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DISCRIMINANT ANALYSIS ON PROFILES 

WHERE THE WITHIN GROUPS DISPERSION MATRIX MAY BE SINGULAR 

John P. Van de Geer *) 

Abstract 

This paper deals with canonical discriminant analysis (CADA) for the 

situation where rows of the data matrix can be meaningfully interpreted 

as "profiles". The usual CADA results are often difficult to understand 

in this case: they do not reveal how groups differ in terms of underlying 

profiles. The main point of the paper is to show that rows of the matrix 

of group means can be decomposed as weighted sums of basic CADA profiles. 

The second point is to show how the situation can be handled when the 

within groups dispersion matrix has deficient rank. Two possibilities are 

discussed - they also will be valid when rows of the data matrix do not 

represent profiles. When they do, the paper indicates how underlying CADA 

profiles can be calculated. 
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1. Introduction 

Canonical Discriminant Analysis (CADA) starts from an n x m matrix X 

based on observations for n objects on m variables. It will be assumed 

that X is in deviations from means (columns add up to zero). In addition, 

objects can be partitioned into g groups, such that the first n^ rows of 

X refer to objects in the first group, the next n, rows to objects in the 
£ J.L. 

second group, and so on, until the last n rows for the g group (in =n; 

cl ,2,.. ,g). 9 

X can be decomposed as X=M+E. In M each observation is replaced by its 

group mean (rows of M are identical for objects in the same group). As a 

consequence, E contains deviations from group means. It is easy to show 

that M'E=0 (columns of M are uncorrelated with columns of E). 

It follows that a vector Xv, where v is a vector of m "weights", can 

be decomposed as Xv=Mv+Ev. Moreover, the sum of squares of Xv (which is 

v'X'Xv) will be the sum of v'M'Mv and v'E'Ev. Write M'M=B, and E'E=W. In 

CADA, one is interested in the ratio v,M‘Mv/v,E,Ev=v‘Bv/v'Wv=i)j^. If this 

ratio is very large, it is revealed that group means of Xv have more more 

spread than could be expected if the groups were random samples from the 

same population. The first objective of CADA, therefore, is to identify a 
2 

solution v^, such that the ratio is maximized. The second objective is 

to identify another solution v2, such that Xv2 is uncorrelated with Xv^ 

and that under this restriction the value of \p? is maximized. A third 
2 ^ solution v3 should maximize i|i3 under the condition that Xv3 is uncorre¬ 

lated with both Xv.| and Xv2- And so on, until a final solution for v may 

be found, where the corresponding value of ^ stands for an unconditional 

minimum. 

Clearly, the ratio v'Bv/v'Wv remains the same when the normalization 

of v is changed. Without loss of generality, we may therefore require a 

normalization of each v^ such that v!Wv^=1. 

Generalizing, the CADA solution now can be stated as follows. The 

solutions for v^ are collected in a matrix V=(v^,V2»_)• CADA solutions 

should satisfy 

V'BV = f2 (1) 

V'WV = I 
2 

where f is a diagonal matrix, with diagonal elements in descending order 

and where I is the identity matrix. Assuming that E has full column rank 

so that W is non-singular, it can be shown that the CADA solution must 

satisfy 
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BV = WV<f2 (2) 

This equation can be transformed to the more common format of an eigen¬ 

vector/eigenvalue equation. Let 
W = Sr2S' (3) 

2 
be the eigenvector decomposition of W, with S‘S=I, and r diagonal. If W 
has full rank m, then S will be a full square orthonormal matrix, and it 
then will also be true that SS'=I. Eq. (2) then is equivalent to 

r'1S,BSr"1Q = QY2 (4) 

V = Sr_1Q 

Let B have rank bs(g-l). Eq. (4) then allows for b solutions for Q (and 
p 

V) associated with positive eigenvalues T . Moreover, there are (m-b) 
solutions Q with zero eigenvalue, corresponding to V=Sr~^Q. 

2. Profiles. 
The CADA solution described thus far in no way takes into account that 

rows of X may represent meaningful profiles. As an example, imagine that 
the m variables measure the same thing at consecutive points of time, so 
that rows of X are "time curves". Or, imagine that the m variables are 
measures of sensitivity to light at different wave lenghtes; a row of X 
shows a "sensitivity profile", ordered from small wave length (blue) to 
large (red). Another example is that the variables are standardized tests 
of achievement, and the researcher is interested in profiles that could be 

indicative of certain diagnostic categories (e.g., people with different 
kind of brain damage might show a characteristic profile). 

Usual CADA results do not reveal much about how the g groups differ in 
terms of profiles. Researchers who are interested in profiles, therefore 

often have difficulty with the interpretation of CADA results. Then the 

following considerations may be helpful. In their presentation, the nota¬ 
tion M* will be used for the g x m matrix of group means. 

(i) CADA-gives results for canonical weights V. They cannot be inter¬ 
preted as "profiles". 

(ii) CADA gives results M*V (group averages of the canonical variates 

XV). They show that groups have different means, but they do not reveal 
how the groups differ in terms of profiles. 
(iii) Differences in profiles can be made explicit by using the equality 

M* = (M*V)(V'W) (5) 
▼Proof. (M*V)(V,W)=(M*Sr'1Q)(Qlr"1S'Sr2S,)=M*SS'=M* 

where we use the theorems: (a) M*Sr~'Q=M*V=0 
(b) QQ'+QQM 
(c) SS'=I when w has full rank. ▼ 



Eq. (5) shows that each row of M* can be described as a weighted sum of 

the profiles given in the rows of V'W, with weights given in a row of M*V. 

This will be illustrated in section 4. 

3. W is singular 

3.1 Introduction. It may happen that W is singular, so that there are so¬ 

lutions S with WS=0 (and therefore ES=0). In the following we shall give 

two possible approaches to this situation, the first one in sections 3.3- 

3.5, and the second in 3.6. 

3.2 ResuHs_fgr_S. Let W have rank k<m. There will be m-k solutions for S. 

Let S have partition S=(Sq,S^), such that BSg^O and BS^=0 (assuming that 

both types of solutions do exist). Suppose there are csb solutions Sn. If 
- - - - 2 2 u 
c>1, SQ can be further specified by requiring SqBSq=!2 , where q is diag¬ 

onal with positive elements. There must be m-k-c solutions S^. 

In a sense, solutions Sg are perfect CADA solutions, because the ratio's 

in SqBSq/SqWSq tend to infinity. This does not mean, however, that these 

solutions must be very interesting (they depend on linear dependence in E 
2 

rather than on properties of M). Inspection of the numerical values in q 

might indicate to what extent such solutions can be taken seriously. 

For consistency of notation, we shall write in the sequel: Sg=Vg, and 

§,=!/.. Note that contains eigenvectors of B with zero eigenvalue. 

3.3 Qther_CADA_solutigns2_first_aggrgach. Since SS'+SS'=I it must be true 

that M*=M*SS'+M*SS'. But M*S^=0, and we may write 

M*=M*SS,+M*SgSg (6) 

M*SgSg has been dealt with in section 3.2. So it is quite natural to base 

the further CADA analysis on M*SS' (as if XSS' plays the role of X). This 

makes no difference for equation (4). However, eq. (4) no longer is equi¬ 

valent with eq. (2). Instead, eq. (4) becomes equivalent with 

SS'BV=WVy2 (7) 

A first question is: how many solutions V now can be obtained from eq. 

(4) or (7)? At most b, of course, but possibly less. To show this, let T 

be the m x b matrix of eigenvectors of B (with non-zero eigenvalues). 

There must be a solution for weights A and A such that 

T=SA+SgS (8) 

where A is a c x b matrix with non-zero rows. A is a k x b matrix, and 

may have zero rows. Suppose A has c non-zero rows. Then it must be true 

that c+c>b, since otherwise it is impossible to have b orthogonal columns 

in T. It follows that eq. (4) will have b solutions for V if csb, and c 

solutions if c<b. In addition, eq. (4) has solutions Bi^O; there 
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are k-b such solutions if cab, and k-c solutions if c<b. 
B has m-b eigenvectors with zero eigenvalue. and ^ belong to them, 

but their total number may be smaller than m-b. In that case, there must 
also be eigenvectors V3 with BV3=0. How many of them there are, is shown 

in the scheme in section 3.4. The solutions for (if they exist) can be 
further specified by requiring VjWV^^I (consistent with V'WV=I and V^Wi^ 
I). But it will not be possible also to require that V3WV=0. 

3.4 Summary_of_sglutigns. The number of solutions of each type is summa¬ 
rized in the following scheme. Note that the numbers for Vg and add up 
to m-k, whereas for Vj, V2> and Vg they add up to m-b. 

cab c<b 

V b c 

% c~ _ c' _ 

V, m-k-c m-k-c 
V2 k-b k-c 
V3 c c+c-b 

Table 1 gives another summary. The table gives results for V^BVjatthe 
left. It is a diagonal matrix, except for V'BVg. In the middle one finds 
results for V!WV.. It is the unit matrix, except for V'WV,. At the right 
we find V!Vj. The question marks in the table indicate that values in the 
corresponding block can be anything. 

3-5 Profiles- Results in sections 3.2-3.4 are valid for any CADA, irre¬ 
spective of whether rows of X can be interpreted as profiles. When there 
is interest in profiles, eq. (6) becomes relevant. 

Table 1 
Results for product matrices VlBVj, VIWV^ , and VIV^ 

V T2 ? 0 0 0 
v0 ? n2 o o o 
V, 0 0 0 0 0 
V2 0 0 0 0 0 
V3 0 0 0 0 0 

1 0 0 0 ? 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 1 0 

? 0 0 0 I 

? 0 0 ? ? 

0 10 0? 

0 0 10 0 

? 0 0 ? 0 

? ? 0 0 ? 
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(i) It shows that M*S0Sq can be interpreted as a weighted sum of the 

profiles given in the rows of Sq, with rows of M*Sg as weights. 

(ii) It shows that rows of M*SS' can be interpreted as weighted sums of 

profiles given in the rows of V'W, with weights given in the rows of M*V. 

(iii) It shows that solutions are completely irrelevant (because the 

profiles in V^W are zero rows, and M*V^ has zero rows). 

(iv) Profiles V^W and V^W are irrelevant because the matrices of weights 

M*Vg and M*V3 are zero matrices. Nevertheless, such profiles might be of 

someinterest because they are the profiles in terms of which the g groups 

do not differ. In other words, if the researcher has a theory in which it 

is implied that these profiles discriminate between groups, such a theory 

finds no support in the data. 

3.6 Secgnd_aggrgach. The first approach has the property that solutions 

V do not obey eg. (2). In the second approach we want solutions V which 

satisfy eq. (2) (instead of eq. (7)) and which also obey V'BVq=0. 

Whereas the first approach is based on the decomposition of M* given in 

eq. (6), we now take a decomposition 

M*=M*+M* (9) 

In this equation, M* gives the (multiple) regression of columns of M* on 

those of M*Sq. The appropriate formula is 

M*=M*Sq (S' BS0)'1 (SgB) =M*S0[f (10) 

It follows that M2=M*-M* gives the deviations from regression. The mathe- 

tical basis of this solution is given in DeLeeuw (1982). The solution 

for V can be calculated on the basis of eq. (4), with the difference that 

B=M'M must be replaced by The equation thus becomes 

r_1S,B.Sr'1L=U2 
V (11) 

v=sr 'l 
o 

with b-c solutions for V, associated with the positive eigenvalues in y 

(c is defined as in section 3.2). In addition, eq. (11) allows for k-b+c 

solutions (with zero eigenvalue). There are no solutions V,. 

Profiles for M* are found from eq. (10), with rows of y SgB as the 

profiles, and rows of M*Sg as weights. Profiles for MJ are found in the 

rows of V'W, with weights M*V, in the same way as when W has full rank. 

4. Numerical example 

4.1 Intrgductign. The numerical example has been inspired by a study on 

color blindness. It is well-known that color blindness is manifest only 

in males, but is genetically carried by females (daughters of color blind 
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fathers). The deficiency is recessive in females, but may be dominant in 

males. It therefore is possible to find groups of women of who are known 

to be carriers (because they have color blind sons). It also is possible 

to find a group of women who are not carriers (because their fathers and 

grandfathers were not color blind). The purpose of the study was to find 

out whether such groups can be discriminated on the basis of their color 

sensitivity. Women who are carriers are not color blind, but they may have 

a slightly reduced sensitity to light of specific wave lengthes. In fact 

the study showed that discrimination between groups is possible, to some 

extent (DeVries-DeMol, 1977). 

The numerical example is not based on the empirical data; the example 

is an artificial one. There are two reasons for this choice. (1) It would 

require far too much detail to present the real data. (2) We prefer an 

example that is computationally easy to follow. 

4.2 Basic_data. The basic data are given in Table 2. In this example we 

have m=5 variables, g=4 groups, and 4 objects within each group (n=16).It 

still may help to think of this example as if the five variables refer to 

sensitivity to light at five different wave lengthes, ordered from blue to 

red. Group 1 then is imagined to be the "normal" group (no carriers),,and 

groups 2-4 represent groups of carriers of different type. Table 2 gives 

the 4x5 matrix of group means M*, the derived matrix B=4M*'M*, and the 

matrix W. 

Table 2 

Basic data for numerical example 

M* 

2 3 5 3 2 
1 2 0-3-5 

-6 -2-1 2 2 
3 -3 -4 -2 1 

B 

200 44 16 -60 -40 
44 104 116 20 -44 
16 116 168 84 16 

-60 20 84 104 92 
-40 -44 16 92 136 

W 

112 -35 -53 31 -55 
-35 110 23 -65 -33 
-53 23 70 -26 -14 

31 -65 -26 74 -14 
-55 -33 -14 -14 116 

4.3 QADA_resuHsi_first_aggrgach. In this example, it turns out that W is 

singular, with rank k=4, and one solution s which is of the type Sg = Vg. 

To simplify the example, the solution for ig has been constructed in such 

a way that all its elements are equal to 1//5 (satifying Sgig=1). This im¬ 

plies that rows of E should add up to zero. 

Table 3 shows the decomposition M*=M*SS'+M*SgSg. With our particular 

choice of Eg, M*Sgig is simply the matrix of row means of M* - as a con¬ 

sequence M*SS‘ becomes the matrix of deviations from row means. Moreover, 

it appears to happen that M*Sgig discriminates between group 1 (no carri- 
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Table 3 

Decomposition M*=M*SSi+M*SqSq 

M*S'S 

-1 0 2 0 -1 
2 3 1-2-4 
-5-1033 
4 -2 -3 -1 2 

3 3 3 3 3 
-1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 

Table 4 

CADA results 

V v. 
3 

M*V 

.0983 -.0157 -.0155 .0159 .0018 
-.0264 .0212 .0903 -.0218 .0990 

.0267 .0542 -.0988 -.0134 -.0923 
-.1041 .0057 .0349 .0620 .0453 

.0055 -.0655 -.0108 -.0427 .0127 

-.0504 .1896 -.1714 
.3303 .3369 .1147 

-.7609 -.1220 .0594 
.4810 -.4045 -.0027 

3.6875 1.3119 .1842 

ers) and all three other groups (carriers), so that the interpretation of 

this result is quite straightforward. Also, the corresponding s^Bsq is 

equal to 240, which seems quite large. 

Table 4 gives the usual CADA results. In this example there are b=g-1= 

=3 solutions for V, one (k-b) for ancl one (c=m-k) for v^. Because of 

the special choice of Sg, columns of V and v2 add up to zero (not so for 

Vj). Canonical group means are in M*V. Columns of M*V also add up to zero 

(not because of the choice of ig, but because columns of M* add up to 

zero). For each column M*Vj the squares add up to i)j?/4. The low value of 
2 1 1 

i(ig shows that this solution is negligible. The first column of M*V shows 

that the solution with v^ depends mainly on a contrast between the groups 

2 and 4, versus group 3. The solution v2 discriminates mainly between the 

groups 2 and 4. 

VgWV will, in general, not be a zero matrix. In this example, we find 

VgWV=(.0145 -.1535 .9881), which shows that Ev^ is highly correlated 

With Ev^. 

4.4 CADA_grofiles. Thus far, the CADA results tell little about profiles. 

E.g., looking at v^, one might be tempted to conclude that this solution 

is related to a sort of W-shaped pattern. This conclusion is not correct, 

as is shown in Table 5. This table gives the basic CADA profiles in the 

rows of V'W. Clearly, the first profile vljW is not W-shaped; rather it is 
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CADA profiles 
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6.985 .857 
V'W -1.597 5.920 

2.015 6.298 

v£W 7.523 -5.878 

vjW 2.338 5.326 

group 1 

-1.316 -3.714 -2.811 
5.883 -1.937 -8.270 
-4.775 -1.051 -2.487 

-3.295 7.440 -5.790 

-5.640 -.795 -1.229 

group 2 

.352 -.043 .066 .187 .142 

.303 1.122 1.115 -.367 -1.568 

.345 -1.079 .818 .180 .426 

2.307 .283 -.435 -1.227 -.928 
-.538 1.995 1.982 -.653 -2.786 
.231 .722 -.548 -.121 -.285 

-1.000 0.000 2.000 0.000 -1.000 2.000 3.000 1.000 -2.000 -4.000 

group 3 group 4 

-5.315 -.652 1.001 2.826 2.139 
.195 -.722 -.718 .236 1.009 
.121 .374 -.284 -.062 -.148 

3.359 .412 -.653 -1.786 -1.352 
.646 -2.395 -2.380 .784 3.345 

-.005 -.017 .013 .003 .007 

-5.000 -1.000 0.000 3.000 3.000 4.000 -2.000 -3.000 -1.000 2.000 

Figure 1 

CADA PROFILES FIRST APPROACH 

M*SS' -1st profile . 2nd profile 
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characterized by a strong decreasing trend. 

Table 5 further shows how each row of M*SS' can be decomposed as M*SS' 

=(M*V)(V'W). E.g., take the first group. "Weights" are given in the first 

row of M*V; they are (-.0504 .1896 -.1714). For group 1, Table 5 gives 

three rows. The first one is (-.0504)vjW, the second one is (.ISgejv^W, 

and the third (-.ITMjv^W. These three rows add up to the first row of 

M*SS'. 

Figure 1 shows the same results graphically (omitting results of third 

profile). The pictures show that the first CADA solution (which makes a 

contrast between group 3 versus groups 2 and 4) can be interpreted by the 

relatively increasing sensitivity (from left to right) in group 3, where¬ 

as groups 2 and 4 show a relatively decreasing sensitivity. The second 

CADA solution makes a contrast between groups 2 and 4: group 4 relatively 

has decreased sensitivity in the middle, and group 2 at the ends. 

Profiles v£W and v^W do not discriminate between groups, but could be 

relevant for differences between objects within groups. The large corre¬ 

lation vjWVj is reflected in the similarity between profiles v^W and v^W. 

Table 6 

Decomposition M*=M*+Mc| 

.U/ -I.UU “I.UU -.U/ 

r -.67 -1.00 -1.67 -1.00 -.67 
-.67 -1.00 -1.67 -1.00 -.67 

2.00 3.00 5.00 3.00 2.00 
-.67 -1.00 -1.67 -1.00 -.67 

-5!33 -l!00 !e7 3!00 2i67 Md 
3.66 -2.00 -2.33 -1.00 1.67 

0.00 0.00 0.00 0.00 0.00 
1.67 3.00 1.67 -2.00 -4.33 

Table 7 

CADA results, second approach 

V M*V 
,2 

.1011 -.0303 
-.0241 .0245 

.0319 .0271 
-.1014 .0020 

.0074 -.0072 

.0000 .0000 

.3204 .3988 
-.7786 -.0444 

.4582 -.3544 

3.6754 
1.1463 
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Profiles in second CADA solution 
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6.9290 .8960 -1.1474 -3.7381 -2.9396 
-1.3875- 6.8026 5.1010 -2.0117 -8.5044 

group 2 2.2200 .2871 -.3676 -1.1977 -.9418 
-.5333 2.7128 2.0342 -.8023 -3.3915 

group 3 -5.3950 -.6976 .8934 2.9105 2.2888 
.0617 -.3023 -.2267 .0894 .3779 

group 4 3.1750 .4106 -.5258 -1.7129 -1.3470 
.4916 -2.4106 -1.8075 .7129 3.0136 

FIGURE 2 

CADA PROFILES SECOND APPROACH 

4.5 Second_CADA_solution. The decomposition M*=M*+MJ is given in Table 6. 

The first row of MJ happens to be a zero row - the reason is that the last 

three elements of M*ig are equal. There are b-c=2 solutions V, listed in 

Table 7. (The second approach also allows for k-b+c=2 solutions V^, with 

Md^2=0' But ttlese solutions are the same as v2 and v3 of the first ap¬ 

proach.) Table 7 also gives the solution for M*V; this solution is quite 

similar to the first two columns of M*V in the first approach. 
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Basic CADA profiles for the second solution are given in the two rows 

of V'W, Table 8. The table also shows the decomposition M2=(M*V)(V'W) for 

the last three groups (group 1 is omitted, because all rows corresponding 

to the first group are zero rows). Figure 2 gives a graphical display of 

these results, in the same way as in Figure 1. "Substantive" conclusions 

remain the same as in the first approach, in this example (but one could 

construe examples where the two approaches give very different results). 

In the present example with c=1, so that M* has rank one, there is only 
-2- ^ one profile u SqB, proportional to the rows of M*, with proportionality 

coefficients given in the single vector M*Sg. 

5. Conclusions 

5.1 Profiles. The main purpose of this paper is to show how CADA results 

can be better understood when rows of the data matrix X have a meaningful 

interpretation in terms of profiles. Assuming that W has full rank m, and 

that B has rank b, there will be b solutions for canonical weights V. They 
2 

satisfy the equation BV=WVi' . Profiles are given in the rows VW. Rows of 

the g x m matrix of group means M* can be decomposed as M*=(M*V)(VW), 

where the canonical group means M*V are used as weights. 

5-2 W_has_deficient_rank_k<m. In this case there may be c solutions (with 

csb and csm-k) for Sg such that WSq=0 and BSgXO. Formally speaking, such 

solutions are perfect CADA solutions; in practice, however, they could be 

very trivial. 

^•3 Pr°fil®§-yt!§Q-y-t}l§_d§ficient_rank. Two possibilities are discussed. 

(a) M* is decomposed as M*=M*SS'+M*SgSg. Solutions V obey the equation 

SS'BV=WVf2. Profiles for M*SS' are found in V'W, with M*SS,=(M*v)(V'W). 

(b) M* is decomposed as M*=M*+MJ, where M* gives the (multiple) regression 

of columns of M* on columns M*Sg. Solutions V obey the equation BV=WV¥2. 

Profiles for are found in the rows of V'W, and can be decomposed as 

M*=(M*V)(V'W). 
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