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MULTIPLE CORRESPONDENCE ANALYSIS AND ORDERED LATENT STRUCTURE MODELS 

by B.F. Schrlever 

ABSTRACT 

This paper discusses application of multiple correspondence analysis 

in ordered latent structure models. Such models are frequently used in 

psychological measurement theory to analyse ability (or attitude) tests, 

e.g. intelligence tests. The models considered are related to those of 

Mokken. It turns out that, under realistic assumptions, multiple corres¬ 

pondence analysis orders the questions (items) in the test according to 

their difficulty and orders individuals according to their ability (or 

attitude). 

ACKNOWLEDGEMENTS 

This paper is prepared at the Mathematisch Centrum and at the 

Vrije Universiteit, both at Amsterdam. The author is grateful to 

dr. R.D. Gill and prof. dr. J. Oosterhoff for their valuable suggestions 

and remarks on earlier drafts of the paper. 

Nederlandse Philips Bedrijven B.V., Centre for Quantitative Methods, 

Building VN-7, P.O.-Box 218, 5600 MD Eindhoven. Tel.: 040-735951. 



118 

1. INTRODUCTION 

Multiple correspondence analysis (abbreviated MCA) is a technique 

for analysing the association which is present in multi-way contingency 

tables. In this paper we discuss the application of MCA in the analysis 

of ordered latent structure models. Such models are developed for the 

following situation which frequently arises in e.g. psychology and 

medicine. In a population individuals must be ordered according to their 

value on an unobservable characteristic (e.g. intelligence, knowledge 

of a subject, attitude in a given context, a specific disease). For this 

purpose responses on a set of variables related to the characteristic 

are collected for each individual (e.g. an intelligence test). We restrict 

attention to the simple case in which there is only one such characteristic, 

called the latent var'iable, and in which the collected response variables, 

called items, are dichotomous. The set of all items is called the test. 

Since the characteristic of interest is often hard to separate from 

other characteristics, the assumption that responses on the items 

systematically depend on only one latent variable is for most applications 

more restrictive than the dichotomy assumption. 

The paper is organized as follows. Section 2 reviews the definition 

of the technique MCA. In Section 3 we introduce latent structure models 

with ordered items. These ordered models are special cases of the models 

introduced by Mokken (1971). Our main result is given in Section 4. It 

demonstrates that the ordering of items is reflected in the MCA scores. 

This implies that MCA orders the individuals according to their latent 

value and orders the items according to their difficulty. In the last 

section it is shown that most well-known examples of latent structure 

models possess the orderings of Section 3. Gifi (1981, Chap. 9) already 

noted the ordering property of MCA for these specific examples, but 
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proofs were not given. 

The result presented in this paper also appeared in Schriever (1985). 

2. MULTIPLE CORRESPONDENCE ANALYSIS 

Let X1,X2,...,Xk be nominal variables. The technique MCA seeks k 

real valued functions '^l' ‘ ''^kl' defined on the categories of 

X1,X2,...,Xk respectively, such that the first principal component of 

the correlation matrix of cp^ (X1) ,ip21 (X2) ,... ,cpkl (Xk> has maximal variance. 

This principal component is called the first MCA component. It describes 

the most informative part of the variation between the nominal variables. 

Clearly, it is no restriction to assume that the derived variables (X^) 

have expectation zero and variance unity, for £ = l,...,k. Subsequently, 

MCA seeks a second component which has maximal variance but which is un¬ 

correlated with the first. This procedure is continued with a third com¬ 

ponent, a fourth component, etc. until no new component which is un¬ 

correlated with the previous components can be found. 

DEFINITION. The t-th MCA oomponent is the linear combination of trans¬ 

formed variables 

Yt = £=l 

for which \-= Vai* (Y^_) is maximal subject to 

ap£t(x.e) = °' Var <ip£t(x.e.)> = 1 for 1 ~ 

k 2 
(2.1) I al = 1, 

^=l 

Corr (Yt,Ys) =0 for s = l,...,t-l. 

The MCA solution consists of all k+1 tuples (Xj > / • • •(xk)) 

for t = 1,2,... . The value oi£t <P^t(x) is called the category score on the 

t-th MCA component of the category x of ; l = l,...,k; t - 1,2,... . 
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The present definition of MCA may depart from other definitions 

given in the literature with respect to the normalization of the variable 

weights •••'ajct* Also, different names for this technique are used 

in the literature, e.g. homogeneity analysis (Gifi, 1981) and first 

order correspondence analysis (Hill, 1974). 

It follows directly from the definition that 

Var (Yt) = .Zt a.^Ctorr «pjt(x.) ) 

which means that MCA only considers the bivariate marginals of the 

k-dimensional contingency table of X1__It is well-known (cf. Gifi, 

1981; Greenacre, 1984; Hill, 1974; Lebart et al., 1977; Schriever, 1985) 

that an MCA solution always exists and can be obtained by solving a 

generalized eigenvalue problem of the super matrix containing all 

bivariate marginal contingency tables. 

MCA can be seen as a generalization of principal component analysis 

to nominal variables. Moreover, when X,,X0,_,X, are all dichotomous, 
12k ' 

e.g. 0-1 variables, then by the normalization (2.1), cp^(1) = ( (l - 7^)/j^)15 

and = ■1V)lS' where V = = 1} = 1 -P{xl = 0} for 

£ = l,2,...,k and t = 1,2,... . (Note that the signs of (1) and 

may be taken arbitrary but opposite.) Hence the variance of is only 

maximized with respect to the variable weights ait'a2t'* *‘'akt for 

1,2,... . Therefore, MCA in the dichotomous case is equivalent to 

finding the principal components of the covariance matrix of 

^11 '^21 # * * * /C^kl ^Xk^ ' that iS/ of the cor^elation matrix of 

X1'X2.V 

For further properties, for different approaches and for applications 

of MCA consult De Leeuw (1984), Gifi (1981), Greenacre (1984), Lebart 

et al. (1977) and Nishisato (1980). 
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3. ORDERED LATENT STRUCTURE MODELS 

The latent structure model we consider supposes that the responses 

of the individuals on the k dichotomous items (variables) X^#X2r...,X^ 

can be accounted for, to a substantial degree, by one latent variable Z. 

It is assumed that conditionally on Z the items X^X^^-.fX^ are 

stochastically independent. This assumption of local independence means 

that each individual responds independently on the items. This implies 

that the (global) dependence structure between the items is caused and 

hence can completely be explained by variation in the latent variable. 

Local independence is essential in latent structure models; if it does 

not hold then the latent variable cannot be distinguished from other 

interactions between the items. 

Let the distribution function of Z be denoted by H. Our results 

are not based on any assumption on H and thus hold for any (sampled) 

polulation. Let the response categories of each item be labeled with 1 

("correct") and 0 ("wrong"). The probability of a correct response on 

item X^ for an individual with latent value z is denoted by 

TT^(z) = P{x^ = 1 | Z = z} for z e R; l = l,...,k. 

It can be interpreted as the (local) difficulty of item X^ for this 

individual. The function tt^(») is called the trace line of item X^; 

t = l,...,k. The unconditional probability of a correct response on 

item X^, 

tt^ = = 1} = J 7T^(z)dH(z), 

is the (global) difficulty of this item for the population. By local 

independence, the joint probability of correct responses to both item 

X^ and item X^, j ^ for an individual with latent value z is given 
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by tt_. (z)(z) . The unconditional joint probability of correct responses 

to both items is denoted by 

TT^j = / TT^(z)7T^ (z)dH(z) 

but we define for £ = 

correlation between the items and X_. 

for = 1,...,k; £ ^ j, 

It is easily shown that the 

equals 

a£j = (7T£j “ (1 ' 7Tj)7r£(1 “ 7T£)} for ^ = 

The correlation matrix of the items X^X^/.-./X^ is denoted by ^ = (a^J. 

Mokken (1971) imposes two natural conditions on the trace lines 

of the items in the test. First, he assumes for each item that the 

probability of a correct response increases as the individual has a 

higher latent value, i.e. 

(3.1) z1 < z2 =* < 7T^(z2) and not dH-a.e. equality; £ = l,...,k. 

Secondly, Mokken assumes that if for one individual an item is more 

difficult than another item, then it must be more difficult for all 

individuals. In other words, the trace lines of the items may not cross each 

other. This means that the items in the test can be indexed such that 

(3.2) 1 <£<j <k=* TT^ (z) > tt_. (z) for all z and not dH-a.e. equality. 

The items in the test are then indexed from easy to difficult. Tests 

satisfying (3.1) and (3.2) are called doubly monotone. More about inter¬ 

pretation and examples of doubly monotone tests can be found in Mokken 

(1971). In many examples, see for instance those of Section 5, double 

monotonicity typically occurs in combination with the following generally 

stronger ordering of trace lines. 
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(3.3) Z1 < Z2, TT^tz^TT^. (z2) 2: TT^(z2) TT_. (zi ) . 

In this case the trace lines in the test are said to be totally positive 

of order 2 (TP2). Also, a similar TP2 property with respect to the wrong 

responses, 

(3.4) Zj < z2, 1 j <k => (1 - tt^z^KI - Trj(z2)) > (1 -tt^(z2))(1 - tt^z^) 

frequently holds. 

The increasing property (3.1) implies that all items are positively 

dependent, because 

(3.5) 
"£j 

n^ir. =‘5// (luU )-ir„(z ))(tt . (z.) - it . (z. ))dH(z_)dH(z.) >0 
l j " 2 £ 2 £ 1 3 2 : 1 2 1 

for t,j = l,...,k. Thus the correlations for Z,j = l,...,k are even 

strictly positive. Moreover, it trivially follows from (3.2) that 

(3.6) l<^<j<k=*7Tt,>TT. and u p. £ tt . . for i ^ j. 
I j h ji 

Large departures from double monotonicity violate (3.5) and (3.6) 

and might be detected by inspection of these properties. Notice that 

(3.5) and (3.6) only concern properties of the observable items. 

4. ANALYSIS OF THE MODEL WITH MCA 

Analysis with MCA of the latent structure model described in the 

previous section may be motivated by the interpretation of this technique 

and by the main result of this section. Recall that in the dichotomous 

case the first MCA component equals the first principal component of 

the correlation matrix J of the items ,X2,...,Xk* Therefore, Y^ 

"best explains" the dependence structure between the items among all 

linear combinations of items. Since the latent variable completely 
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explains this dependence structure, Y1 can be interpreted as the linear 

combination of items which best fits the latent variable Z in this sense. 

So the model will be analysed using the correct and wrong category scores, 

Y^i = ) and ~ °i£i<p£i (0) for £ = 1,... ,k, on the first MCA 

component. It follows from Section 2 that 

Y£l = ((1 - ^) A^) and = - (fr^/(1 - 

for £ = l,...,k, where = (a^,...^ is the eigenvector of £ corres¬ 

ponding to the largest eigenvalue. (The superscript T denotes the trans¬ 

position of a vector.) 

Now suppose that a subset of items in the test satisfy the double 

monotonicity and TP2 conditions. Then these items possess strong 

orderings with respect to their (local and global) difficulties. The 

next theorem shows that these orderings are reflected in the correct and 

wrong category scores of these items, even when the remaining items do 

not match the orderings of the items in the subset. 

theorem. Suppose the test consists of m items which all satisfy (3.1) 

with k replaced by m. Furthermore, suppose k of the items, which without 

loss of generality can be taken as the first k, can be indexed such that 

(3.2) and (3.3) hold. Then the correct scores of these k items satisfy 

(4'U 0 ' Y11 < Y21 < ••• ' Ykl- 

Similarly, if (3.1), (3.2) and (3.4) hold for these first k items, then 

(4.2) w.. < 0)o1 < ... < w. . <0. 
11 21 kl 

PROOF. Let S denote the k x k lower triangular matrix with unit elements on 

and below the diagonal and all other elements zero. Its inverse S~* is 



the matrix with unit elements on the main diagonal, with elements -1 

adjacent and below the diagonal (i.e. on the first sub diagonal) and all 

other elements zero. Denote by T the mxm block diagonal matrix with 

diagonal blocks S and the (m-k) x (m-k) identity matrix I. Then its in¬ 

verse T 1 is a block diagonal matrix with diagonal blocks S 1 and I. 

Note that the vector y« = (Y«<#•••#Y «) is an eigenvector corres- 
1 11 ml 

ponding to the largest eigenvalue of the matrix C with elements 

c^ = (TT^j - - TTj)) for £, j *= l,...,m. Since T is non-singular, 

Y1 is an eigenvector corresponding to the largest eigenvalue of C iff 

d = T is an eigenvector corresponding to the largest eigenvalue of 

D = T~1CT. 

Under the conditions of the theorem, all elements of D turn out to 

2 
be positive (i.e. larger than or equal to zero) and all elements of D 

even turn out to be strictly positive. This can be verified as follows. 

The elements of the matrix T = B = equal 

hlj = /('"'£ U-ffj)) for £ = 1 ,k+l,. .. ,m; j = l,.. 

b£j = -'V£-l j)//(7T£7I£-l(1 f°r £ = 2,...,k; j = l,. 

Since (3.1) holds for all m items, it follows that all correlations are 

strictly positive and hence b^ > 0 for Z = 1 ,k+l,. .. ,m; j = 1, ... ,m. 

Furthermore, by (3.4), tt^t^z) can be interpreted as a density (with 

respect to the measure dH) which has the monotone likelihood ratio or TP^ 

property. Therefore, since IK (z) is increasing in z for each j = l,...,m, 

it follows from Lehmann (1959, p. 74) or Karlin (1968, p. 22) that 

J TT^TT^zjTTj (z)dH(z) is increasing in t. Thus, “ 7T£7T,£_i j “ 0 

and hence b^ > 0 for £ = 2,...,k and j 5^ £-!,£. Obviously, b^ > 0 and 

b^, j < 0 for •f*2,...,k. So the matrix B has positive elements except for 
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i; £ = 2,...,k. But by (3.2), > ^ which implies that i + > ® 

for £ = 2,...,k. Therefore, D = BT has positive elements. Moreover, since 

b^_. > 0 for £ = 1 ,k+l,.. . ,m and j = 1,.. . ,m and since b^, ^ + b^ > 0 for 

£=2,...,k, it follows that the elements in the first row of D and the 

elements in the first column of D are strictly positive. This implies 

2 
that all elements of D are strictly positive. 

Application of the Perron-Frobenius theorem (cf. Gantmacher, 1977, 

p. 53 or Rao, 1973, p. 46) yields that the eigenvector d = (d.,...,d )^ 
1 m 

2 
corresponding to the largest eigenvalue of D (or of D) has strictly 

positive components. Since d = T or equivalently d^ = for 

£ = 1 ,k+l,... ,111 and d^ = y^ - for £ = 2,... ,k, the result (4.1) 

follows. The proof of (4.2) is similar. □ 

The conditions (3.2), (3.3) and (3.4) of the theorem can be relaxed; 

see Schriever (1985). 

This result shows that the MCA correct and wrong category scores 

reflect the difficulties of the items. Since these scores do not depend 

on the order in which items are presented to MCA, this ordering property 

can be used, in combination with (3.5) and (3.6), for a first investi¬ 

gation of the model assumptions. Moreover, the theorem suggests that 

ordering the individuals according to their MCA test score is reasonable: 

responding a difficult item correctly yields a large contribution to this 

test score and responding it wrongly does not cost much (for large i, y^ 

is large positive and uk is small negative), whereas for an easy item 

it is the other way around. 

Analysis with MCA is an alternative to the method proposed by 

Mokken (1971) in which individuals are ordered according to the 
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unweighted sum of correct responses. It is unknown, however, in which 

cases which method actually works better. An advantage of the MCA approach 

is that our results can be generalized, in a natural fashion, to the case 

where items have three or more response categories. Such a generalization 

of Mokken's method, as discussed by Molenaar (1982b), is quite complicated 

and less natural. 

In practice the probabilities and for j,£=l,...,m have to be 

estimated by the relative frequencies of correct responses. Although the 

MCA scores based on these estimates need not reflect the difficulties of 

the items even when the underlying model satisfies the assumptions of 

the theorem, one would expect the total score to reflect the appro¬ 

priate ordering of the individuals quite well. It is, however, difficult 

to derive precise and useful statistical properties of such qualitative 

aspects. 

5. EXAMPLES OF MODELS 

Latent structure models for dichotomous variables studied in the 

literature (e.g. Andersen, 1980; Fischer, 1974; Lord and Novick, 1968) 

are commonly of parametric form, that is, the functional form of the 

trace lines is specified. Often there is, however, no evidence that 

the specific functional form is actually present in the test at hand. 

The parametric examples below generally satisfy the double monotonicity 

and TP^ conditions and, therefore, analysis both with MCA and with Mokken's 

method is legitimate. These examples are also discussed in Mokken (1971) 

and Molenaar (1982 a); the ordering property of MCA under these models 

are mentioned, but not proved in Gifi (1981). 

In Guttman's model the responses on the items are deterministic 

functions of the latent variable. The trace lines are given by 
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f1 if z > 6^ 
tt„(z) = j for •£=!,...,k, 

[o if z < 6^ 

where the it^n parameters satisfy < ^2 < * ’ * < In 100(361 an 

individual cannot respond correctly to a difficult item and wrongly to 

an easier item. Hence a perfect analysis is possible. Double monotonicity 

and T?2 of trace lines are easily verified and thus by the theorem the 

correct and wrong category scores of the items (on the first MCA component) 

increase as the item becomes more difficult. Moreover, it is demonstrated 

in Schriever (1985) that the correct and wrong category scores on higher 

MCA component are oscillating functions of the item difficulty. The 

practical relevance of these stronger ordering properties is, however, 

limited. (Slightly weaker oscillatory properties for the principal com¬ 

ponents Olj ,... ,ak of % are proved in Guttman (1950) and interpreted in 

Guttman (1954).) 

A somewhat more realistic generalization of the previous model is 

the latent distance model of Lazarsfeld and Henry (1968). The trace lines 

of this model satisfy 

tt^(z) 
1 - C, if z > 

if z < 60 
for £ =1,...,k. 

where 61 < 62 < ... < 6k and < 1 “ for £ =1,...,k. If > 0 and 

> 0 for £=l,...,k, then double monotonicity and TP2 can not hold 

simultaneously. But the weaker conditions for our main theorem are 

satisfied when tt y 
11 £-1 > ^Jl' ^£^£-1 ” an<^ ^~ ^Z—l ^ ~ ™Z-1 ^ ” ^Z^ 

for Z = 2,...,k and hence (4.1) and (4.2) remain valid (cf. Schriever, 1985). 

In the linear model of Lazarsfeld or Spearman hierarchy the trace lines 

satisfy iT^(z) = a^z + b^ provided 0 < a^z + b^ ^ 1 for Z = k. The condi¬ 

tions (3.1) and (3.2) are for instance satisfied when a^ j - a£ and b£ ^ f°r 
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•£ = 2,...,k. The TP2 conditions (3.3) and (3.4) hold when ^ 1 

and a^_1 (1 + b^) ^a^d+b^) for £ * 2,... ,k. 

Rasoh (1960) developed a model in which the unweighted sum of all 

correct responses is sufficient for Z. The trace lines are given by 

tt„(z) = z/(z + 6^) or = 0 as z > 0 or z < 0, where 0 < < ... < 6, . 
•t -t Ik 

This model is a special case of a model considered by Birnbaum (cf. Chap.17-20, 

Lord and Novick, 1968). In Rasch's model the unweighted sum of correct res¬ 

ponses "uniformly best discriminates" the individuals (cf. Mokken, 1971, p.141). 

Double monotonicity and TP2 of trace lines is easily verified* 

The last example consists of models based on shifts in distribution 

functions. For an univariate distribution function F the trace lines are 

defined by tt„ (z) = F (z - 6„) for £ = 1,... ,k and 6. < < ... < 6, . 
t t 12k 

Double monotonicity is obvious. The TP2 conditions hold when the density 

p of F (with respect to some measure) is log concave. Special choices of 

such distributions F yield well-known models, e.g. degenerate distribution 

(Guttman's model), logistic distribution (Rasch's model), normal distri¬ 

bution (models of Lawley, 1943 and Lord, 1952). Other examples of such 

distribution functions are the gamma, Poisson and binomial distribution 

function. 
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