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SIGN-SOLVABILITY ANALYSIS WITH QUALITATIVE AND QUANTITATIVE INFORMATION* 

Floor Brouwer 1) 

Peter Nijkamp 2) 

Abstract 

Qualitative calculus of economic models is an appropriate method for impact 

analysis in case of imprecise information concerning the structural model para¬ 

meters. Impacts are here represented by a positive (+), negative (-) or zero 

(0) ’value’. The conditions for the so-called sign-solvability analysis of a 

linear equation system are strict. The aims of the paper are (1) to discuss 

the relevance of qualitative calculus for economic modelling and (2) to relax 

the conditions of sign-solvability by making use of matrix decomposition 

methods, plausible parameter values based on prior cardinal information on one 

or more estimated coefficients, and a top-down/bottom-up approach for sign- 

solvability. The analysis is illustrated on the basis of the well known Klein 

Model for the USA. 

1. Background 

The study of qualitative relationships in economics was initiated by 

Samuelson (1947) when he analysed - in a comparative static way - the effect of 

qualitative changes in one or more exogenous variables upon the equilibrium sit¬ 

uation of endogenous variables. The qualitative information of the partial de¬ 

rivatives in a static economic model is denoted by positive, negative or zero 

signs. 

At least three reasons may be mentioned, for the use of qualitative approaches in 

economic analysis, viz. : 

(i) lack of exact quantitative knowledge of the partial derivatives of equi¬ 

librium conditions, (Samuelson, 1947, p. 26); 

(ii) the empirical information on the coefficients in a simultaneous equation 

system may only allow one to predict the effects in qualitative terms 

from the relevant structural system parameters (Lancaster, 1962); 
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(iii) the difficulties which may arise in empirical practice to obtain precise 

or exactly quantified information because of measurement problems (e.g., 

lack of time or simply lack of money to collect the relevant information) 

concerning system parameters (Nijkamp et al., 1985). 

Given a set of linear equations Ay + b = 0, qualitative calculus deals with 

’solving* the vector y in a qualitative sense with qualitative information 

(positive, negative or zero) concerning the parameters a^ and b^ (i,j=l,..., 

n) of the n x n-matrix A and the n x 1-vector b. This approach is also 

called sign-solvability analysis, because the solution of Ay + b = 0, i.e. 

y = -A 'b, is denoted in qualitative terms. The sign-solvability analysis can 

be interpreted as a kind of sensitivity analysis in the' following way: if it is 

possible to solve the system Ay + b = 0 for the vector y in a unique quali¬ 

tative way (i.e., with a vector of unambiguous signs as a solution for y), then 

the solution will hold for all possible cardinal values of the matrix A and 

the vector b up to their signs. 

The first aim of the present paper is to provide a concise introduction to sign- 

solvability analysis. Necessary and sufficient conditions for sign-solvability 

will be interpreted in a graph-theoretical way by making use of signed directed 

graphs (signed digraphs). This topic will be presented in Section 2. In Sec¬ 

tion 3 we will apply the sign-solvability approach to the linear dynamic eco¬ 

nomic model for the USA developed by Klein in 1950. The results from Section 3 

will show that one of the major problems in practical applications with purely 

qualitative information is caused by the severe restrictions inherent in sign- 

solvability analysis. However the inclusion of additional 'tools to sign-solva¬ 

bility analysis may lead to a useful methodology for a qualitative approach in 

empirical applications. Some recently developed research directions will be 

discussed in Section A, viz. : 

(i) the use of matrix decomposition and matrix permutation procedures; 

(ii) the use of plausible parameter restrictions which may be inferred on a 

priori knowledge or on theoretical grounds; 

(iii) the inclusion of parameter values from one or more equations by means of 

a stepwise procedure. 

2. Sign-solvability Analysis 

The major developments of sign-solvability analysis emerged from mathematics. 

It can be regarded as a type of qualitative impact analysis in for example eco¬ 

nomic modelling, environmental modelling, urban modelling, etc. Consider for 

example the following analytical representation of a set of three linear equa- 
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tions with variables and based on qualitative information about the 

impacts between the variables: 

+ 0 - 

(1) 

The impacts may also be represented by means of graphs with vertices yj, y 

y^ and b2> while the qualitative impacts between variables are denoted by the 

edges (A, - b) (see Figure 1). 

Figure 1. Graph representation of a qualitative model. 

The set of equations in equation (1) is sign-solvable because the sign-elements 

of the solution y = -A ^b are defined uniquely. Hence, the solution becomes: 

0 

0 

The solution in equation (2) shows that all changes in the variables yj, y2» 

and y^ are negative. This is caused by the positive sign of the second exo¬ 

genous variable in (1) and the qualitative impact structure between the endo¬ 

genous variables. In the specific example presented above it was rather easy 

to see that the system Ay + b = 0 can be solved with qualitative information. 

The general conditions for sign-solvability, with A a non-singular matrix, 

have been formulated by Bassett et al. (1968) as follows: 

(1) the diagonal elements of the n x n matrix A are all negative, i.e., 

a..<0 i=l,...,n; 
n 

(2) all cycles in the graph obtained from the impact matrix A, with length at 

least two, are non-positive; 

(3) all elements from the vector -b are non-positive; 

(4) if some element from vector -b say k, is negative, then every path in 

the graph from vertex k to vertex i is non-positive (i ^ k); 
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The diagonal elements of matrix A in (1) are all negative, and the first con¬ 

dition of sign-solvability holds. The graph in Figure 1 has three cycles with 

length at least two, viz. ~ V2 ~ y]> y\ ” y3 “ yl’ and y3 “ y2_ yl " y3 * and 

all of them are negative. The length of a cycle is the number of terms which 

appear in the cycle, so that, for example, yj ” ^2 ~ yl’ a cyc^e length 

two. The sign of a cycle or a path is determined by the multiplication of the 

separate edges. All elements from vector -b are non-positive. Vertex 

in Figure 1 has an outgoing edge with a negative sign. The path from vertex 

b^, viz. ^2 ” y2 ~ yl ~ y3 ne8ati-ve :*-n slgn* 

The four conditions of sign-solvability appear thus to hold for the example in 

Figure 1, and its solution is presented in equation (2). 

The conditions of sign-solvability mentioned above dealt with a vector b of 

an exogenous variable. However, the conditions of sign-solvability from a set 

of linear equations Ay + Bx = 0, with solution y =-A ^Bx are analogous to 

the above mentioned conditions: conditions (1) and (2) do not change, and the 

conditions (3) and (4) must hold for each column from matrix B. 

There is a number of matrix operations which do not affect the conditions of 

sign-solvability (see Lancaster, 1962), viz.: 

(i) permutation of any two rows from both matrix A and matrix B. This 

operation only changes the order in which the equations are written; 

(ii) permutation of any two columns from either matrix A or matrix B. This 

operation will change the order of the variables; 

(iii) reversement of all signs in any row from both A and B, which is equiv¬ 

alent to the multiplication of the equation with a factor -1; 

(iv) reversement of all signs in any column from either A or B, which mul¬ 

tiplies the variable with a factor -1. 

The four matrix operations may be helpful in analysing the conditions of sign- 

solvability. The first condition of sign-solvability may hold for example, af¬ 

ter some matrix permutations or sign reversements. 

The manipulations (i) to (iii) can be carried out without affecting the solu¬ 

tion vector, while the final operation implies the sign reversement from a par¬ 

ticular variable. 

3. Sign-solvability Analysis in an Economic Model: Klein’s Model of the USA 

The use of sign-solvability analysis will be illustrated in this section for 

a dynamic national model for the USA developed by Klein (1950). Parameter and 

model validation in a conventional econometric way may be problematic in case 

of a lack of sufficiently reliable quantitative information. The sign-solva- 
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bility approach may be relevant in this context, because its aim is to predict 

the qualitative (sign) impact of a policy variable, even if reliable cardinal 

information concerning impact coefficients is not available. 

The endogenous variables of Klein's model represent consumption (C), invest¬ 

ments (I), private wages (W), profits (P), national income (Y), and capital 

stock (K). 

The matrix representation of the economic model for the USA is denoted in ma¬ 

trix terms by 

Ayt = Byt-1 + Cxt (3) 

with yt a vector of the endogenous variables C, I, W, P, Y and K for pe¬ 

riod t, and x^ a vector of exogenous variables and error terms. The matri¬ 

ces A and B are of order 6x6 and represent impacts between endogenous 

variables, with: 

A = 

1 

0 

0 

-1 

0 

0 

0 

0 

-1 

0 

0 

0 

1 

I 

0 

0 

0 

0 

0 

0 

1 

0 0 0 0 

o o e2 o e3 
ooo y2 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 1 

(4) 

In the present paper the conditions of sign-solvability will be illustrated by 

only dealing with the reduced form of the endogenous variables for period t in 

terms of the endogenous variables for period t-l (or equivalently y in 
-1 ... t 

terms of A B yj..])' The first condition of sign-solvability does not hold for 

the matrix A in (4). However, four matrix operations are given, which do not 

affect the conditions of sign-solvability but will simplify the sign-solvability 

analysis. 

Two columns operations will be used for matrix A, viz.: 

(a) permutation of columns 4 and 5, which gives a negative sign for element 

a55’ 

(b) reversement of signs from columns 1, 2, 3, 4 and 6, which also gives a neg¬ 

ative sign for the other main diagonal elements. 

All columns from matrix B are reversed in sign so that the third condition of 

sign-solvability holds. The graph representation of the impacts of endogenous 

variables for period t in terms of the lagged endogenous variables is presen¬ 

ted in Figure 2 below. 
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Figure 2. Graph representation of the Klein model 

The matrix A is non-singular, a condition necessary for the inversion of ma¬ 

trix A. The first condition of sign-solvability also holds because of the 

above mentioned column operations. 

The second condition of sign-solvability (non-positive values for cycles with 

length at least two) however does not hold for the graph. This condition can 

easily be checked, because the cycles Y-W-C-Y, Y-P-C-Y and Y-P-I-Y, are 

positive and the cycle Y-W-P-C-Y (of length four) is negative in sign. This 

means that the cycles from the graph in Figure 2 differ in sign, so that the 

inverse of the matrix A cannot be determined uniquely in terms of its sign. 

Conditions (3) and (4) of sign-solvability deal with the directed graphs be¬ 

tween the endogenous variables for period t and period t-1. The last ones 

are in Figure 2 denoted with a subscript -1. The third condition of sign-solv¬ 

ability does hold because the signs from all outgoing edges (from the columns 

of matrix B) are negative in sign. The final condition does not hold either 

because the paths K_j-I-Y-P, P_j-C-Y-P and Y_j-W-P-C are negative in sign. 

Having checked now the four conditions of sign-solvability, it has become evi¬ 

dent that the simple Klein model is not sign-solvable. Therefore it is worth- 

wile to look for additional recently developed methodological tools for analy¬ 

sing a model in a qualitative way. This will be discussed in the next section. 

4. Extension of the Sign-solvability Approach for Purely Qualitative Informa¬ 

tion 

The main developments in the field of sign-solvability analysis took place 

in mathematics. A renewed interest was started in 1980 when a symposium was 

held at the University of Colorado at Boulder on computer-assisted analysis and 
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model simplification (Greenberg and Maybee, 1981). Other fields of applica¬ 

tions dealt with spatial economics (Brouwer and Nijkamp, 1985; Lady, 1983; 

Maybee and Voogd, 1984) and ecology (Jeffries, 1974; Levins, 1974). 

The conditions of sign-solvability did not hold for even a relatively small dy¬ 

namic model for the USA with six equations, discussed in the previous section. 

Consequently, it may be expected that other models will not provide more satis¬ 

factory results. Therefore, some adjusted tools of the sign-solvability ap¬ 

proach will be discussed in this section. The extensions are based on three 

features, viz. 

(i) the use of matrix decomposition and matrix permutation procedures to 

study partial sign-solvability; 

(ii) the possibility of introducing prior plausible information on parameter 

values, which may be inferred on a priori grounds; 

(iii) the use of a stepwise procedure to include parameter values from one or 

more equations, based on estimation or on prior information. The step¬ 

wise procedure makes a distinction between a top-down and a bottom-up 

approach to assure partial or full sign-solvability. 

First, a matrix decomposition procedure deals with reducible matrices. A ma¬ 

trix A is called reducible if a permutation matrix P exists, such that A 

will be transformed into A* with: 

A* 

(5) 

where both matrices Aj ^ and are square matrices and 0 is a zero-matrix. 

The permutation matrix P will reverse rows and columns A to transform A 

into A* as follows: 

A* = P A PT (6) 

T 
where P is the transpose of matrix P. 

When the matrix A is reducible, the sign-solvability approach can be dealt 

with in two steps by means of a recursive system, because: 

(7) 

'll 

21 'l + A22 

= -b. 
= -b„ 

(8) 

The conditions of sign-solvability of vector y^ can be analysed independently 

from vector y2» Vector yj may be sign-solvable irrespective of whether vec- 
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tor is sign-solvable. 

The matrix A from the Klein model in Section 3 is reducible because it can be 

reduced into (by making use of the above mentioned matrix operations): 

A 
1 1 

-I 

0 

0 

1 

0 

0 

-I 

0 

1 

0 

0 

-1 

0 

1 

21 
[0 0 0 0] , A22 = [-1] (9) 

The matrices depicted in equation (9) show that sign-solvability can be anal 

ysed for the variables C, I, W, P and Y independently from variable K. 

Unfortunately, the set of equations cannot be solved in a qualitative way for 

the first five equations of the Klein model because conditions 2 and 4 do not 

hold in this case either. However the use of matrix decomposition procedures 

for reducible matrices may lead to partial sign-solvability from a set of equa¬ 

tions (see also Gilli, 1984). 

Secondly, in addition to using purely qualitative information, in several cases 

partial cardinal information on parameter values may be available a priori. 

This may be due to the fact that one or more equations from a system have al¬ 

ready been estimated in previous stages or that information on empirically plan 

sible values from some parameters can be inferred on theoretical grounds (e.g.. 

a consumption rate related to national income has values in the range between 0 

and 1). The matrix Aj ^ also has some sell-elements equal to one, because the 

equations which specify profits, national income and capital stock are identi¬ 

ties. The identities specify a relationship that holds by definition without 

unknown parameters. Such a priori information may be used as well in the sign- 

solvability analysis. An originally non-sign-solvable set of equations may be¬ 

come solvable in a qualitative way when such prior metric information is avail 

able and a mixture of qualitative and quantitative information is used in the 

sign-solvability approach. 

Finally, a stepwise sign-solvability procedure which can be subdivided into a 

top-down or a bottom-up approach, may lead to interpretable modelling results. 

A top-down (or forward selection) approach implies that an initially not sign- 

solvable qualitative system is treated in such a way that additional quantita¬ 

tive information is added in a stepwise way so as to assure that after a number 

of steps the remaining qualitative system is at least partly sign-solvable. 

The bottom-up (or backward elimination) approach starts from the opposite side 
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because it attempts to identify which and how many equations may be specified in 

qualitative terms in order to still guarantee sign-solvability, 

uoth approaches are relevant when only limited information is available - in 

quantitative terms - about the impacts between variables. 

Ve will now include some prior information in the matrix A of the Klein model 

.\rtiich may be relevant to determine the inverse of A. Such prior information is 

oased on two restrictions for parameter values which are plausible in the light 

of the economic interpretation of the model. First, the proportion of wages in 

the private sector with respect to national income (parameter Yj) is assumed 

to fall in the range between zero and one. Second, the proportion of consump¬ 

tion with respect to total wages (a^) as well as the proportion of profits con¬ 

sumed or invested (B.) are both considered to be less than one. 
-1 

The sign-inverse matrix of A and A B then become: 

sign (A *) = 

- - + 

+ + - 

0 

0 

0 

0 

0 

sign (A ‘b) 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 

0 

0 

0 

0 

0 

+ - + 

# — — 

with « a cell-entry which is not defined for its sign. 

The cell-entries (1,5), (3,5) and (6,4) of the matrix A 'b are still undefin¬ 

ed, even when the above mentioned a priori plausible parameter restrictions are 

introduced. More information on parameter values would then be necessary in 

order to arrive at unambiguous qualitative conclusions. But the advantage of 

this approach is that four columns of the matrix A *B have cell-entries which 

are defined uniquely up to their signs; these columns correspond to the vari¬ 

ables C, I, W and K. Thus, given the available qualitative information, the 

sign impacts on these 4 variables can be determined unambiguously. 

5. Conclusion 

Qualitative calculus can be regarded as a tool to solve either static or 

dynamic models with qualitative information concerning the parameters. Sign- 

solvability analysis is a major issue in economic modelling in case of qualitat¬ 

ive information regarding parameters. However, the conditions of sign-solv¬ 

ability with pure qualitative information, developed in mathematics, are rather 

strict in empirical applications. 

Fortunately, if a mixture of qualitative and quantitative information concern- 
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ing the impacts between variables is available, additional tools can be employ¬ 

ed in order to obtain solutions for the sign-solvability approach. Matrix de¬ 

composition and matrix permutation, the inclusion of a priori knowledge concern- 

ning parameter values, and a parameter selection procedure may lead to at least 

partial sign-solvable systems. Qualitative calculus has been demonstrated to be 

a useful tool in economic modelling when a mixture of qualitative and quantita¬ 

tive information is available, and it is an appropriate complement to convent¬ 

ional econometric techniques and simulation procedures. 
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