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SIMPLE BOUNDS FOR THE (RELATIVE) COVARIANCE 

J.J.A. Moors 

Summary Let the random variables X and Y be restricted to given inter¬ 

vals. Then simple bounds are derived for their covariance and relative 

covariance. An application is given. 

1. Introduction 

Consider a random variable X, restricted to an interval [xq, ]. Denote 

its distribution function by F, so that the expectation y of X is given 

by the Stieltjes integral 

u = J1 xFfdx} 

Then the following expression for the variance V(X) is easily derived: 

(i.i) 

Since the integrand is nonnegative, an immediate consequence is the in¬ 

equality 

V(X) i (xL - y)(y - Xq) (1.2) 
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which may be useful, whenever Xg, x- and u are known. If (i is unknown, 

an upper bound for V(X) can be found by maximizing the right-hand side 

of (1.2) with respect to p. Of course, this maximum is attained for 

p = p^ (Xq+x^)/2, leading to 

V(X) < (xx - Xg)2/4 (1.3) 

The above derivation is due to MUILWIJK (1966); of course, (1.3) is in¬ 

tuitively clear. 

These results were extended by MOORS & MUILWIJK (1971) into two 

directions. Firstly, inequalities for the relative variance of X, to be 
2 

denoted by v(X), were derived. Note that v(X) = V(X)/y is the squared 

coefficient of variation. Assuming that 0 is not included in the inter¬ 

val [xq, XjJ, (1.2) implies 

V(X) < (X1/P - 1)(1 - Xg/P) d-4) 

The maximum of the right-hand side with respect to p is attained for 

p = p2:= 2/(l/Xg+l/x1), Implying 

v(X) 
, (Vxo " 1)2 
- 4xi/x0 

(u-1)2 
4U 

(1.5) 

where U:= x^/xq. Note that this upper bound only depends on the ratio of 

the maximum and the minimum values of X. MOORS (1973, 1986) used (1.5) 

to derive lower bounds for the relative precision of several allocations 

in stratified sampling. RAYNER (1975) generalized the bounds for the 

variance, using additional information, however at the cost of greater 

complexity. 

Secondly, MOORS & MUILWIJK (1971) gave a slight improvement of 

(1.2), applicable for discrete X, plus an application. 

A generalization will be presented now, leading to similar in¬ 

equalities for the covariance and the relative covariance. 
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2. Inequalities for the covariance 

Consider a second random variable Y, that is restricted to [yQ, ] and 

has expectation u. If G denotes the simultaneous distribution function 

of X and Y, the following counterpart of (1.1) holds for the covariance 

C(X,Y) of X and Y. 

C(X,Y) =■ (x1 - p)(u - y0) - // (xx - x)(y - yQ) Gfdxdy} (2.1) 

A second, similar expression is obtained by interchanging the role of X 

and Y. Since the integrands in both expressions are nonnegative, the 

following generalization of (1.2) holds: 

C(X,Y) < min{(x1 - y)(u - y0), ^ - u)(y - xQ)} (2.2) 

To apply this bound y and u need to be known; a more generally appli¬ 

cable upper bound can be obtained by calculating the maximum of the 

right-hand side with respect to y and u. For 

f(li,u):= (xx - y)(u - y0) 

g(w.u):= (yj - u)(y - xQ) 

3f/8vi Is decreasing and 3g/3y Is Increasing in u; 3f/3u is increasing in 

y and 3g/3u decreasing. It follows that min(f,g) is attained on the 

curve of intersection of f and g. Since f = g holds on the line 

S:= f(u,u) : (yx - y0)y - (Xl - x0)u - x()y1 - Xj^Yq} (2.3) 

it follows that min(f,g) = f(y,u(S)) and 

y — y 

C(X>Y> < r1 - ° (X1 - ^(u - X.) (2.4) 
X1 x0 u 

As for the variance, the maximum of the right-hand side is attained for 

11 = )^, implying 

C(X,Y) < (Xl - x())(y1 - y0)/4 (2.5) 
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which generalizes (1.3). It is easy to check that the right-hand side is 

attained if (X,Y) is restricted to the points (xqjYq) and (x^,y^) with 

probabilities ^ each. Of course, symmetry at once gives the lower bound 

c(x,y) > - (x1 - *0)(y1 - y0)/A C2-6) 

3. Inequalities for the relative covariance 

First consider the case that X and Y only can take positive values, so 

that Xq and Yq are both positive. For the relative covariance 

c(X,Y):■ C(X,Y)/(pu) 

the following inequality immediately follows from (2.2): 

c(X,Y) < min((x1/y-l)(l - Yg/u), (Yj^/u - 1)(1 - Xg/u)} (3.1) 

Of course, the functions 

(x1/p - 1)(1 - Yg/u) 

g (u,u):- (y1/u - 1)(1 - Xg/y) 

coincide on S given by (2.3); the same argument as in the previous sec- 
* * * 

tion now gives min(f ,g ) = f (p,u(S)) or 

(x - y)(y - x ) 

C(X’Y) - ulu " (x0y1 - x1yg)/(y1 - Yg)} (3-2) 

Equating to zero the partial derivative with respect to y leads to the 

quadratic equation 

(xiyrxoyo)l12 + 2xoxi(yryo)u + xoxi(xoyrxiyo) '0 
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Let u3 denote the larger of the two roots, so that 

ft'-yy, ♦ <VV ■'vwr (3.3) 
3 xiyi - x0yo 

It is easy to check that mln(f*,g*) attains its maximum for u = Some 

tedious algebra then gives 

max min(f ,g ) “ - ' • -^ 

p,u {(xrx0) -'vi+ ^i^o5 /Vii 

Introduction of U:= Xj/xq and V:= y^/yg leads to the following generali¬ 

zation of (1-5): 

. (U-1)(V-1)(/UV - l)2 . (U-1)(V-1) 
C(X,Y) ^ -s- - -s- 

{(D-l)/V + (V-1)/U} (/U + /V) 
(3.4) 

It can be checked that this bound is attained if (X,Y) is restric 

ted to (^OfYo) and (xi>yi) with probabilities /UV/(1+/UV) and 

1/(1+/UV) respectively. 

In case X can take only positive and Y only negative values, 

define Y*:= -Y, so that c(X,Y*) = c(X,Y). Since c(X,Y*) satisfies (3.4), 

this holds for c(X,Y) as well, where now however V = yo^yl‘ T'ie ot^er 

cases are treated similarly. Finally, symmetry immediately gives a lower 

bound for c(X,Y). The summarizing formula reads 

|c(X,Y)| 
< (U-l)(V-l) 

“ (^ + /V)2 

(3-5) 

where now both X and Y are restricted to the positive or the negative 

real axis and 

U:= max |x| /min |x| V:= max |y| /min |y| (3.6) 

Table 1 presents some numerical values; note that the values for 

U = V refer to the right-hand side of (1.5) as well. 



94 

Table 1 Numerical values of the bounds (1.5) and (3.4). 

V 1.5 2 4 6 9 12 

U 

1.5 

2 

4 

6 

9 

12 

0.042 0.072 

0.125 

0.144 0.185 

0.257 0.335 

0.563 0.758 

1.042 

0.224 0.250 

0.411 0.462 

0.960 1.105 

1.347 1.573 

1.778 2.106 

2.521 

(symmetric) 

4. Discussion and application 

All bounds presented here only use either the difference or the ratio 

between the maximum and minimum values of the varlable(s) Involved. By 

consequence, the bounds will be rather crude in general. Nevertheless, 

they are sharp in the sense that they can not be improved: in all cases 

considered, the bounds are attained for specific two—point distribu¬ 

tions . 

The above results can be used to calculate an upper bound for 

the bias of the well-known ratio estimator. Assume that the mean u of Y 

is estimated by use of the ratio estimator uR:= pY/X, where X and Y are 

means of a simple random sample. By definition 

C(X,Gr) = E(XyY/X) - E(X)E(ur) = y{u - E(ur)} 

so that the absolute value of the relative bias of uR Is given by 

E(ur) - u 

u 

(compare COCHRAN (1977), p. 162). 

In first order approximation uR equals u, hence the right-hand 

side approximately equals |c(X,uR)|. Generally, at least a crude upper 

bound is known for both max |x|/min |x|and max ^ /min |uR| so that Sec- 

C(X,uR) 

(4.1) 
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tion 3 can be applied. By way of numerical example assume that is 

restricted to [0.8, 1.2] and X to [5, 10] with mean p = 7.5. Then (3.2) 

leads to the upper bound 0.067 for the relative bias; if p is unknown, 

Table 1 gives the only slightly higher value 0.072. 
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