression may 

be useful; see Hoerl and Kennard’s (1981) annotated bibliography with 

over 200 references. 

In other sciences (such as agriculture and chemistry) the ana¬ 

lyst may proceed from passive observation to active experimentation. In 

simulation (in both soft and hard sciences) all factors are controll¬ 

able; and the theory of experimental design should be applied. Conse¬ 

quently X is not collinear in general; often X is orthogonal (that is, 
R— o X'X = N I, for example, 2 F designs have that property; see Kleijnen, 

1974/1975, 1986). Sometimes, X may turn out to be collinear, namely if 



98 

we design and run the simulation experiment and later on we add new in¬ 

dependent variables (like two-factor interactions in a 2^_p design). If 

such a collinearity problem arises, then - assuming we have computer 

time left to make extra runs with the simulation model - we should not 

use ridge regression analysis but we should add some new runs to the old 

design. Modern regression packages (such as SAS) make the addition of 

data simple. (The sofware might even suggest which factor combinations 

to add to the old combinations; see Kleijnen, 1986.) 

Summary: In simulation, as opposed to the social sciences, col¬ 

linearity of X is no problem in general, since the theory of experimen¬ 

tal design can be applied so that X may even be orthogonal. Addition of 

extra variables (like interactions) may create collinearity, which can 

be eliminated adding a few extra runs. So the regression software should 

not resort to special analysis techniques such as ridge regression; in¬ 

stead the software should enable the addition of extra runs. 

4. CONSTANT VARIANCES 

o 
Our experience is that the error variances cj. differ substanti¬ 

ally in random simulation, for example, Kleijnen et al. (1979, p. 60) 

report a simulation experiment in which the estimated variances range 

between 64 and 93,228 (the simulation represents part of the Rotterdam 

harbor). Apart from these empirical results, it seems strange to assume 

that the expected responses do depend on the factors z (or X) but the 

response variances do not. 

2 
In random simulation the estimation of is easy, when compared 

to experiments with real-life technical systems (chemical plants, agri¬ 

cultural plots) and socio-technical systems (organizations like business 

companies); see also Dykstra (1959, p. 63). In random simulation we can 

execute the same simulation program mj times, using mj different random 

number seeds r0 (n^ > 2). Next we change the simulation program (fj or 

its inputs z; see eq. 1) and run that program nu, times (m^ > 2), and so 

on. So there are n (> q) combinations of simulation parameters z, each 

replicated mh times (h = 1.n) where mh > 2. Hence X has N rows where 
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n 
N = £ m, » but only n rows are different. We may rearrange the vector £ 

1 
into a two-way table (used in Analysis of Variance): y^ = 

yN = ynmn- Then we comPute 

(yhr - V2 
(h = 1, ...,n) (8) 

-2 2 
where y^ = E y^r/mh- These are unbiased estimators of - 

r 2 
var(y^r ); obviously var(y^) = varCy^) = • • • = var(yin ^ = al, anc^ 80 

h 
on. 

Current regression software does not contain eq. (8). Instead 
2 2 2 

OLS assumes constant variances, = a » and estimates a from the esti¬ 

mated residuals e. Another option assumes known variances and computes 

Weighted Least Squares (WLS); also see eqs. (10) and (11). Software for 

simulation should allow the user either to supply the responses yhr 

whereupon the software applies eq. (8) _ojr to supply the variance esti¬ 

mates cr^ or the standard errors a, which may be the output of the simul- 
h h 

ation program. 

Readers familiar with simulation know that in the simulation of 

steady-state models (for example, certain queuing models) other estima- 
o 

tors of are possible, using subruns, spectral analysis, and so on; 

see Kleijnen (1974/1975, 1986). These estimators are more complicated, 

and may be biased. Anyhow, in random simulation we should obtain not 

only the responses y but also their standard errors o. In deterministic 

simulation the assumption of constant variances might be realistic, 

i.e., the deviations e between the simulation responses y and the linear 
~ 2 ~ 

model X 8 have a common distribution with variance a (and zero mean if 

the linear model is valid; see Section 7), even though the conditional 

variances var(y/x) are zero; see Kleijnen (1986, pp. 163-164). We do not 

discuss variance stabilizing transformations, since the interpretation 

of the experimental data should be in terms of the original (non-trans- 

forraed) responses; see Scheff§ (1964, pp. 364-368) and the references in 

Hoyle (1973) and Kleijnen (1986). 
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We distinguish the following options in case of variance hetero¬ 

geneity (comments follow in the next paragraph). 

(a) Ordinary Least Squared (OLS): We simply ignore variance differences; 

see eqs. (4) through (7). 

(b) Corrected Least Squared (CLS): The OLS point estimator of eq. (4) is 

combined with the corrected estimated covariance matrix 

= Cx' x) 1x' n x (x' x) 1 ~ ~ ~ ~y ~ ~ ~ (9) 

where Q is an N x N diagonal matrix with the first m, diagonal elements 
~y ~2 A2 1 

equal to cr^, the next m2 elements equal to and so on; see eq. (8). 

(c) Estimated Weighted Least Squares (EWLS): The estimated response var¬ 

iances of eq. (8) yield the unbiased nonlinear point estimator 

B = (X' n W S2 ly 
~ ~ ~y ~ ~ ~y ~ (10) 

with asymptotic covariance matrix 

6 
(X' n-1x) 1, 
~ ~y (ii) 

provided certain mild technical assumptions hold; see Schmidt (1976, p. 

71). 

(d) Sequential Least Squares (SIS): First we take a pilot sample of 
2 ^ 

observations, which yield a first estimate of a.: see eq. (8) with m, 
0 h h 

replaced by m^. Next we take more observations for the experimental con¬ 

ditions with high variability. If we take 

mh= c ah (h = 1,...,n) (c > 0) (12) 

then we can fit the regression model to the average responses y^ with 

(approximately) constant variance 1/c. 

OLS (option a) yields conservative tests; EWLS gives valid tests 

provided the number of replications is large, say mh >_ 25; CLS gives 

valid tests; see Kleijnen et al. (1985). SLS may give conservative 

tests; see Kleijnen and Van Groenendaal (1986). We recommend that a user 
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apply several analysis techniques (EWLS and CIS, not OLS) to the same 

data. For example, Kleijnen et al. (1979) apply both CLS and EWLS; these 

techniques give different quantitative results (point estimates of B) 

but identical qualitative results (which factors are really important?). 

SLS is a design, not only an analysis technique. The software should at 

least provide the EWLS and the CLS options. 

2 
Summary: In simulation the response variances (h = 1.n) 

may differ substantially. Simulation experiments provide estimates of 

a? (besides the responses y.). These estimated variances yield several 

point estimates and standard errors for the regression parameters 6: 

Corrected Least Squares (CLS) and Estimated Weighted Least Squares 

(EWLS). A possible design uses Sequential Least Squares (SLS). 

5. INDEPENDENCE 

In the non-experimental sciences most data form time series; 

consequently autocorrelation is a major problem. Simulation yields many 

time series, each characterized by a single or a few statistics (see 

Section 1; in other words, in simulation there is an information over¬ 

load problem, not a dirth of data). Simulation yields perfectly indepen¬ 

dent responses y^ if the random number seeds are independent. (In stea¬ 

dy-state simulations the responses yhr and yhrf with r, rf = !,•••> 

are auto-correlated, if subruns are used; see the paragraph below eq. 8; 

the averages per combination h can be independent.) 

Practitioners often use the same random number seed for all n 

factor combinations and then some responses are dependent, namely yhr 

and yh,r are dependent where h, h* = l,...,n and r = l,...,m; obviously 

m, = m. In other words, common random numbers yield a non-diagonal ma¬ 
il 

trix 0, • This practice may increase the efficiency of the simulation 
~y 

experiment (the variances of 6^ are reduced), but it also complicates 

the analysis, as we shall see. [Common random numbers resemble blocking 

in experiments with non-simulated systems. However, the standard analys¬ 

is of a blocked design assumes a special covariance matrix namely 

constant correlations within blocks. Empirical results show that the 
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assumption of constant correlations is unrealistic. See Kleijnen (1986, 

p. 317), Nozari et al. (1984), Schruben (1979).] 

The estimation of the response covariances is simple, if all n 

combinations of simulation parameters are run with a common seed, and 

this is repeated with m different seeds [obviously the covariances re¬ 

main constant over replications: cov (y^r> yhfr^ = ahh'^: 

^hr" yh)(yh'r - yh'> 

0hh'= 

(h, h' = 1, ...,n)(nO 2) (12) 

"2 
Obviously with h = h'; see eq. (8). In steady-state simulation 

there are other estimators for the covariances which, however, are more 

difficult; see Kleijnen (1986, p. 171). 

The analysis of simulation with common seeds should use the 

estimated covariances of eq. (12). We have the same options as in the 

preceding section (CLS. EWLS, SLS). In the present section, however, ft 

is block-diagonal, i.e. on the main diagonal of the N x N matrix ft^ 

(with N=nm) there are m equal submatrices of size n x n. The estimated 

covariance matrix ft^ may be singular; singularity occurs if common seeds 

result in perfect linear correlation coefficients (p, , . = 1). Then EWLS 
hh* 

does not exist; see Kleijnen (1986b). In option (d) we fit the regres¬ 

sion model to the averages y^ with approximately constant variance, and 

then ft is an n x n non-diagonal matrix. 

y 

Current regression analysis handles dependence as follows. In 

econometric packages ft^ is estimated through k-stage least squares using 

estimated residuals. Estimation of residuals makes the results dependent 

on the regression model specification (also see Section 7). Multivariate 

regression analysis may be used to analyze simulation experiments with 

common seeds. Unfortunately, multivariate statistics is not part of the 

basic training most practitioners receive. Therefore we recommend inde¬ 

pendent seeds. Common seeds may increase efficiency but it also increas- 
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es the analysis complexity; the confidence interval lengths of the 8 

estimators may also be decreased by adding simulations runs (which means 

that cheap computer power is substituted for expensive human resources). 

Summary: If and only if the simulation uses common random num¬ 

bers, then the responses y are dependent. The resulting covariances 

should then be estimated; see eq. (12). These estimated covariances 
hh 

can be used in several options (CLS, EWLS, SLS; see the preceding sec¬ 

tion) . 

6. NORMALITY 

Nonnormality may be a smaller problem in simulation than in 

other areas. For example, the simulation response y may be the average 

waiting time of a simulation run; such an average may be approximately 

normal as explained by a limit theorem for autocorrelated variables (see 

Janssens 1982); replication of the long simulation run is needed to es- 
2 

timate the response variances a^, and to derive confidence intervals 

for 8- Nonnormality in simulation does not show special problems. Con¬ 

sequently the standard options of modern regression analysis apply, such 

as detection and removal of nonnormality including outliers, Least Abso¬ 

lute Deviation regression analysis, robust regression analysis, distrib¬ 

ution - free regression analysis. For details we refer to modern regres¬ 

sion software and literature. This literature has been growing dramatic¬ 

ally over the past decade. Atkinson (1985), Beckman and Cook (1983), 

Hocking (1983/1984) and Kleijnen (1986) give many references; for more 

references we refer to journals like Technometrics and Communications in 

Statistics. 

Simulation has one special possibility: it is easy to check if 

an extreme response is due to pure. We can execute the simulation pro¬ 

gram using a new random number seed (in non-simulated systems it is of¬ 

ten difficult to get a new replication). We recommend to replicate a 

suspicious response more than once. If the suspicious response is more 

extreme than all its replicates, then we add the new replicates to the 

data set and eliminate the outlier since the outlier influences the re¬ 

gression results too much, especially in Least Squares analysis. For a 
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case study (involving a computer center) we refer to Keyzer et al. 

(1981). Current software makes it easy to add data. 

Outliers in the independent variables X do not occur in simula¬ 

tion, if the simulation experiment is well designed. Modern regression 

software signals possible outliers in X; see Gray and Ling (1984). 

There is one distribution-free regression procedure that has 

been applied to several simulations, and that is simple, both conceptu¬ 

ally and computationally. Conover and Iman (1981) replace the original 

observations (y^» xij) t^le ranks, i.e., they explain the rank of y^ 

as a function of the ranks of for example, 

R(y1) = 80+ B1R(xj[1) + 82R(x12) + 812R(xil)R(xi2) + ei (13) 

where, if x^ has no effect, 8^= 0 and 8j2= resPonse y (not its 

rank) is estimated by linear interpolation. Interpolation and ranking 

(or sorting) are standard procedures, so that rank regression remains 

simple. Rank regression may work well, provided y is a monotonic func¬ 

tion of Xj. Rank regression may show whether a factor is important; it 

does not explain how the response is affected, since the original scale 

is replaced by the ordinal scale. Rank regression combined with OLS 

should be added to the options presented in the two preceding sections 

(CLS, EWLS, SLS). (We do not recommend to apply as many as 57 different 

regression estimators; see Dempster et al. (1977)'s Monte Carlo experi¬ 

ment .) 

Summary: Nonnormality may be a smaller problem in simulation 

than in other areas. If the fitted model shows outliers, then we may use 

new random number seeds and add these new data to the old data, possibly 

removing suspected responses. The diagnostic messages and the options of 

modern regression software may also be helpful in the analysis of simul¬ 

ation data. Rank regression should be added to the options, provided the 

response is a monotonic function of the inputs. 
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7. VALIDATION 

Kieljnen (1986, pp. 185-186) discusses how to obtain a correct 

specification of the regression model. Once the regression model is spe¬ 

cified, it remains to test the validity of that model; specification 

error implies E(e) ^ 0. The experimental design literature concentrates 

on the lack-of-fit F-test (for references see Kleijnen, 1986, pp. 229- 

233). The older regression literature discusses several other tests; 

see, for example, Rao (1959). The modern literature recommends cross- 

validation, defined below. We too recommend cross-validation, because it 

uses an approach, that is also followed in simulation, not only in re¬ 

gression analysis (briefly, the approach uses the model to predict a 

response; next it compares the predicted response to the actual re¬ 

sponse; the latter response does not depend on the model to be validat¬ 

ed). We adjust cross-validation of modern regression texts, since we 

wish to account for variance heterogeneity and for replication; see eq. 

(15). 

In cross-validation we delete factor combination h (h = l,...,n) 

and from the remaining N-m^ observations we obtain the estimator 

(or some other estimator, like the EWLS estimator jB^^). Then we pred¬ 

ict the response for combination h: 

y h ^ £(-h) 
(h = 1, ..,n) (14) 

where x' is the hth row of X obtained from X by deleting identical rows 
~h _ ~ ~ * 

(X, will denote X excluding x^). The predictor y, is compared to the 
~(-h) ~ _ 
actual average simulation response y^. We reject the model, if the pred¬ 

iction error is large, accounting for the variability of the simulation 

responses: 

h (var (yh) + var (yh)}* 

(15) 

where var (y. ) is part of the simulation data(see the comments on eq. 
~ ~ 2 

8: var (yh) = Oj/111!! ) and e9- (14) yields 
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(-h) 

x. 
:h (16) 

where SI. follows from eq. (9) (or eq. 11 if g replaces g in eq 

14). [If common random numbers are used, then the denominator of eq. 

(15) should be expanded with the covariance term -2 cov (y^, y^); we do 

not know whether this term can be neglected; we might apply the multi¬ 

variate procedure due to Rao (1959); common random numbers indeed com¬ 

plicate tbe analysis; see Section 5.] In eqs. (14) through (16) h ranges 

from 1 to n. Obviously, if is collinear, we cannot compute ; 

a necessary (but not sufficient) condition is n > q (where q denotes the 

number of regression parameters gj). This cross-validation approach 

yields n "Studentized" prediction errors zh if no matrix is colli¬ 

near. Otherwise we limit the cross-validation to n' (1 < n' < n) non- 

collinear matrixes x(_h). Unfortunately the variables zh are dependent. 

Kleijnen (1983) examines the following test (the literature assumes con¬ 

stant variances; see Atkinson, 1985, Beckman and Cook, 1983, Ghosh, 

1983, Hocking, 1983). 

The regression model should hold at all n observation points. 

Consequently we reject the model, whenever any prediction error zh is 

significant. In order to keep the "experimentwise" type-I error below 

the value aE, we use the Bonferroni inequality (see Miller, 1966), i.e., 

we reject the regression model if 

a aF 
max l zJ> z with a = ——— M 71 

1 < h < n' 11 2n ' ' 

where z is the standard normal N(0,1) and P(z > za) = a. For example, if 

n = 8 and a^, = 20% then a = 1.25%. Also see Cook and Prescott (1981), 

Kleijnen (1986, p. 189). 

The Monte Carlo experiment in Kleijnen (1983) suggests that the 

test of inequality (17) has good power. A Monte Carlo experiment by 

Miyashita and Newbold (1983) suggests that the statistic is sensitive to 
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nonnormality, i.e., tails heavier than Gaussian lead to a chance higher 

than the nominal a level of finding extreme values. 

Deterministic simulation implies v&r (y^) = 0 in eq. (15). To 

compute v§r (y^) we might estimate the common response variance (see 

Section 4) from the Mean Squared Residuals (see eq. 6). However, an in¬ 

correct regression model inflates the MSR: the worse the model is, the 

smaller the power of our test becomes! Therefore we recommend to compute 

the relative prediction errors Y^/y^ ancl to reject the model if these 

errors are too "big", where "big" depends on the actual use of the simu¬ 

lation model. We note that in rank regression y is computed through lin¬ 

ear interpolation; hence it seems impossible to derive var (y) in eq. 

(15). Therefore we may again use y/y as a criterion. 

Only if the regression model (as a whole) is valid, the estima¬ 

tors 8 and 8 are unbiased. Therefore regression software should present 

validation results before standard errors and t values of individual 

regression parameters are presented. Kleijnen (1986, pp. 190, 193-194) 

discusses the investigation of individual parameters and subsets of par¬ 

ameters. 

Summary: To test the validity of the regression model the mod¬ 

el’s forecast 5^ is compared to the actual average simulation response 

y^ where ^ is computed from all runs excluding factor combination h. 

This cross-validation yields many validation points. The maximum abso¬ 

lute Studentized error is used as a test statistic. Deterministic simul¬ 

ation, however, may use the relative prediction errors Y^/y^- 

8. EPILOGUE 

Modern regression software has many more capabilities that are 

also useful in the analysis of simulation data. For example, that soft¬ 

ware permits transformations of variables in order to obtain a linear 

model or a model which meets the statistical assumptions of constant 

variances and normality; it allows the addition of new independent vari¬ 

ables, including interactions among factors and (purely) quadratic ef¬ 

fects. 
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Regression packages should also be capable of serving as a big 

module within a larger suite of modules, i.e., the regression package 

gets its input from the simulation program and the regression may deliv¬ 

er its output to a next module, for example, a Response Surface Metho¬ 

dology (RSM) program. Briefly, RSM optimizes the simulated (or real) 

system; RSM is a heuristic, stepwise procedure that combines the steep¬ 

est ascent technique with linear regression models fitted locally; see 

Kleijnen (1986), Myers (1971). 

In this paper we have tried to specify which changes and addi¬ 

tions should be made to standard regression software, in order to accom¬ 

modate the special problems and possibilities of (random and determin¬ 

istic) simulation. We have ignored the numerical aspects; see Beckman 

and Cook (1983, p. 141), Bock and Brandt (1980), Hoaglin and Welsch 

(1978), Wolach (1983). 

Regression analysis of simulation data provides an explicit sum¬ 

mary of the relationships between the inputs and outputs of the simula¬ 

tion computer program (or simulation model). The regression model is a 

metamodel that guides the simulation analyst in the validation of the 

simulation model, in what-if questions, and in optimization. Applica¬ 

tions of regression analysis of simulation data have started to appear, 

in academia and in practice; Kleijnen (1986) gives a long list of refer¬ 

ences and two detailed case studies. 

9. CONCLUSIONS 

Correct applications of regression analysis will be stimulated 

by modern regression software tailored to the needs of simulation anal¬ 

ysts (who are familiar with computers and mathematical modeling but not 

with advanced statistics): 

(a) Simulation implies active experimentation instead of passive obser¬ 

vation. Hence experimental designs (such as 2k_P designs) are often us¬ 

ed. If nevertheless near-collinearity arises, then the regression soft¬ 

ware should not resort to special analysis techniques like ridge regres- 
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sion; instead the software should permit addition of a few extra runs 

reducing collinearity. 

(b) Simulation runs provide not only average responses yh but also vari- 

ance estimates (h - 1.n). These may differ substantially. The 

a2 can be used in Corrected Least Squares (CLS), Estimated Weighted 
h 

Least Squares (EWLS), and Sequential Least Squares (SLS). 

(c) Practitioners often use common random number seeds in the n combina- 

tions of simulation factors. Then estimates of the resulting covariances 

among responses should be obtained. These estimated covariances can 

again be used in CLS, EWLS, and SLS. 

(d) Nonnormality may be less problematic in simulation, if the responses 
n 

y^^ (i = 1,. • • ,N = j;mh) are based on long (sub)runs. If, nevertheless, 

the fitted regression model shows outliers, then we may use new seeds to 

obtain new responses, which may replace the outliers. An alternative 

analysis is rank regression, provided the simulation output is a mono¬ 

tonic function of the inputs. 

(e) To test the specification of the regression (meta)model, we use 

cross-validation. For deterministic models the criterion is the relative 

prediction errors ^/y. For random simulation the criterion is the maxi¬ 

mum absolute Studentized forecast error, accounting for variance hetero- 

genity. 

We hope that this article provides a warning to simulation analysts us¬ 

ing standard regression software, and a challenge to developers of re¬ 

gression software! 
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