
KM 22(1986) 
pag 79-91 

79 

SURVIVORSHIP ANALYSIS OF TRANSPLANTED RENAL DISEASE PATIENTS 

B.A. van Hout *) 

Summary 

As a part of the development of a model for different scenarios which reflect 

the prevailing and alternative policies concerning kidney replacement, survival 

times of transplanted renal disease patients have been analyzed. A proportional 

hazards model is assumed with two explanatory variables : year of 

transplantation and recipient age at transplantation. Other variables which, 

according to the literature, influence survival, e.g., HLA-matching, are not 

taken into account. Using different informal tests it is concluded that the 

unobserved heterogeneity has not biased the estimates. It may be assumed, 

rather speculatively, that the year of transplantation, a variable which in 

fact reflects the development of other variables, captures the unobserved 

heterogeneity. 
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1. Introduction 

Before 1960 End Stage Renal Disease (ESRD) resulted invariably in death. In the 

last two decades several therapeutic methods have become available which more 

or less replace renal function and which postpone death. The most commonly used 

methods are (Colombi 1983 ) : 

(a) Heamodialysis 

(b) Continuous ambulatory peritoneal dialysis 

(c) Renal transplantation 

Since the early sixties dialysis has provided a practical means of long term 

replacement of renal function. Despite many improvements in technique, however, 

it remains an arduous form of treatment. Three four times a week a patient has 

to be dialyzed, each treatment lasting several hours. A relatively new therapy, 

which encompasses some of the problems of heamodialysis, is C.A.P.D. This 

therapy relies on the presence of a permanent indwelling catheter giving access 

to the patient's peritoneal cavity. The major advantage is that the patient can 

go about normal activities without any need to be attached to a machine. The 

main disadvantage, also the reason why it is still in an experimental stage, is 

the risk of peritonitis. 

Transplantation, when successful, is the preferred form of treatment, both in 

terms of rehabilitation and well-being of the patient and from the point of 

view of costs to the health services. 

In economic terms the kidney replacement program costs are considerable, often 

demanding between lX-2% of the health budget. Facing budgetary restraints and a 

growing number of patients suffering from ESRD, health care planning 

authorities in industrialized countries attempt to control costs and attempt to 

optimize the use of resources for their kidney replacement programs. 

In this paper an analysis is presented of survival of transplanted renal 

disease patients. This analysis was part of the development of a model, using 

Dutch data, which facilitates the calculation of both costs and the quality 

adjusted life years for different scenarios which in turn reflect the 

prevailing and alternative policies concerning kidney replacement. For the 

development of this model, data were kindly made available by Eurotransplant, 

the European organization which coordinates all kidney transplantations in 

Germany, Holland, Belgium, Luxembourg, and France. 

Section 2 presents the empirical data. Attention is drawn to the limited number 

of explanatory variables : year of transplantation (ytr) and age of the 

recipient (age). Other variables which, according to the literature, influence 
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survival, e.g., HLA-matching and the number of blood transfusions are not taken 

into account. After a short introduction of the proportional hazards model of 

Cox, the third section presents estimates of the parameters of this model. Some 

informal tests do not reject the the estimated model. 

From the econometric literature on duration data ( see for example Heckman and 

Singer 1984a), it is known that uncontrolled, unobserved variables bias 

estimated hazards towards negative duration dependence. The null hypothesis 

that there is no unobserved heterogeneity, therefore should be tested. In Cox s 

proportional hazards model no formal test is available to do this. An informal 

test suggested by Ridder and Verbakel (1984) is used in section 4. If, in 

contrast with Cox's model, a parametric model is assumed for the base line 

hazard function, the presence of unobserved heterogeneity can be tested. The 

method used in section 5 was proposed by Lancaster and Nickell (1980). The 

central assumption of this method is that the omitted variables can be captured 

by a single random variable which follows a Gamma distribution with unit mean 

and unknown variance. For the base line hazard function several well known 

distributions were assumed and estimated. The variance of the unobserved 

heterogeneity converges to zero in the models which lead to the highest 

likelihood. This indicates that no unobserved heterogeneity has biased the 

regression coefficients. In section 6 some remarks are made on the informal 

graphical techniques which are developed in the literature to check the 

appropriateness of the model assumptions. A more formal test is proposed, but 

application of this test did not lead to a rejection of the estimated models. 

Division of the sample into sub-samples according to the values of the 

exogeneous variables and analysis of the parameter estimates show that the year 

of transplantation should only be implemented as an explanatory variable after 

1976. This leads to a revision of the models, which indicates that one should 

not rely on the informal graphical tests to accept the estimated model. This 

paper concludes with a brief summary. 

2. The data on renal transplantation 

In the analysis data was used from all 2179 cadaver-donor transplants performed 

in the Netherlands from 1967 to 1983. Data were censored if the patient was 

still alive at the date of the last follow up or if an irreversible rejection 

(graft failure) occurred. After graft failure the patient has to return to 

dialysis as treatment modality. In this case, the time between transplantation 

and graft failure is defined as the censored survival time. If the patient was 

still alive with a functioning graft at the time of last follow up the time 

between transplantation and last follow up is defined as the censored survival 

time. These data are generally defined as type I censored data. 

Of the 2179 transplanted patients 272 died before censoring. For each 



82 

transplant data was available on a number of donor and recipient variables. 

Eurotransplant is conducting a research program in which emphasis is placed on 

the effect of primary and constructed variables which reflect how well matched 

donor and recipient are with respect to tissue antigens ( due to the involved 

procedure, this is called the HLA-match). In 1100 cases at least, one, but 

usually all scores on these variables were not known. This can largely be 

explained by the fact that it was only since 1980 that the effects of 

mismatching in the D locus was known to be relevant. Also because of the short 

follow up of the complete cases these variables have not been taken into 

account. Apart from some of the matching variables only 5 variables showed 

differences at a 5% significance level, according to the generalized Wilcoxon 

statistic (Gehan 1965). These were : 

(A) year of transplantation 

(B) recipient age at transplantation 

(C) number of pre-operative blood transfusions 

(D) follow up center 

(E) high urgency 

After the operation a patient is treated in his/her follow up center. Each 

patient on the waiting list has an urgency-code. The High Urgency variable (E) 

expresses the patient's urgency-code at the time of transplantation. Because 

interaction is expected between the variables C and E, and between C-E and the 

probability to survive, these variables also have also not been taken into 

further account. 

3. Analyzing the data using Cox s proportional hazards model 

Only a concise introduction is given here on Cox's model as some excellent 

expositions exist in the textbooks of Kalbfleisch and Prentice (1980), Lawless 

(1982) , and Cox and Oakes (1984). In all methods developed to analyze survival 

times, it is assumed that survival time can be represented by a non negative 

random variable T with an absolutely continuous distribution function F(t) and 

density f(t). T can be uniquely characterized by its hazard function h(t). This 

hazard function is the conditional density of T, given T > t : 

h (t) = lim P (t^T < t+At | T^t). 

At-rO At 

Conversely, knowledge of F(t) determines h(t). 

The proportional hazards model assumes : 

h(t;x) = h0 (t) . exp (x'g ) . 
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Two different approaches can be followed. A parametric model can be assumed for 

h„(t), so, estimates can be obtained by maximization of the likelihood 

function. Cox proposed in 1972 the utilization of a conditional likelihood, 

based on the ranks of the observations, so it would be possible to estimate the 

g-coefficients without making any assumptions about the shape of h„(t). 

Kalbfleisch and Prentice showed that Cox's conditional likelihood should not be 

interpreted as a conditional likelihood but as a marginal likelihood. Cox 

returned to this subject in 1975 by showing that his conditional likelihood can 

be interpreted as a partial likelihood. With this he showed that the method 

used to construct this likelihood gives maximum 'partial likelihood estimates 

that are consistent and asymptotically normally distributed with asymptotic 

covariance matrix estimated consistently by the inverse of the matrix of second 

partial derivates of the log likelihood function. 

Applying Cox's model, we used x^. (the recipient age at transplantation in 

years) and x*, ( the year of transplantation, i.e., 67 - 83) as 

explanatory variables. 

h(t;x) = h0(t) .exp ( xw..g». + x,,,.^,,, ) 

The parameters and 0„r are estimated by maximum partial 

likelihood, without making assumptions on the shape of h0(t). Our parameter 

estimates, using Eurotransplant data, are (t-values between parentheses) . 

8m. = 0.069 (8.39) = - 0.089 (-5.0) 

The survivor function can be written as : 

exp (x'B) 

S(t;x) = S„(t) 

After the parameters have been estimated by maximum partial likelihood, the 

base-line survivor function S.(t) can be estimated as a stepfunction by 

maximizing the full likelihood. 

Plots of the estimated survivor function for three different values of the 

exogeneous variables are presented in section 5 together with those resulting 

from a model in which a log-normal model has been assumed for the base-line 

hazard function. 

The appropriateness of the proportional hazards model can be tested by graphical 

inspection as explained by Lawless (Lawless 1982 § 6.2). This graphical 

inspection however gives no formal rule on which rejection or acceptation can 

be based. Graphical inspection of the same model, etimated on data which were 
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simulated in such a way that it was known that the model was perfect, led to 

similar graphs. This permitted the conclusion that the model-assumptions could 

not be rejected. In section 6 we will return to this subject. 

4. The effects of unobserved heterogeneity 

Ridder and Verbakel (1984) showed that, if neglected heterogeneity is present, 

the estimated regression coefficients in Cox's proportional hazards model are 

biased towards zero. Also the estimate of the base line hazard function is less 

increasing or more decreasing than the true base line hazard function. In 

section 2 it is indicated that such bias can be expected, since we used only a 

small number of explanatory variables. Ridder and Verbakel have suggested an 

informal test for omitted heterogeneity. They propose to order the observed 

durations (which may be censored) in order of increasing length. Next, the 

sample is censored, e.g., at the median. If there is unobserved heterogeneity, 

the resulting estimates on the artificially censored sample should be larger 

(in absolute value) than the estimates from the original sample. With regard to 

their suggestion, the data were divided in quarters, censoring at the 545th, 

1090th and 1635th observation. The estimates of Cox's model on these data are 

presented in TABLE 4.1. 

The estimate of is only larger if the sample is censored from the 

545th observation. The estimate of B,,, is larger if the sample is censored 

from the 1635th and the 545th observation. Because the same kind of results can 

be found on simulated data without unobserved heterogeneity, these values give 

no reason to accept the null hypothesis that unobserved heterogeneity 

influenced the estimates. 

Table 4.1. Ridder and Verbakel test on Cox's proportional hazards model, 

Eurotransplant data, 1967-1983 

n, n. 

2179 272 

1635 224 

1090 176 

545 66 

0.0489 -0.0894 

0.0455 -0.0908 

0.0422 -0.0842 

0.0503 -0.0930 

n, - number of observations not artificially censored 

n, ^ number of remaining observed deaths 
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5. Testing for unobserved heterogeneity if a parametric model is assumed. 

In Cox’s proportional hazards model, no assumption has to be made on the exact 

distribution of the base line hazard function. Assuming a parametric 

specification, if it is the correct one, leads to more efficient estimates. 

Because the potential improvement of the efficiency is only small and because 

it introduces the possibility of misspecification, Cox s model is generally 

preferred. 

Following Lancaster and Nickell (1980), it may be assumed that the unobserved 

heterogeneity can be captured by a random variable V with unit mean and unknown 

variance a’ which can be implemented in the model by the following relation : 

h(t;x,v) = h.(t) .exp(x'g) .v 

Analogous to the error term in the linear model it is assumed that V is 

independently distributed. 

If the censoring time is assumed to be independent of the survival time and the 

censoring time is assumed to be functionally independent of the survival time 

the full likelihood can be written as : 

2179 d, 

L(t;x,v) = H f h(t,;x,v) .S(t,;x,v) dG(v) 

i=l v 

In which G(v) is the distribution of v and d, = 0, if survival time t, is 

censored, and d, = 1, if the complete survival time has been observed. 

In the medical and econometric literature, different assumptions are made with 

respect to the distribution G(v). Lancaster and Nickell (1980) and, more 

specifically, Hougaard (1984) describe a method using different well-known 

parametric distributions. Heckman and Singer, calling the model 

overparameterized, describe a method to estimate G(v) non—parametrically. 

In contradiction with Cox's proportional hazards model, in all these methods 

h(t;x) has to be specified. 

The most tractable method was adopted in which a Gamma distribution with unit 

mean and unknown variance is assumed for G(V). The parameters are estimated by 

maximization of the full likelihood, i.e., the g s, the parameters of the 

assumed distribution of h«(t) and the unknown variance a1 of the Gamma 

distribution. 

Different models have been assumed for h„(t). Most illustrative are the 

exponential, the Weibull, and the log-normal model. In the estimation an 

intercept g, is added to the g -vector so that : 

exp(x'g) = exp( go + x„..g^. + x*r.g*r ), 
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then the concomitant hazard functions can be written as : 

- the exponential model 

h(t;x,v) = exp(x'3).v 

- the Weibull model : 

p-1 

h(t;x,v) = p.t .exp(x"6).v 

- the log normal model 

h(t;x,v) = (f (t) /S (t) ) . exp (x'8) . v in which : 

-1 2 
00 

f(t) = (t.A). exp [- {{(logt-p)A) ] and S(t) = / {(g) dg . 

t 

The subsequent estimation results are presented in TABLE 5.1 ( t-values between 

parentheses). In the estimates of the Weibull and the log-normal distribution, 

the estimated variance of the neglected heterogeneity converges to zero. 

Estimating all parameters with a fixed on different values, led to the 

conclusion that this is a global optimum in both cases. The likelihood which 

results from a = 0 is the same as would have resulted if no error term, 

representing the neglected variables, had been added. As a result, it may be 

assumed that the estimates have not been biased because of unobserved 

heterogeneity. 

Table 5.1 Parameter estimates in three parametric proportional hazards models. 

Eurotransplant data, 1967-1983 

Base line Log(L) a! g „ g ^ gxtr ~ 

hazardfunction 

Exponential -1039 3.285 -7.071 0.080 0.154 

(1.14) (-2.30) (4.15) (2.06) 

Weibull -1017 0 2.640 0.049 -0.092 0.531 

(2.04) (8.4) (-5.4) (18.7) 

Log normal -1008 0 3.38 

(3.8) 

0.049 -0.011 -1.301 1.88 

(8.4) (-8.0) (-2.3) (9.1) 

For three different values of the exogeneous variables, using the log normal 

model for the base line hazard function, figure 5.1 presents plots of the 
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Figure 5.1 Estimated survivor functions : log-normal base line hazard function 
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Figure 5.2 Estimated survivor functions estimated from Cox's proportional 

hazards model ( non parametric base line hazard function ) 
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estimated survivor functions. Plots of the concomitant survivor functions from 

Cox s model are presented in figure 5.2. 

6. Testing the model assumptions 

According to the text-book literature (Lawless § 6.2, Kalbfleisch and Prentice 

§ 4.5), two methods can be used to check the appropriateness of the model. Both 

methods are graphical and relatively informal. The first method is developed to 

check the assumption of proportionality in Cox's model. The sample is divided 

in strata according to values of an explanatory variable, e.g., x,,,. Plots of 

log (- log (S (t; x^.))) in which x^. is the mean of x.,, should exhibit constant 

differences between strata, if the proportionality assumption holds. 

The graphs resulting from the estimated Cox model on the Eurotransplant data 

didn t show any notable departures from the expected behavior if strata were 

defined according to values of x,*.. If strata were defined according to values 

of xnTi plots result of different length so interpretation was more difficult. 

Because similar plots resulted on simulated data, of which it was known that 

the estimated model was perfect, the proportionality assumption could not be 

rejected. 

The second method defines residuals and carries out residual plots such as in 

ordinary linear regression. Let t* be the survival time of the i'th individual 

and define : 

t 

e4 = Ho(ti) .exp (x'B) where H0(t) = f K (u) du. 

0 

It can be shown that the ej s are a censored sample from the exponential 

distribution with unit mean. If H0(t) and 3 are replaced with estimates we 

obtain estimates of the residuals. If the model is correct the estimated 

residuals should be similar to a censored exponential sample (an e, is taken as 

censored if the corresponding t4 is censored). 

Survival curve estimates based on the residuals should, when plotted on a log 

scale, yield approximately a straight line with slope -1. 

This test can be formalized by estimating a Weibull model on the residuals. The 

Weibull model is uniquely determined by a scale-parameter k and an index- 

parameter p. If the residuals follow an exponential distribution with unit 

mean, both parameters of the estimated model should be equal to 1. In table 6.1 

the parameter estimates of the Weibull model are presented applying this method 

for the residuals resulting from Cox s non-parametric method and resulting from 

the Weibull and log-normal parametric models. 

The results in table 6.1 give no reason to reject the hypothesis that the 

residuals follow a unit mean exponential distribution. Because no use is made 

of any detailed sampling theory of the generalized residuals, no formal 
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Table 6.1 A Weibull model estimated on the residuals of different models. 

( t-values between parentheses) 

hazard Cox’s model Weibull log-normal 

272.88 272.00 271.37 

1.03 (35.10) 1.00 (43.86) 1.02 (44.76) 

1.02 (17.63) 1.00 (21.29) 1.04 (23.18) 

decision rule is present to accept the model as well. At this stage, following 

Lancaster and Chesher (1985), a score test, in fact an Information Matrix 

procedure as developed by White (1982), could be used to test more formally. 

Dividing the data into sub-samples, according to the values of the explanatory 

variables, showed serious variation in the estimates of ytr. An extensive 

analysis using dummies showed significant parameter estimates for all years 

after 1976. As a part of this analysis the following model was estimated : 

82 

h(t;x) = h0(t) .exp (xM..gM, + £ 0,6, ) 

i=76 

in which d, = 1 if i = x,,, 

d, = 0 if i ^ x>lr. 

The following estimates resulted : 

Log L( ) = -1834.9 

= 0.0484 ( 8.3) 

B„ = -0.2708 ( -1.3) 

B„ = -0.4532 ( -2.0) 

B„ = -0.8428 ( -3.0) 

B.. = -0.8671 ( -3.0) 

B„ = -1.0408 ( -3.3) 

g,, = -1.2399 ( -2.9) 

(only one dummy for 1982 and 1983). 

This result suggests a linear effect of x„r from 1977. A model with 

dummies for different periods, therefore was estimated using a stepwise 

regression method in which covariates are entered or removed on the basis of 

the likelihood ratio test: 

82 

h(t;x) = h„(t).exp {xM..B„. + x„r.gytr + £ D,.xn,.3, ) 

i=72 

log(L) 

P 

k 
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In which Di = 0 if i < xy,r 

D, = 1 if i ^ XytT 

Having set the limit for significance to enter a terra at 0.10 and the limit to 

remove a term at 0.15, the following model results : 

h (f > x) — ho (t). exp { X»g«.3«g« + D77 . Xytr . $77 + Dt* • Xytr •$ 78 } • 

Log likelihood = -1836. 

3 aK. = 0.0479 ( 8.3212) 

§ „ = 0.0052 ( -1.8446) 

E„ = 0.0062 ( -1.9132). 

From this model it can be concluded that the year of tranplantation should only 

be used as an explanatory variable after 1976. By the former methods in this 

section the model in which x>tr is an explanatory variable for all years 

could not be rejected. It is implicitly rejected in the stepwise procedure. 

This fact indicates that if a model cannot be rejected by the informal text¬ 

book methods (which have even been implemented in standard computer packages 

as B.M.D.P. ), it should not mean that the estimated model is correct. 

7. Conclusion 

Survival times of transplanted renal disease patients have been analyzed in a 

model with two explanatory variables: year of transplantation and recipient age 

at transplantation. Two types of proportional hazards models have been used. In 

the first type, due to Cox, the form of the base line hazard function has been 

left arbitrarily. In the second type, the hazard function of some well known 

parametric distributions have been inserted, the log normal yielding the 

highest value of the likelihood. In the last type, it is possible to correct 

for the bias due to unobserved heterogeneity using a time invariant random 

variable which represents the unobserved variables. The results suggest that no 

unobserved heterogeneity can be found in the used data. It may be assumed, 

rather speculatively, that the year of transplantation, a variable which in 

fact reflects other underlying variables, captures the unobserved 

heterogeneity. In the last section some remarks are made about the graphical 

tests which are developed in the literature to test the appropriateness of the 

model-assumptions. These tests did not lead to a rejection of the estimated 

models. A stepwise procedure using dummies for different periods to test for 

breaks shows that the year of transplantation should only be used as an 

explanatory variable after 1976. This leads to the conclusion that one should 

not rely on the graphical tests to accept the estimated models. 
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