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LONGITUDINAL FACTOR SCORE ESTIMATION 

USING THE KALMAN FILTER 

Johan H. Oud , John H. van den Bercken , Raymond J. Essers 

Abstract 

We expound the advantages of the Kalman filter as a factor score estimator 

in the presence of longitudinal data. Since the Kalman filter presupposes the 

availability of a dynamic state space model, first the state space model is 

reviewed. We show it to be translatable into the LISREL model. Several exten¬ 

sions of the LISREL model specification are discussed in order to enhance the 

applicability of the Kalman filter for behavioral research data. Next, we deal 

with the Kalman filter and three of its main properties in detail. The relat¬ 

ionships are shown between the Kalman filter and two well-known cross-sectio¬ 

nal factor score estimators: the regression estimator and the Bartlett estima¬ 

tor. The Bartlett estimator is recommended to be used as initial estimator in 

the Kalman filtering process. Finally, a worked-out educational research exam¬ 

ple is presented. 
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1. Introduction 

Over the past few decades, research methodology texts in the behavioral 

sciences have increasingly stressed the need for longitudinal research (Cole¬ 

man, 1968; Harris, 1963; Nesselroade & Baltes, 1979). Because of cross-sectio¬ 

nal biases, however, the available analytic procedures are often found to be 

unsuitable for analysis of longitudinal data. One example is the simple t-test 

applied to test the level change in interrupted time series. The procedure has 

already been indicated as being inadequate by Campbell and Stanley (1963, pp. 

212-213). Correct tests of the level change that account for the time structu¬ 

re of the data could be developed afterwards using the Box-Jenkins approach 

(Box & Tiao, 1965; Glass, Willson & Gottman, 1975) and multivariate analysis 

of variance (Algina & Swaminathan, 1977, 1979; Oud, 1981). 

Factor analysis constitutes another example. Typically designed to handle 

cross-sectional data (e.g., a set of test scores taken from different persons 

at a single point in time), conventional factor analytic procedures are unfit 

to account for and take advantage of the dynamic nature of longitudinal data. 

In particular, widely used factor score estimators as, for example, the regres¬ 

sion estimator and the Bartlett estimator (Lawley & Maxwell, 1971) yield re¬ 

sults that are inefficient when applied to longitudinal data. 

The aim of the present study is to demonstrate how longitudinal factor sco¬ 

re estimation can profit by an important result of modern control theory, the 

Kalman filter (Gelb, 1982; Jazwinski, 1970; Kalman, 1960; Kalman & Bucy, 1961; 

Kwakernaak & Sivan, 1972). Assuming an appropriate dynamic state space model, 

the changing factor scores over time, called states in control theory, are op¬ 

timally estimated by the Kalman filter. Because of its central role in Kalman 

filtering, we first shortly review the state space model. We show it to be 

translatable into the well-known LISREL model as has been explained by Oud 

(1978) . The state space model is thus made estimable for behavioral science 

data by means of the LISREL program (Joreskog & Sorbom, 1981). Next, we deal 

with the Kalman filter and its properties in more detail. Finally, a worked-out 

educational research example is presented to demonstrate the use of the Kalman 

filter in practice and to compare the results with traditional factor score es¬ 

timation. The analysis of the example is carried out by the LISKAL program,^ 

computing Kalman filter and Bartlett estimates of the factor scores on the ba¬ 

sis of LISREL program output. 

^The LISKAL program is written in IBM-FORTRAN-77. A free listing and a copy on 
tape at a cost of $40 can be obtained from the first author. 
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2. State Space Model and LISREL Methodology 

A state space model for a linear stochastic dynamical system consists of 

two parts: a dynamic state equation 

xt = Vixt-1 + V1V1 + Wt-1 ' (1) 

and a static read-out or output equation 

yt = ctxt + vt (2) 

The state equation describes the memory of the system: how much information 

at each time point is passed to the next state, by the previous state, 

Xt-1' and h°W much information is added by the input, ufc ^, from outside. The 

static read-out equation describes the instantaneous connections between the 

observable output, yfc, and the latent state, x^. It is equivalent to the model 

equation of factor analysis: Matrix C^_ is the factor pattern matrix with fac¬ 

tor loadings as elements. In a more general form of the read-out equation, in¬ 

stantaneous input-output effects D^u^, not involving the state, are added to 

the instantaneous state-output effects C^x^. Presently, however, our treatment 

will be confined to systems without D^u^. as well as to deterministic input u^. 

In the next section, both restrictions will be relaxed. 

The following assumptions are made concerning the successive process error 

vectors w^_ with covariance matrices and the successive measurement error 

vectors v^_ with covariance matrices R^: (a) zero expectations, (b) zero covar¬ 

iances between vectors (covariances within vectors are given by and , 

and (c) zero covariances with initial state xfc . From (a), (b), and (c) one 

derives that w^, and v^_, are uncorrelated with^states x^_ for t'^ t. The as¬ 

sumptions are used not only in Kalman filtering but also in maximum likelihood 

estimation of the parameters of the state space model, to be performed by the 

LISREL program. The maximum likelihood method proceeds under the additional 

assumption of joint multinormality of the vectors w , v , and x . The impor- 
t t t^ 

tance of the normality assumption must not be exaggerated, however. The maximum 

likelihood fitting function may be used profitably to compute parameter estima¬ 

tes even if the distributions deviate moderately from normality (Boomsma, 1983; 

Joreskog & Sorbom, 1981, p. 1.29). In Kalman filtering, normality is desirable 

but the results are optimal in a well-defined sense also without the normality 

assumption (Kwakernaak & Sivan, 1972, pp. 528-531), 

A precise mathematical definition of the concept of state in the stochastic 

case is given by Kwakernaak (1975, p. 69-70). The definition makes use of pro- 
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bability distributions but again no normality assumption is needed. For the 

purpose of the present paper, it suffices that the state contains at every 

time point all information of the past of the system that is relevant for the 

present and the future. Knowledge of the state allows one to disregard the 

whole past of the system. This is exemplified by the Kalman filter: Optimal 

estimation of the latent state requires no information about the system's 

past prior to t-1, except for an optimal estimation of xt_j• 

Postponing a detailed exposition of the way the Kalman filter combines past 

and present information, we now explain the fitting in of the state space model 

with LISREL methodology for estimating its parameters. Instead of the general 

LISREL model, comprising three equations and eight parameter matrices, we will 

use special case 4 (Jdreskog & Sorbom, 1981, pp. I.11) with two equations: 

n = pi + c, <3) 

y = Ati + e, (4) 

in four vectors: T] (vector of latent variables) , y (vector of observed varia¬ 

bles) , C (vector of structural equation errors), e (vector of measurement 

equation errors), and four parameter matrices: p (structural equation matrix, 

to be distinguished from B in Equation 1), A (measurement equation matrix), 

'F (covariance matrix of O, 0 (covariance matrix of £). Somewhat paradoxically, 

the special case is more flexible than the general model: Although the state 

space model presented above could be formulated within the general model, it 

is only by means of the special case that several of the extensions discussed 

in the next section become possible. 

In its general form, the longitudinal data matrix to be used for model esti¬ 

mation is of order N by pT: N subjects with data on p variables for each of T 

time points. The pT observed variables are specified in vector y of the LISREL 

model, first the mT input-variables, followed by rT output-variables: p = m + r. 

In vector n* qT variables are specified, starting again with the mT input-varia¬ 

bles and continuing with nT state variables: q = m + n. Although, especially in 

behavioral science, the number of latent state-variables is often smaller than 

the number of observed output-variables: n < r, state space models may have al¬ 

so: n > r. In Table 1 the four vectors and four matrices of the LISREL model 

are shown for the case T = 3, but they are readily extendable for cases T > 3. 

E in ¥ is the covariance matrix of the predetermined variables in the vectors 

, ut +1' ut +2' and xt * Since the inPut-variat)les are specified as observed 
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and deterministic, they have, in fact, to be considered fixed. Nevertheless, 

treating them as random in the LISREL program's special or general model yields 

the same results as in the fixed case (Joreskog & Sorbom, 1981, p. 1.30). 

Table 1. LISREL model specification of state space model (T - 3) 

V1 

V2 

V1 

V2 V1 

0 0 

0 0 

0 0 

0 ° A 
V1 

"o'1 

lv2 

"o'1 V1 

"o'1 

V2 

'"o'1 

V2 

y 

o o 

o o 

o o 

o o 

o oto c 

o oVl c 

A 

"o'2 
"o'1 
V2 

V 
0 0 0 R 

"o'2 

It should be noted that the inclusion of input-variables is not compulsory. In 

some longitudinal factor analytic studies, one is only interested in the devel¬ 

opment of the latent variables over time without consideration of possible 

causal influences exerted on them. The input parts of the vectors and matrices 

in Table 1 may then be skipped. The implied inputless state space model, having 

= 0 in Equation 1, is called autonomous. In other cases, constant input- 

variables are used (e.g., sex and socioeconomic status). It is easily seen that 

these need only inclusion in u^ : They may still be taken to influence the sta- 

tes x+- J.O' X4- etc. after x ^ by choosing nonzero parameters on the appro- 
. 0 f Z0 t0 1 

pnate places in p of Table 1. This treatment of constant input-variables has 

been previously suggested by Joreskog (1978) for background variables. 

To obtain an identified model, besides the parameters already fixed at 0 in 

Table 1, one mostly has to fix additional parameters (at 0 or some different a 

priori known value) or to specify equality constraints between parameters (e.g. 

between corresponding parameters at different time points). A necessary condi- 
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tion for identification requires the number of unknown parameters (total num¬ 

ber of distinct parameters minus the number of fixed ones and the number of 

constraints) not to exceed ^pTfpT + 1). Unfortunately, no general and practi¬ 

cally useful necessary and sufficient condition for identification is availa- 

ble t For the particular model, however, the LXSREL program performs a nearly 

fully reliable check on the identification of each unknown parameter (Jores- 

kog & Sdrbom, 1981, p. 1.24). Assuming a fully identified model and proper 

data, the LISREL program gives maximum likelihood estimates of all parameters 

left free in the model. The resulting estimates of the successive matrices At> 

B , C , Q , and R are entered into the Kalman filter. 
t t *t t 

3. Extensions of the LISREL model specification 

The purpose of the extensions in this section is to enhance the accessibi¬ 

lity of the state space model and, hence, of the Kalman filter for behavioral 

research data. Although the first extension is encountered mainly in systems 

and control theory, it is potentially useful in behavioral science. The other 

extensions are directly geared to behavioral research practice. 

Instantaneous input-output effects 

By adding instantaneous input-output effects D^_u^ to Equation 2, leading to 

the more general read-out equation yfc = Cfcxt + Dtut + vt < one passes from a 

strongly causal system to a weakly causal one. In a strongly causal system, 

"the output lags, at least infinitesimally, the input" (Willems, 1975, p.26). 

Even if it is assumed that in reality causal processes always take some time 

and are, in fact, strongly causal, the inclusion of “ay lead to a more 

precise model. One example is the case of temporal measurement inaccuracies. 

Measurements y^ and u^ refer to specific points in time t, even when they, in 

fact, are measured over longer periods (e.g., income measured as a sum or ave¬ 

rage over one year periods), Whenever the measurement period overlaps with the 

time required for the causal processes between input and output, a term Dtut 

should be included in the read-out equation. Due to the special LISREL model, 

however, the inclusion and estimation of matrices are easily carried out 

(see Table 2). 

Instantaneous intra-state effects 

The specification of instantaneous intra-state effects on x^_ simulta¬ 

neously with effects of xfc ^ and ut_1 on xt: 
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V = Ktxt + At-lxt-l + Bt-lut-l + wt-l (5) 

defines a structural equation model. This model is widely used in econometrics 

and behavioral science (Joreskog, 1977? Heise, 1975; Theil, 1971). Depending 

on whether can be chosen as a subdiagonal matrix or not, the model is called 

recursive or interdependent. Premultiplying both sides by Mt = (I - K^; 
-1 

whe¬ 

re matrix I - is assumed nonsingular. Equation 5 reduces to Equation 1: 

Vi ■ Vt-1' Vi Wt-1 = Vt-1' 2t-i = Vt-1M; 
A structural equation model thus defines a state equation indirectly. One 

could estimate the matrices Bt“l, anC^ ^t-l' are required in Kalman 

filtering, directly from the state equation, thereby skipping the structural 

equation model. It has been argued, however, that first estimating the matrices 

of Equation 5 and then deriving estimates of At_i, Bt ^, and Qt ^ in the manner 

shown gives more efficient estimates (Johnston, 1972, pp. 400-404). Maximum li~ 

kelihood estimates of the matrices Kt, At_1, , and Qt_1 can be obtained by 

including them in the LISREL model as indicated in Table 2. 

Instantaneous and lagged input-state effects 

Instantaneous input-state effects, that is, effects from u^ instead of ut ^ 

on x^ do not need any changes in Table 1. It is possible to cope with them 

simply by filling in for u , u , ... input-variables which are, in fact, 
^o to+1 

one time point ahead (time anticipating input-variables). Not only time-anti¬ 

cipating but also time-lagged input-variables (one or more time points behind 

the nominal time point) can easily be inserted. When using time-anticipating 

input-variables, caution is required that only zero coefficients are assigned 

to them in the matrices D , D , ... of a weakly causal system; nonzero co- 
to to 1 

efficients would imply the present to be influenced by the future. 

Instantaneous input-state effects are as popular in econometrics and beha¬ 

vioral science as instantaneous intra-state effects. Theil (1971, p. 463), for 

instance,gives an example with input-variables (called exogenous variables in 

econometrics) appearing in both anticipating and nonanticipating form in the 

same model. Models with differently lagged input-variables get considerable 

attention in econometrics too. 

Latent inputs 

Up to now, the input has been assumed to be observed and deterministic. In 

many behavioral science models, however, not only the state but also the input 

is imperfectly measured and thus latent. The LISREL program permits the inclu- 
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sion of latent inputs by means of an additional read-out equation, specify 

ing how the observed input ut is connected to the latent input ut: 

u = L^u^ + z^. Table 2 adds at the appropriate places the successive latent 

input-vectors u^, input factor-pattern matrices L^, input measurement error 

vectors z^, and the covariance matrices of the latter F^. 

Table 2. Extended LISREL model specification of state space model (T = 3) 

V1 

V2 

v1 

V2 

0 

0 

0 

0 

Bt 0 
o 0 b’ 
V1 0,0 V 

«tQ 

>o+1 
V2 

V1 

V2 
o'0 Q* V1 

to+1 

'V1 

V2 

y 

» » V2 
do o Ct 

°t0 Dtn+1 ° ° ° V1 
0 0 DV2 0 0 ct0+^ 

‘V1 

V2 

v1 

V2 

v1 
V2 

Rt0 

0 0 Rto+1 
0 0 0 ° R. V2 

0 

In many cases, inputs show some predictability over time. Otter (1985, p. 35) 

takes advantage thereof for latent inputs by modeling effects between them. 

This is done most easily by combining the latent input variables with the 

state variables in a new state vector and specifying the following autono¬ 

mous state space model for x^: 

t-1 

t-1 t-1 

t-1 

4 t-i 

’t-i 

t-i 

o 
xt = t-i t-i t-i (6) 
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(7) 

As in the case of deterministic input, instead of the state equation (Equation 

6), a structural model equation may be chosen: 

’t-1 

£-1 t-1 

“t-1 

t-1 

't-1 

x 
r 
t-1 

OX 
A 
t-1 

o ox 

Vi + Wt-1 (8) 

Equation 6 is a special case of Equation 8 for = 0. Also, for ^ 0, 

Equation 8 may be reduced to Equation 6 as explained previously. 

This very general state space model has a major advantage, that is, the 

Kalman filter becomes suitable to estimate both the latent inputs and the 

latent states simultaneously. Due to the special LISREL model, the transla¬ 

tion in LISREL form proceeds without problems, using either Table 1 

(Equation 6 and 7) or Table 2 (Equation 8 and 7). The resulting estimates of 

the successive matrices 8^, 3^, and 8^ are entered into the Kalman fil¬ 

ter. 

Correlated errors over time 

Situations may be encountered in longitudinal research where, contrary to 

the assumptions, the process errors w^ (JSreskog, 1978) or the measurement 

errors v^ (S6rbom, 1975) or both are correlated over time. The LISREL pro¬ 

gram is able to detect such correlations by large modification indices (J6- 

reskog & sdrbom, 1981, pp. III.18-19) on the places of zero-matrices Q 
t,t' 

and Rt,t' (t ^ t') ln Table 1 or 2- This problem of Qt t, ^ 0 or Rt 0 

can often be solved by adding one or more new state variables to the model 

and estimating the most effective new parameters in the augmented matrices 

At or At ' and Ct (Kwakernaak & Sivan, 1972, p. 356). In deciding which 

parameters are most effective in obtaining Q ,= 0 or R . = 0 for the 
t,t t,t' 

new model, the modification indices of the LISREL program may be helpful 

again. 
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4. Kalman Filter 

The Kalman filter or optimal estimator xt of the unknown latent state 

x = (I - H C )x + H y 
’ t t t- 

where 5c. = A 

t-'t 

t- -t-lXt-l + Bt-lUt-l 
(9) 

combines, in fact, two state estimators: the memory estimator 5ct_ and the in¬ 

stantaneous estimator Its kernel is constituted by the Kalman weighting 

matrix Ht, to be explained below. The memory estimator processes exclusively 

past information of the system. Its use would be appropriate in the determi¬ 

nistic case (no process error), provided the state equation and the initial 

state are perfectly known. Starting with the exact initial state x^ , the 

state equation could be applied recursively to find the successive states 

v .x .... The memory approach does not work in the stochastic case, 
t +1 t +2 

because, in general, neither the initial state nor the process matrices 

and Bt are known. They also require estimation. Together with model specifi¬ 

cation errors and the process error, this causes the successive memory esti¬ 

mates or forecasts = 5c^. to keep deteriorating, that is, to show increas¬ 

ing estimation error et = xt ~ 

The instantaneous estimator H^y^ uses only the present observed output y^ 

to estimate the state This is the approach chosen in cross-sectional 

factor analytic studies where latent factor scores are estimated by means of 

observables at the same time point. Writing Equation 9 in the form 

V - Vt- + Vt with ?t- = ct*t- makes clear that the Kalman filter 
corrects the memory estimate 5it_ by putting Htyt in the place of its memory 

analogue or, equivalently, by adding the linear weighting of the 

output innovations yt - yt_ . 

How much past information is used and how much is taken from the present 

output, is defined by 

Ht = ptc;Rt1 • (10) 

H bilinearly transforms the read-out or factor pattern matrix C^_ , post 

multiplying it with the inverted measurement error covariance matrix Rt and 

premultiplying it with the covariance matrix Pt of the Kalman estimation error 
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pt = <pt-+ v"1 

where Pt_ = 

and c;\lct (id 

The computation of the Kalman covariance matrix does not need knowledge 

of the output and so its time path can be evaluated before the filtering 

process starts. The quality of the filtering results is thus known in ad¬ 

vance. Also, it becomes clear from P^ and Ht_ that Kalman filtering is precluded 

for state space models yielding singular matrices Pfc and . 

As can be seen intuitively from Ht, the Kalman filter reduces to the memo¬ 

ry estimator, (a) when the model approaches the deterministic, perfect know¬ 

ledge case (P -*■ 0) and (b) when the measurement errors in the observed out- 
^ -l 

put become very large (Rt 0) . Because in the latter case also Ft 0, 

is seen to reduce to the forecast error covariance matrix P^ . On the other 

hand, as it can be observed in Equation 9, the Kalman filter becomes equal to 

the instantaneous estimator when memory effects are absent (At ^ = Bt j = 0)• 

It is interesting to note the close connections that exist between the in¬ 

stantaneous estimator H^y^ and two popular cross-sectional factor score 

estimators: the regression estimator and the Bartlett estimator. In fact, 

these estimators become equal to HtYt when their covariance matrices (Lawley 

& Maxwell, 1971, p. 109-110): 

Regression Pfc = 4>t(l + r^.^)-1 = (0”1 + I^)-1 , 

Bartlett = r"1 , (12) 

are substituted for the Kalman Pfc in Ht ($t in the regression Pt is the factor 

or state covariance matrix) . Moreover, by setting Afc_1 = B^ = 0 in the 

cross-sectional case, the Kalman reduces to the regression P^. From 

At_j - Bt_j = 0 one derives: 

V = Vipt-iAt-i + Vi “t-i 

= At-Ixt-1 + Bt-Iut-1 t-1 t-1 $t = 2t-l 

Thus P^_ in the Kalman P^ (Equation 11) becomes equal to 0^* in the regres¬ 

sion Pfc (Equation 12). A condition, for which the Kalman reduces to the 
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Bartlett P , is mentioned at the end of the present article in section 6. 
t — 1 

Because of the terra 0 , appearing in the regression P but not in the 
t 

Bartlett Pt, the regression estimator has smaller variance than the Bartlett 

estimator. In fact, the regression estimator has minimum variance among all 

linear cross-sectional estimators (Lawley & Maxwell, 1971, pp. 107) . On the 

other hand, the Bartlett estimator has the minimum variance property under 

the additional restriction of being unbiased (Lawley & Maxwell, 1971, pp. 

110-111) . So,when in the cross-sectional case unbiasedness is a desirable 

property, the Bartlett estimator is the preferred one. 

In the longitudinal case, ^ # 0 and/or B^__j / 0, if the initial estim¬ 

ator 8t is unbiased and the initial covariance matrix Pt assumed minimum, 

the Kalman filter can be proven to be minimum variance linear unbiased. In 

control theory, this important property of the Kalman filter is more often 

called best linear unbiased (Kwakernaak & Sivan, 1972/ pp. 528-530; Otter, 

1985, pp. 60-63). "Best” or "optimal" in the sense that Pt of any other 

linear unbiased estimator exceeds the one of the Kalman filter by a positive 

semidefinitive matrix. The linearity restriction can be dropped when x , w , 
0 

and vt are multinormally distributed, the Kalman filter becoming the best of 

all unbiased estimators, linear and nonlinear (Kwakernaak & Sivan, 1972, pp. 

528-531; Otter, 1985, p. 64). 

Although strictly the optimality'of the Kalman filter holds only, if the 

initial estimator x__ is minimum variance unbiased, control engineers often 

are not greatly concerned with the initial value problem. Typically, some 

more or less realistic guesses are inserted for and . The reason is a 

second property which states that - under rather mxld conditions - the Kalman 

filter estimates become after sufficient time points independent of both x 
';o 

and Pt (Jazwinski, 1970, pp. 239-243). As more and more data are processed 

the Ka?man filter forgets, so to speak, the initial values and Pfc . This 

property makes sure that biases stemming from the chosen initial values be¬ 

come smaller as time proceeds. Despite of how valuable this result may be, 

for the typically small numbers of time points in behavioral resarch, the 

initial values do matter and must be chosen carefully. Therefore, we propose 

to use as the standard initial estimator the Bartlett estimator. The Bartlett 

estimator is well-known in factor analysis and has, indeed, for multinormali¬ 

ty the required property of minimum variance unbiasedness. It is together 

with the Kalman filter included in the LISKAL program. 
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The third property of the Kalman filter to be stressed is time-variance, 

showing up in the subscript t of all matrices involved. Unlike many other 

results in systems and control theory, the Kalman filter has the advantage 

that time-invariance is not needed anywhere. In behavioral science, it is 

often unrealistic to assume that at the end of an extended period of time 

the same causal mechanisms are still working as in the beginning. Because 

the Kalman filter allows different matrices to be inserted as time proceeds, 

it is very suitable for longitudinal behavioral research as will be illustrat¬ 

ed by the example in the next section. 

Heretofore, the treatment of the Kalman filter has been restricted to 

strongly causal systems, that is, systems without the instantaneous input- 

output matrix D^. For systems with latent inputs u^_ that instantaneously in¬ 

fluence y^_, no problem arises if Equation 7 is chosen. The D^-matrix in issue 

is then handled as part of and that way entered into the Kalman filter. 

For systems with deterministic inputs ufc that instantaneously influence y^, 

the only change needed is replacing yfc in Equation 9 by yfc - Dtut/ thus 

treating this new quantity as the output y^_. 

5. Educational Research Example 

In the research example to be presented the Kalman filter is used for 

diagnosing reading disabilities in primary school children, based upon a 

dynamic LISREL model for Beginning Reading. The model (see Figure 1 and 

Table 3) is a longitudinally extended version of the Beginning Reading model 

described by Momraers and Oud (1984) and has been estimated in a group of 225 

Dutch primary school children, 1st to 3rd grade. It contains two state-varia¬ 

bles: Reading Comprehension and Spelling, and three input-variables: School 

Readiness, Phonemic Awareness and Decoding Speed. The intervals between the 

successive states in Figure 1 are six month periods, the first state, x , 

occuring after 7 months of reading instruction and the fifth state, x , V4 
after 31 months of reading instruction. School Readiness and Phonemic 

Awareness have been measured only once: just before reading instruction. They 

are assumed to be constant input-variables. Originally, Decoding Speed was 

considered a state variable too and it had been measured as often as Reading 

Comprehension and Spelling. In preliminary analyses, however. Decoding Speed 

turned out only to influence but not to be influenced by other variables in 

the model and, in addition, to correlate almost perfectly with itself over 

time. For these reasons, in the final version of the LISREL model, it came to 
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Phonemic 
Awareness 

School 
Readiness 

Reading Spelling 
Comprehension 

Figure 1. Dynamic LISREL model for Beginning Reading (all variables 

standardized) 

Table 3. Nonzero elements in read-out or factor pattern matrices of the 

Beginning Reading model (all variables standardized) 

yl 

y9 

yio 

_ 1 

T876 

.809 

.774 

'V1 

'12 

1 

.999 

.797 

.794 

.858 

■V2 

'12 

y13 

'14 

1 

.818 

.784 

.814 

.815 

.766 

'V3 

'14 

'15 

'16 

1 

.865 

.815 

.849 

.878 

“V4 

'16 

'17 

y18 

1 

.876 

.846 

.851 

.799 

.853 

.758 
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be considered a constant input-variable like School Readiness and Phonemic 

Awareness. The measurements of Decoding Speed on time point tQ have been used 

for estimation. 

Figure 1 contains also the estimated coefficients of the inter-state ef¬ 

fects in matrices A through A . Very conspicious are the large memory 

effects of each state variable on itself. In comparison, the influences be¬ 

tween Reading Comprehension and Spelling are low and decrease still as time 

proceeds. After the very first steps in beginning reading, the development of 

both appears to become practically independent. Because of the large memory 

effects found, the application of the Kalman filter for estimating the latent 

states promises to be advantageous. One compelling argument for longitudinal 

research and the use of the Kalman filter is, in fact, that strong causal ef¬ 

fects found cross-sectionally often turn out to decrease or disappear in favor 

of memory effects when estimated in dynamic models (Oud, 1982). 

The read-out or factor pattern matrices in Table 3 demonstrate clearly the 

usefulness of the time-variance property of the Kalman filter. These matrices 

show large differences over time, the main reason being the use of different 

spelling and reading comprehension tests at different didactical ages. For 

example, test y^ is only used after 7 months of reading instruction (time 

point t^) and test y^ only after 25 and 31 months (time points t^+3 and 

tQ+4). In behavioral research, it is seldom possible to use the same measure¬ 

ment instruments over the whole age range because of insufficient ceiling for 

older persons and insufficient bottom for younger persons. Apart from this, 

time variance also accounts for latent variables manifesting themselves dif¬ 

ferently, that is, by different coefficients in the observables over time 

(cf. in Table 3 the estimated coefficients for the same tests on different 

time points). 

The Kalman filter estimates of the latent Reading Comprehension and Spel¬ 

ling scores will now be compared with those of its main cross-sectional com¬ 

petitor, the Bartlett estimator, applied for each time point separately. Be¬ 

cause the latter estimator is also taken as initial estimator for the Kalman 

filter, the Kalman and Bartlett estimates in Figure 2 coincide on the initial 

time point t^. As expected in view of its use of past information, the Kalman 

filter gives estimates that exhibit more memory and change more cautiously o- 

ver time than those of the Bartlett estimator. Moreover, because the Kalman 

filter uses increasing information as time proceeds, its estimation error 

variances in Table 4 (diagonals of P , P , ..., P ) are seen to be 

0 o to 



124 

Figure 2. Latent state estimates of Reading Comprehension and Spelling for 

one of the children by two estimators 

Table 4. Estimation error variances 

Estimator 

Time point 

V1 V2 V3 V4 

Reading Comprehension 

Bartlett .336 .001 

Kalman .336 .001 

Kalman from 

initial value 5 5 .001 

.290 

.159 

.159 

.370 .128 

.094 .079 

.094 .079 

Spelling 

Bartlett .310 .173 

Kalman .310 .111 

Kalman from 

initial value 5 5 .163 

.196 

• 111 

.117 

.132 

.090 

.091 

.181 

.104 

.104 
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smaller. As explained in the previous section, the Kalman filter gives, in 

fact, the smallest estimation error among all linear unbiased estimators. 

To test the effect of different initial values on the series of Kalman es¬ 

timation error variances, besides the Bartlett initial values .336 and .310, 

the extremely deviating initial value 5 was inserted for both state variables. 

The convergence proved, indeed, to be very fast. Already with the second es¬ 

timate on time point tQ+2, the difference for Spelling is as small as .006 

and for Reading Comprehension, immediately with the first estimate on tQ+l, 

it is virtually 0. In the latter case, the very small measurement error 

variance .001 of the single observed Reading Comprehension variable y^ on 

that time point must have been responsible. Small measurement errors have, 

in fact, a dual effect on the Kalman filter: First, as mentioned in the pre¬ 

vious section, the instantaneous part H^y^ becomes more important in compari¬ 

son to the memory part; second, via Equation 11, small values in R^ cause P 

to decrease more quickly. 

Next, we computed for the sample of 225 children the correlations between 

the Bartlett estimates as well as between the Kalman estimates and compared 

both of them with the state correlations as given by the LISREL program. 

Since the Bartlett and Kalman correlations are only indirect estimates based 

on LISREL solution matrices, while the LISREL solution uses directly all in¬ 

formation on the sample level, the LISREL correlations must be considered 

closer to the true ones. The differences of the Bartlett and the Kalman cor¬ 

relations with the LISREL correlations are given in Table 5. The Kalman cor¬ 

relations turn out to be almost everywhere very close to the LISREL correlat¬ 

ions, while the Bartlett correlations show larger differences and err also 

systematically on the low side. For illustrative reasons. Table 6 gives the 

computed correlations between the estimates on tQ+l anc* the estimates of the 

same state-variable at later time points. As expected in view of their memory 

component, the Kalman estimates show higher intercorrelations than the Bart¬ 

lett estimates. 

6. Concluding remarks 

In this article, several advantages of the Kalman filter for estimating 

latent scores have been pointed out. Comparing for an example the Kalman fil¬ 

ter results with those of its main cross-sectional competitor, the Bartlett 

estimator, we showed the Kalman estimates to change more cautiously over time, 

to have lower estimation error variances, and to reproduce more precisely the 
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Table 5. Bartlett estimate correlations minus LISREL correlations (above 

diagonal) and Kalman estimate correlations minus LISREL correlat¬ 

ions (below diagonal) 

State 
<1't0+1 ^'V1 Xl-V2 2-V2 

i'V1 

^-v1 

^'V2 

<2'V2 

Xl-v3 

X2'V3 

X1,V4 

X2'V4 

.01 

.11 

.03 

.04 

.00 

.04 

.01 

-.10 

.10 

.06 

.08 

.03 

.05 

.06 

.15 

. 10 

.05 

.03 

.01 

.06 

.02 

.13 

.15 

.07 

.05 

.02 

.03 

.03 

X1,V3 X2,V3 

-.20 -.13 

-.08 -.12 

-.26 -.08 

-.10 -.13 

-.01 

.05 

-.03 .04 

.05 .02 

i'V4 2'V4 

-.09 -.16 

-.09 -.10 

-.10 -.07 

-.11 -.09 

-.12 -.05 

-.08 -.15 

-.10 

.05 

Table 6. Correlations between estimate at t^+l and those at later time points 

Time point 

Estimator to+2 t0+3 t0+4 

Reading Comprehension 

Bartlett .550 .497 .563 

Kalman .805 .739 .699 

Spelling 

.742 .675 .638 Bartlett 

Kalman .948 .824 .799 
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LISREL program state correlations. We conclude by stressing two points con¬ 

cerning the applicability of the Kalman filter in practice. 

First, although Kalman filtering requires the availability of a dynamic 

model and the better the model the smaller the estimation error, no perfect 

model is needed. Even when not all relevant variables can be included or some 

relationships are, in fact, moderately nonlinear, applying the Kalman filter 

instead of the Bartlett estimator usually does pay off. In contrast to a 

faulty initial estimator, modeling errors in the state equation (Equation 6) 

do not jeopardize the unbiasedness of the Kalman filter but, as explained by 

Poulisse (1980, p. 70), only amplify its estimation error. In addition, model¬ 

ing errors in the state equation are expected to increase the process error 

covariance matrix as estimated by the LISREL program, thus leading to an 

increased forecast error covariance matrix (see Equation 11). Only in the 

end, 00 and -+■ °° , the Kalman P^ becomes equal to the Bartlett P^ 

and the Kalman filter becomes equal to the Bartlett estimator. So there is a 

built-in mechanism, correcting the Kalman filter in the direction of the 

Bartlett estimator for dynamic modeling errors. 

The second point regards the frequent use of standardized variables in be¬ 

havioral research practice, especially in the field of factor analysis. The 

model of our research example has been formulated in terras of standardized 

variables too. The application of the Kalman filter on the basis of a stan¬ 

dardized variables model or, equivalently, of a correlational model enables 

one to evaluate a subject's position in the group for which the model has 

been estimated. (As with the use of a standardized psychological test, the 

subject need not be a member of the group but only of the population from 

which it is drawn.) When, for example, the Kalman filter estimates of a par¬ 

ticular subject decrease from 2 to 0, nothing more can be concluded than that 

this subject's position in the group went down from two unknown standard de¬ 

viations above the unknown mean to the unknown mean. If, however, one wants 

to estimate a subject's deviation score developmental curve or absolute de¬ 

velopmental curve, the LISREL model can, respectively, be couched in varian¬ 

ce-covariance terms or additionally be provided with so-called structured 

means (Jdreskog & Sdrbora, 1981). 
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