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Confirmatory factor analysis is considered from a Bayesian viewpoint 

with prior information based on substantive theoretical knowledge. A 

reparameterized factor model is used for the parameters of which prior 

densities may be specified using an interactive computer program. The 

posterior density may then be optimized using an iterative algorithm to 

obtain Bayesian modal estimates. A numerical example from the literature 

is presented for illustrative purposes. 
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1. Jntn.oducJU.on 

In the past few decades, computational tools such as LISREL (Jdreskog 

& Sorbom, 1984) have become available which allow investigators to test 

hypotheses regarding the covariance structure of sets of variables. Within 

the context of factor analysis, this development has had the positive effect 

of allowing the emphasis to shift from exploratory to confirmatory studies, 

where substantive theory is given a formal role in the analysis. 

In this paper, we discuss two modifications of the standard approach 

(neither of which is novel, although the combination has not been previously 

considered) which are intended to further support the practice of 

confirmatory factor analysis. The first modification is a reparameter¬ 

ization of the usual model, with factor-variable correlations replacing 

raw factor regression weights as the primary description of the relations 

between factors and observable variables. The "structure vs pattern" issue 

is an old one in factor analysis (see, for instance, Harman, 1967), but 

it is our experience that investigators in the social sciences are more 

capable of expressing hypotheses about relationships in terms of correlations 

than in terms of regression coefficients. 

The second modification of the standard approach which we consider 

is the replacement of a sampling theory interpretation of statistical 

inference by a Bayesian one. (See Mayekawa, 1985, for a review of other 

Bayesian treatments of factor analysis.) An advantage of this approach for 

confirmatory analysis is that it replaces the sampling theory idea of 

hypothesis testing by that of hypothesis revision, based on Bayes' theorem. 

Thus substantive theory should provide the basis for a prior distribution 

of the parameters of the factor model. This prior is combined with sample 

information, resulting in a posterior distribution which can then be 

compared with the prior to see where the greatest changes have taken place. 

In section 2 the reparameterized factor model will be presented. Prior 

densities for the new parameters will be discussed in section 3, and in 

section 4 procedures for eliciting prior information will be described. 

The authors have written an interactive computer program, BAYFAC-I (Bayesian 

Factor Analysis-Interactive), which incorporates these procedures. In section 

5 the posterior density is given, for which the joint modal estimates will 

be regarded as providing Bayesian estimates. These may be obtained by means 

of an iterative program, BAYFAC-0 (Bayesian Factor Analysis-Optimization), 

written by the authors. An example is given in section 6. The present article 

ends with a discussion in section 7. 
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The basic factor model is 

x = Af + u + y , (1) 

where x is a random vector of p variables, A is a p*k matrix of factor 

loadings, f is a random vector of k common factors, u is a random vector 

of p unique factors an is a vector of means with p constant values. The 

usually stated assumptions are 

k+p (2) 

where <I> is a k*k positive definite factor correlation matrix and y a p*p 

diagonal matrix with positive unique variances. 

Then, defining E as A$A' + y, 

x • O) 

The relevant factor parameters are contained in the matrices A, ^ and 

The decomposition of E will now be considered. If (.Diag(Z))^ is defined 

as A, then I can be written as follows: 

l = AA-1 (A1>A' + 4')A'1A - A(A'1A<tA'A"1 + A"1,I,A‘1)A , (4) 

where the last matrix in parentheses is the p*p correlation matrix of the 

variables. Because Diag1 M\'A~1 + A'^A"1) = I and D'£ag(A"1Al>A,A‘1) 

and A~1TA"1 are positive definite, the diagonal elements of A‘1A<1>A'A'1 and 

A*1'fA_1 are between zero and one. The diagonal matrix A"1'1'A'1 will be denoted 
■k 

by y and refered to as the matrix with proportions unique variances. 

The correlations between the variables and factors can be expressed with 

the matrices A,A and $>. This can be seen as follows: 

CW(x,f)=ff((x - p)f') = + u)f') = E(Aff’) = A4> (5) 



where (2) is used. So the p*k matrix i'1A4' contains as its ij element 

the correlation between variable i(i=1,...,p) and factor j(j=1,...,k). 

If A_1A4i is denoted by !2, then (4) can be written as follows: 

e = acm"1!!’ + y*) a = ACnf'n' + I-Diag(nt"1S2'))A , 

because DiagiM'^U' + ¥*) = I. The covariance matrix E is now expressed 

in terms of the standard deviations of the variables (A), the variable- 

factor correlations (t!) and the factor-factor correlations ($). In the 

following section prior densities will be specified for the elements 

in A, £1 and 

3. Vhajok &pe.cA./yLe.d dzM-ctiiiM 

Arranging the diagonal elements 6^(i=1,...,p) of A in a p-dimensional 

random vector S, it is assumed that its prior density is the product 

of p inverse chi densities, i.e. 

p -(v.+1) V,c2. 
p(6)“ H 6. exp[-\ —5—] , 0 < S. < ” 

” i=1 1 6. 
1 

In (7) an respectively are the "scale factor" and the number of 

degrees of freedom, associated with 6^. The inverse chi distribution 

is the natural conjugate for the standard deviation in univariate normal 

Bayesian analysis (see, for instance, Novick & Jackson, 1974, p. 195). 

The prior modal value of 6^, say 6^, and are determined in BAYFAC-I, 

through which c^ can be obtained using the expression for 6^: 

6. 
i 

= c. (- lL)i .+r 

Arranging the elements of £1 row—wise in a pk—dimensional vector m 

and, similarly, the elements of the strict upper triangle of $ in a Jk(k-1) 

dimensional vector £ it is assumed, for reasons discussed below, that 

m AKy.Il) (a) and J 'V A!(|,Z) (b) , 

where II and Z are positive definite diagonal matrices. It is furthermore 

assumed that the distributions in (7) and (9) are independent. In BAYFAC-I 
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values are assigned to the parameters of the normal densities in (9). 

It should be noted with regard to (9b) that when an orthogonal model 

is assumed a priori, it is in fact supposed that all probability mass for 

the elements in <J> is fixed at zero values. It is then implicitly believed 

that sample information cannot weaken this situation. In this particular 

case the factor model is considered conditionally on $ = I, an option which 

is available in BAYFAC-I. 

Finally, for y the improper uniform density, assumed independent of 

(7) and (9) is used: 

p(y)a c , (10) 

where c is a constant (see Press, 1972, p. 71). Obviously it is possible that 

a user has knowledge regarding this parameter but, for reasons of computational 

and conceptual simplicity, this knowledge is not used for estimating the factor 

parameters. 

Independent normal priors have been chosen in (9) primarly as an aid to 

the researcher who must provide information about w and They clearly must 

be considered approximations to the "true" priors, given the restricted range 

of the correlation coefficient and the necessity of positive semidefinite 

correlation matrices. Regarding the first of these points, one might consider 

applying the standard Fisher-Z transformation to the elements of 0) and £ and 

assuming prior normality for the transformed values. While this is a line 

which the authors intend to pursue as part of a more general study of possible 

priors, the choice of working with untransformed correlations was made here 

with the goal in mind of keeping interpretational problems for the researcher 

to a minimum. The normal density is the most familiar one to many researchers 

and one whose two distributional parameters are conceptually meaningful. An 

obvious advantage of using a symmetric density is the equality of the mean, 

median and mode, eliminating an indeterminacy in the choice of which charac¬ 

teristic is the best representation of the prior beliefs. Moreover, it is 

often plausible that an investigator has some best value in mind for a corre¬ 

lation, around which a symmetric interval is constructed. 

The assumption of joint prior independence among all parameters has 

also been made primarily for practical reasons. First it is unreasonable to 

demand that an investigator, in addition to providing information about the 

marginal distributions of all parameters in the model under consideration, also 

describe all dependencies among these parameters. Second, in applying Bayes* 

theorem, the prior is combined with a likelihood function which will, among 

other things, introduce meaningful dependencies in the resulting posterior. 
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4. A6-5Z6-6mmt and coAAexitcon o{ the. ptiion in^omotion 

The program BAYFAC-I is developed to assist in the assessment of the 

relevant prior information with regard to the prior densities. The ultimate 

result will be an external file with the characteristics of these densities, 

which later can be linked to a file with sample data by using BAYFAOO, with 

which posterior estimates can be obtained. It should be emphasized that, as in 

all Bayesian analysis, the prior must be specified before the current sample 

data have been examined. Otherwise, the basic assumption of independence of 

prior and sample information will almost certainly be violated, and Bayes* 

theorem will no longer be appropiate for combining the two sources. 

The prior information will be of a more-or-less subjective nature, de¬ 

pending on the degree of knowledge and the kind of information which an investi¬ 

gator uses. The inexperienced user is the presupposed conversational partner 

in BAYFAC-I. A more experienced user or one who uses more-or-less objective 

information from previous analyses may skip parts of the interactive interro¬ 

gative sequence by entering the required information directly. The relevant 

prior information which is obtained by BAYFAC-I are values for 6^, (see 

section 4.1) and for the elements in w, <£, II and Z (see section 4.2). In the 

subsequent sections a concise description of the basic underlying reasoning 

will be given. 

4.1 VetoAmination of^ 6^. and w (?) 

To be able to give judgments about 6^, knowledge is necessary regarding 

the spread of the variable x^. Starting from assumption (3), the investigator 

is asked to imagine a normally distributed variable and is then requested to 

answer questions through which a prior modal estimate is obtained. 

Based on robustness considerations, a slight deviation from normality is 

acceptable in BAYFAC-I. However, if an investigator has variables for which a 

normal density is completely inappropriate, even as an approximation, this 

Bayesian Factor Analysis is not recommended. 

The following basic idea is relevant. Given the positive quantile z 

of the standard normal density associated with a fixed HDR-percentage, the 

interval length is 2z and the standard deviation 6 in a normal density with 

interval length £ is then 

So, if estimates are available of £ and of the HDR-percentage (translated to 
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a value of z), 6 can be calculated. 

In BAYFAC-I, this idea is used several times. The way in which modal estimates 

are obtained for <5^ is dependent on the kind of the variable in question: 

Type 1 variables are defined as scales with 9 or fewer (discrete) response 

categories (e.g. scores on test items in survey questionnaires). For this kind 

of variable the number of categories is the most informative quantity. 

Type 2 variables are defined as scales with more than 9 (discrete) response 

categories or which are continuous. In this case an investigator must 

be able to specify certain percentiles in the density. 

For type 1 variables, the interval length t is defined as being equal to 

the number of categories, assuming that these categories represent equidistant 

values on the scale with unit spacing. If the user has entered the number of 

categories, four symmetric histograms are displayed. These histograms 

are constructed from normal HDRs with varying percentages (and thus standard 

deviations). A high percentage (e.g. 99.68, so z = 2.95) delivers a highly 

peaked histogram with a small standard deviation (0.17^). A low percentage 

(e.g. 88.18, so z = 1.56) delivers a flat distribution with a larger standard 

deviation (0.32Z). Studying these histograms and confronting them with 

the user's prior expectations about the spread of the variable can give 

an idea about the value of the modal estimate of 6. 

On request four non-normal histograms will be shown, together with their 

standard deviations (Two histograms with a different degree of skewness, 

one rectangular histogram and one bimodal histogram). This option is in 

conflict with the normality demand but it is assumed that a slight deviation 

from normality will not seriously disturb the final results. Default modal 

estimates, based on pragmatic choices, are available. As an option, the 

investigator may directly enter a value for <5^. 

It is assumed that for type 2 variables the user should be able 

to specify some percentiles in the normal density of the variable in question. 

By such a specification a user provides information about a value for f 

(the difference between two percentiles) and thus an estimate can be obtained 

of 6 using (11). If a user is able and willing to specify more percentiles, 

more estimates of 6 will be the result. Finally the user chooses a specific 

value for 6 which maximally fits his/her prior beliefs. 

After a modal estimate 6. has been obtained,a value for v. must 
i * i 

be established. This number of degrees of freedom can be seen as a measure 

of certainty of the user about the value of the population standard deviation. 

The user is asked to express his/her (un)certainty about 6^ by entering 

a lower point 6^ and an upper point 6^ of likely values around 6^. The 
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two bounds are considered to be the limits of a 95% HDR in the inverse 

chi density of 6^. Together with 6^ two inverse chi densities are fit, 

one based on 6». and 6., the second based on 6 and 6.. For both densities 
-t- i wi 1 

the number of degrees of freedom is computed by means of an approximation 

procedure in BAYFAC-I. The mean of the two calculated values for the degrees 

of freedom is shown to the user, as well as the associated 95% HDR around 

6^. The user may accept this interval and thus or may choose a new 

interval if the proposed one deviates too much from prior expectations. 

A default value of = 12 together with the corresponding 95% interval 

is also shown. The final result will be a value for v.. From 6. and v. 
1 ii, 

c^ is computed by using (8), and (7) is completely specified. 

4.2 VeAeArriLncuLLcm w, $ and IT, l in (9) 

An interval of likely values for a population correlation coefficient 

is obtained in BAYFAC-I by requesting to enter a lower (p^) and an upper 

(o ) bound. From the boundary points, the mode and variance in each normal 
u 

density are determined by considering the interval as a 95% HDR. The mode 

of the prior density for the population correlation is fitted by 

and the standard deviation by 

a 
P 

PK ~ Pl 

3.92 
03) 

where relation (11) is again recognized. In (12) and (13) p may either 

be an element from a) or from <£. 

After specification and personal correction of the densities in (9), 

it should be ideally true that p($) is such that the probability of a negative 

smallest eigenvalue of the corresponding ^-matrix is zero and that p($) and 

p(uO are such that the probability of a proportion unique variance outside 

(0 , 1) is zero. By means of Monte Carlo procedures which are implemented in 

BAYFAC-I an attempt is made to approach these ideals, recognizing that exactly 

zero probabilities are not possible as a consequence of using normal densities. 

The procedure will now be briefly outlined. 

In order to examine the probability of a negative smallest eigenvalue 
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of $ in the density a random sample of (^-vectors is drawn (based on 

p(<J>)) and the smallest eigenvalue (say Cj) of each corresponding ^-matrix is 

computed. If there is an indication that the probability of an inadmissible 

4>-matrix is not negligible, a new density p(4>) is constructed. To adjust the 

density, two groups of (^-vectors are formed, one with the smallest ^-values, 

and the other with the greatest “values. The mean 4>-vectors of the groups 

are compared element by element. The modal value for an element will be ad¬ 

justed if its mean in one subgroup deviates considerably from its mean in the 

other. The standard deviations of these elements remain unchanged. 

Say that n modal values are adjusted. The direction of the change is 

toward the mean of the subgroup with the greatest “values. The magnitude 

of the change is positively related to the observed proportion of inadmis¬ 

sible ^-matrices in the sample and to the difference between the two 

subgroup means, and negatively related to the magnitude of n. 

After the adjustments, the n new modal estimates are presented to the 

user if the indications are that the probability of an inadmissible ^-matrix 

is negligible. (Otherwise the estimates are further adjusted.) The user may 

accept the new values or make new adjustments. Obviously the ultimate result 

must be a density with an indicated low probability of an inadmissible $>- 

matrix. Experience has shown that extreme values of the modes and standard 

deviations for the elements in £ are likely to produce a non-negligible 

proportion of inadmissible ^-matrices. In particular, the combination of 

extreme high and low values for the modes of different elements of <|> is apt 

to cause difficulties. 

To check the admissibility of the marginal densities of the diagonal 

elements of ¥ (the proportions unique variance), a similar procedure is 

followed. A random sample of admissible ^-vectors is combined with a random 

sample of vectors of one row in ft. (Each row corresponds to one variable and 
* 

thus to one diagonal element in ¥ .) This results in a set of sampled values 

for the proportion unique variance of a variable. If there is an indication 

of a non-negligible probability of an improper value, an adjustment proce¬ 

dure is applied, resulting in one or more adapted modal estimates of the 

correlations in the given row of ft. The procedure is repeated for every row 

of ft, the results are checked, and the user is given the opportunity to make 

further adjustments, which are also checked. Again the experience is that 

extreme values for the modes and standard deviations of the elements in a) 

are likely to produce improper sampled proportions unique variances. 
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5. The poAte/Uosi denAAXy 

The joint posterior density of all parameters in the factor analysis 

model is proportional to the product of the likelihood and the prior density 

p(6 ,a),<{> ,ij) . Knowing that x is distributed according to (3), the likelihood 

function for a random sample of N vectors x^(i=1,...,N) with sample mean 
_1 N 

x and sample dispersion matrix S, defined as N_1Z (x^x! - Nxx') is then 

as follows: 

-iN -*N 
2tt |Z| arpt-iNtrCSl"1 + Z’^x - H)(x - p)1)] . (14) 

Then the posterior distribution is given as 

p(6,a),$,iJ | S,x)« | S,x)p(<S,ti>t<£,y) , (15) 

where 

p -(Vj+1) 
p(6,u3,i,ij)“ IT 6. expl~i-] 

i=1 6? 
1 

* exp[-^tr (TI-1 (a) - w) (oi - w) ’ ) ] 

* exp[-htr(Z~l(^ - ^)(£ - i)')] . (16) 

In BAYFAC-0, the file created by BAYFAC-I, with all relevant prior estimates, 

is linked with a file containing the sample information. 

Due to the intractability of the posterior density, derivation of 

interesting distributional characteristics (e.g. the posterior standard 

deviations) is too complex a matter. For a large number of observations the 

posterior density can be approximated by a multivariate normal distribution 

with mean vector equal to the vector with the generalized maximum likelihood 

estimators (the largest joint posterior mode) and covariance matrix equal to 

a generalization of the observed Fisher Information matrix evaluated at these 

generalized maximum likelihood estimators (Berger, 1985). However, large 

sample reasoning logically implies a minor attributed importance to the prior 

distribution which is not generally satisfactory to the present authors. 

Joint modal Bayesian estimates can however be obtained by employing an opti¬ 

mization routine. The optimization of (15) is performed by means of a quasi 
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Newton algorithm from the NAG-1ibrary. Computational details are considered 

in Euverman & Vermulst (1983). 

If the optimization is successful, posterior modal estimates of A, 

and say A, and are obtained. By using these estimates, estimates of 

A, y and can also be obtained. The estimates A, £1 and <1> are unique, i.e. 

any rotation will destroy the validity of the prior density. The estimate A 

is necessarily positive definite as a consequence of the definition of the 

inverse chi density used in the prior. Optimization of (15) should be per¬ 

formed such that the elements 6^ are restricted to the admissible parameter 

space. In the algorithm this is solved by restarting the optimization with a 

smaller stepsize in the iterations, if the standard stepsize would produce 

a negative value for 6^. The estimate $ necessarily is non-singular, but it 

need not be positive definite. However, having defined a sound prior density 

p(<j>), this is not likely to be a problem. The estimate £1 should be well 

interpretable, i.e. having values between -1 and +1. The corresponding 

estimate Z is likely to be positive definite. Eigenvalues of $ and E are 

printed in BAYFAC-O. 

6. Num&uLccit txamplz 

It is rather difficult to use an example from the literature in the 

present Bayesian context, as the question of whose prior information 

should be used wil necessarily arise. The authors have used an existing 

example: The Wechsler Preschool and Primary Scale of Intelligence (WPPSI) 

One of the authors has studied extensively the manual of the WPPSI to make 

himself familiar with the construction and meaning of the scale in order 

to collect sufficient prior knowledge regarding a factor analysis. The WPPSI 

is a scale designed in the USA consisting "of a battery of subtests, each of 

which when treated separately may be considered as measuring a different 

ability, and when combined into a composite score as a measure of overall or 

global intellectual capacity" (see Wechsler, 1967, pp. 1-2). The subtests 

are split up into a verbal and a performance cluster in the following way: 

I 

Verbal 

1 Information 

2 Vocabulary 

3 Similarities 

4 Comprehension 

5 Arithmetic 

II 

Performance 

6 Animal House 

7 Picture Completion 

8 Mazes 

9 Geometric Design 

10 Block Design 



30 

A supplementary 11 subtest Sentences is usually excluded from the battery. 

The prior information, which is primarily based on substantive considerations 

in the WPPSI-manual is used to analyze the results of the investigation of 

Yule, Berger, Butter, Newham and Tizard (1969). 

It is important that the prior data are independent of the sample 

results. The design of Yule et al. is taken into account in specifying the 

prior information, which is set up with regard to children aged 5$. 

The prior values for 6^ and are developed from the following infor¬ 

mation. In the Wechsler manual the raw scores are converted to scores with a 

mean of 10 and a standard deviation of 3. In additional samples described in 

the manual it was found that the standard deviation was generally below 3, 

probably due to the fact that the scaling procedure of the WPPSI is based on 

an extensively stratified sample, whereas the additional samples were less 

diversified. This is also true for the sample of Yule et al. The 6^*s were 

entered directly in BAYFAC-I without using the interrogative question 

procedures. In an intd/ractive way the were determined. The results are 

given in Table 1. 

The prior choices for co, <J) and II, Z are based on the following 

considerations. Basic to the definition of the two clusters in the diagram 

of the preceeding page is the rough distinction in the kind of answers 

expected from the children and the tangibility of the materials involved, the 

latter typically regarded as indicative for performance tests. However the 

particular performance tests do require a certain level of verbal compre¬ 

hension, i.e. the two clusters or factors cannot be regarded as uncorrelated. 

In subtests of both kinds, counting activities are involved. The mentioned 

distinction is thus not clearcut. A kind of numerical factor may then be 

defined but it should be possible to place this factor into the two-dimen¬ 

sional space spanned by the factors Verbal and Performance. It will generally 

be more determined by performance activities than by verbal comprehension. 

With this in mind, prior intervals for the elements of ft were entered in 

BAYFAC-I, and are shown in Table 1. It can be seen that the correlations for 

Information, Arithmetic and Picture Completion are less discriminating 

between the two factors than the others. The test Information consists of 

expected verbal answers, but in a number of the questions counting activities 

are involved as well. 

Arithmetic as a whole is a counting test and in some of the answers 

performance activities are required of the child. Picture Completion requires 

short verbal answers together with the use of concrete pictures. The values 

assigned to the distributional parameters in the prior densities were such 

that no correction procedures were necessary in BAYFAC-I. 



31 

Table 1. The prior information for WPPSI 

1. Information 

2. Vocabulary 

3. Similarities 

4. Comprehension 

5. Arithmetic 

6. Animal House 

7. Picture Completion 

8. Mazes 

9. Geometric Design 

10. Block design 

6. 

2.7 

2.9 

2.8 

2.6 

2.6 

2.8 

2.8 

2.8 

2.6 

2.8 

v. 
i 

61 

35 

45 

44 

44 

66 

66 

66 

44 

66 

correlation intervals 

Verbal Perfor- Verbal x 
_mance Performance 

.60 .90 

.60 .90 

.60 .90 

.60 .90 

".20"~~60 

.20 .60 

.30 .70 

.20 .60 

.20 .60 

.20 .60 

.30 .70 

.20 .60 

.20 .60 

.20 .60 

TIo-Tto 

.60 .90 

.60 .90 

.60 .90 

.60 .90 

.60 .90 

.30 .70 

The sample correlation matrix and standard deviations for these ten 

tests based on 150 observations of Yule et al. (1969) and the prior estimates 

are the input for BAYFAC-0, where the corresponding posterior density (15) is 

maximized to obtain posterior modal estimates of the elements in 6, us, and ^ 

(see Tables 2 and 3). 

The absolute average discrepancy (AD) between the prior modal and sample 

standard deviations is equal to .223, between the prior and posterior modal 

values equal to .173, and between the sample and posterior values equal to 

.062, a rough indication that, regarding these standard deviations, the sample 

relatively had a larger weight in determining the posterior estimates. It 

should be noted that the posterior modal standard deviations of Mazes and 

Geometric Design are not between the prior modal and sample standard 

deviations. 

By inspecting the prior and posterior agreement in the modal values 

of the elements in f) in Table 3 it can be quickly seen that there is a high 

degree of comparability. Tucker's coefficient of congruence (T ), being an 
c 

overall measure of proportionality (equality of factor interpretation), and 

AD-values are shown in Table 3. 

Similarities shows a drop of .11 in the correlation with the verbal 

factor. A possible explanation for this observation is that this subtest has 

10 questions in which concrete applications of familiar oblects are described. 

Striking is also the rise of .20 in the correlation of Arithmetic with the 
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verbal factor. Arithmetic perhaps requires more verbal comprehension than 

was expected a priori. The drop of .12 in the correlation of Animal House 

with Performance is hard to explain. The subtest requires color association, 

perhaps being less a performance act than was expected initially. The 

relatively high proportions unique variance in Table 2 may be an indication 

of the restricted value of the two-factor solution for this variable. The 

drop in the correlation between Geometric Design and Performance is such that 

it does not lie in the interval specified a priori (indicated with * in 

Table 3). A possible explanation is found in Yule et al. (1969): "The 

values for Geometric Design are almost considerably lower. Since this was 

the test which departed most from the American mean and since its scoring 

involves a great deal of judgment, it is possible that the scoring is highly 

unreliable and that the marks have been too lenient" (p.10). In Table 2 it 

is shown that the proportion unique variance for Geometric Design is high, 

indicating that this variable can hardly to be assumed to be explained by 

the two common factors. 

It may be interesting to compare the posterior results with other 

factor analyses performed on the WPPSI scale. 

In Table 4 results are printed of a factor analysis performed by Hollenbeck 

and Kaufman (1973). This analysis was conducted on the original Wechsler 

sample. Hollenbeck and Kaufman performed a principal factor analysis followed 

by a Biquartimin (oblique)rotation. The similarity of the structure is self- 

evident regarding the factor Verbal, but for the factor Performance the 

relatively high correlation with Information should be noted, perhaps due 

to the difference between the English and American samples. Hollenbeck and 

Kaufman conclude that the WPPSI scale can be regarded as separable into 

two distinct factors, thereby noticing that the subtest Arithmetic is an 

exception.They note:"This dual loading may have resulted from the fact that 

the Arithmetic test is the only test on the Verbal Scale that uses tangible 

materials (blocs, card with pictures) and the only one that has items requiring 

the child to 'perform' -i.e., count or point to the right picture - rather 

than to 'verbalize'" (p.44). 

As a general conclusion it is stated that interpretable results were 

obtained by the Bayesian approach in accordance with results found in the 

literature, and the rotational problem has been avoided by using an inter¬ 

pretable prior specification. Prior thinking about correlation coefficients 

furthermore facilitates the interpretation of the factor structure a 

posteriori. 
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Table 2. Results for the standard deviations and the proportions unique 
variances 

1. Information 

2. Vocabulary 

3. Similarities 

4. Comprehension 

5. Arithmetic 

6. Animal House 

7. Picture Completion 

8. Mazes 

9. Geometric Design 

10. Block Design 

standard deviations prop, unique variances 

prior sample posterior 

«i si 5i 

prior posterior 

2.70 

2.90 

2.80 

2.60 

2.60 

2.80 

2.80 

2.80 

2.60 

2.80 

2.98 

3.15 

2.40 

2.51 

2.66 

2.63 

2.62 

2.68 

3.08 

2.54 

2.93 

3.11 

2.52 

2.52 

2.64 

2.74 

2.72 

2.91 

3.09 

2.65 

.42 

.44 

.44 

.44 

.72 

.44 

.42 

.44 

.44 

.44 

.40 

.38 

.57 

.41 

.53 

.60 

.47 

.44 

.66 

.30 

Table 3. Results for the correlation structure and factor intercorrelation 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Information 

Vocabulary 

Similarities 

Comprehension 

Arithmetic 

Animal House 

Picture Completion 

Mazes 

Geometric Design 

Block Design 

C 

AV .056 .071 

* = Posterior mode falling outside the interval given a priori 
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able 4. Posterior Structure and the Corresponding One of Hollenbeck and 
Kaufman _ 

1. Information 

2. Vocabulary 

3. Similarities 

4. Comprehension 

5. Arithmetic 

6. Animal House 

7. Picture Completion 

8. Mazes 

9. Geometric Design 

10. Block Design 

T 
c 
AP 

Correlation-structure 

verbal performance 

post. H&K post. H&K 

.44 .56 

.46 .48 

.44 .32 

.45 .49 

.39 .46 

.48 ,51 

.35 .47 

.36 .47 

.47 .51 

.58 .64 

.63 .64 

.71 .60 

.75 .65 

.57 .75 

.83 .74 

.77 .78 

.78 .72 

.64 .63 

.76 .76 

.60 .71 

verbal x performance 

post. H&K_ 

.47 .57 

.994 .9$? 

.107 .OSS 

7. VtAcu&A'ion 

The present Bayesian approach is different from previous ones (e.g. Lee, 

1981 ) in the sense that the assignment of values to distributional parameters 

of the prior densities is performed within a substantive theoretical framework. 

The authors do not claim that a Bayesian approach as such is always preferable 

to, for instance, a maximum likelihood treatment of the confirmatory factor 

analysis problem. Bayesian results such as those presented here should 

be carefully interpreted if one is used to thinking in the classical statistical 

way. It is always true that the posterior results are influenced by the 

prior specifications. In reporting Bayesian investigations a researcher should 

be conscientious in reporting the lines of reasoning used in specifying 

the prior information. It is possible to create posterior results such that 

the prior beliefs are confirmed, for example, by using a small sample size. 

Generalizing propositions based on posterior results should in fact lead 

to new investigations where prediction and testing is possible. 

However as is well known, in factor analysis interpretational problems 

are often encountered. A Bayesian approach is useful in avoiding rotational 

indeterminacy or negative variance estimates by using prior densities which 

are supported theoretically. Compared to the maximum likelihood treatment 

of confirmatory factor analysis in which prior values are assigned to certain 
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factor parameters, a Bayesian approach is more flexible in that prior densities 

are incorporated. 

In conclusion, it may be noted that the authors are currently working 

on a revised form of the joint prior described in section 3 which is intended 

to provide meaningful dependencies among the parameters, thus replacing the 

assumption of prior independence now made in BAYFAC—I. The approach which is 

adopted stems from work by, for instance, Steiger (1980) on normal approxi¬ 

mations to the sampling distribution of the sample correlation matrix, and 

has the advantage that the covariances among parameters can be written in terms 

of the modal values for the parameters, thus avoiding the necessity for 

additional specifications by the researcher. 
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