
KM 19(1985) 
pag 89 -104 

89 

DETERMINING ALL MAXIMAL DATA SUBSETS 

CONSISTENT WITH REVEALED PREFERENCE 

by 

M. Houtman* and J.A.H. Maks* 

ABSTRACT 

A complete 'branch-and-bound' algorithm to determine all minimal feed¬ 

back node sets of a directed graph is presented. In economics the minimal 

feedback node sets of a directed graph have an interesting application in 

the revealed preference theory, which will be pointed out in this paper. The 

described method determines all maximal subsets of a finite data set, that 

are compatible with the strong axiom of revealed preference. 

* The authors are grateful to W.J. Keller and an anonymous referee for 

helpful comments and the Netherlands Organization for the Advancement of 

Pure Research for financial support. 

Current address: University of Groningen 

Department of Economics 

Tel. 050-114968 

P.0. Box 800 

9700 AV Groningen 

The Netherlands 



90 

INTRODUCTION 

The problem of finding one minimal feedback node set is applied in 

logical circuit design. Solutions for this problem are described in 

Guardabassi (1971), and Smith and Wallford (1975). In economics the minimal 

feedback node sets of a directed graph have an interesting application in 

the revealed preference theory. This application is described in section 1. 

Section 2 relates the application in economics to the minimal feedback node 

set problem in graph theory. The problem of determining all feedback node 

sets is solved in section 4 with a 'branch-and-bound' algorithm. In section 

3 we give a short general description of the 'branch-and-bound' method that 

we use. Section 5, finally, contains the source text of the algorithm in the 

computer language PASCAL. Although the definitions and concepts of the sec¬ 

tions 1,2 and 3 are relatively well known, it may be convenient to have them 

at hand together. 

1. REVEALED PREFERENCE THEORY 

In this section we define the problem in economic terms. Assume a given 

dataset (p^,q^), for periods 1-1..n, where p^ e r"1 is a price vector and 

e Rm the corresponding quantity vector for m commodities, bought by the con¬ 

sumer with a budget P;[-qi at period i. 

The weak axiom of revealed preference 

We define a preference relation R on q^ 1=1..n, by: 

qi R qj ^ prqi ^ p^j and qi * qj 

An economic interpretation of this relation is the following. The consumer 

was able to buy q^ at period i. Because he bought q^ at this period, we may 

assume that he prefers q^ to q^. 

We call R consistent with the weak axiom of revealed preference if there is 

no pair q^ q^ that satisfies: 



q1 R qj and qj R qx 

91 

The strong axiom of revealed preference 

We define the transitive closure R* of R as: 

Qi R* qj <-> 

a sequence indices i^,i^,..,i^ exists, that satisfies: 

q R q and q. R q ... and q R q 
1 1 2 r J 

We call R consistent with the strong axiom of revealed preference if there 

is no pair q^, q^ that satisfies: 

qj^ R* qj and q^ R* qi 

As is described in Afriat (1967), consistency with the strong axiom of 

revealed preference implies the existence of a time invariant strict quasi- 

convex nonsatiated utility function, which is in agreement with the data and 

utility maximizing behaviour for given prices. 

Results of testing the axioms of revealed preference 

Koo (1963, 1971), and Koo and Hasenkamp (1972) use consumer food panel data 

of 250 households to test empirically the strong axiom of revealed 

preference. They conclude that nearly every family made a relatively small 

number of inconsistent choices. Mossin (1972) tests the axioms of revealed 

preference with data based on consumers' reports about weekly purchases of 

everyday commodities. He compares the individual demand functions with the 

mean demand function and concludes that the mean demand function agrees bet¬ 

ter with the axioms of revealed preference. He obtains an occurrence of 

inconsistent choices comparable with the results of Koo's investigation. 

Maks (1978, 1980, 1982, 198n), Landsburg (1981) and Varian (1982) inves¬ 

tigate aggregate consumption data for the Netherlands, Germany, the United 

Kingdom and the United States. They find hardly any violations of the axioms 

of revealed preference. Maks (1984) partitions the data into commodity 



92 

groups and assumes separability. Testing these groups did result again in 

only a few violations of the axioms of revealed preference for some com¬ 

modity groups. 

The problem 

The results of Varian and Landsburg, mentioned above, investigate the con¬ 

sistency of consumer data with the axioms of revealed preference. Koo 

determines the maximal number of periods in the data set, which is consis¬ 

tent with the strong axiom of revealed preference. Here we describe the 

solution of the following problem: 

What are all smallest subsets of periods, for which the removement of all 

corresponding data points (p^,q^) from the original dataset results in a 

dataset which is consistent with the strong revealed preference axiom. 

This problem will be solved in the remaining sections with the use of graph 

theory. Application of the solution to this problem may be found in Maks 

(1978, 1980, 1982, 1984). 

2. MINIMAL FEEDBACK NODE SETS 

The property of one smallest subset, which is a subsolution of the 

problem outlined in the previous section, is now described in graph 

theoretical terms. We may depict a graph of a strong preference relation R 

as a set of nodes with arrows from to qj if q^ R qj. Finding one smal¬ 

lest possible subset of the dataset (p^,q^), i=1..n, for which the 

removement results in consistency with the strong axiom of revealed 

preference is now described by: 

Remove a least possible number of nodes qi, with its arrows to and from 

q^, such that there are no cycles in the remaining subgraph. 

This is called the minimal feedback node set problem. The aim of our program 

is to find all minimal feedback node sets. For a rigorous description of 



93 
this problem and its solution we need the following definitions as given in 

Carre (1979). 

Graph 

A graph G = (X,U) consists of: 

- a finite set X - ^>x2.xn' of elements oalled nodes 

- a subset U of the cartesian prpduct XxX, the elements of which are 

called arcs 

Graph of a binary relation 

A graph G = (X,U) of a binary relation R on X is defined by: 

U = {(x^.Xj) e X«X | x^ R Xj} 

Incident arc, successor and predecessor 

An arc (x.,x.) e U, in a graph G = (X,U) is said to be incident to x and 
1 J d 

incident from x^ We call x^ a successor of Xj^ and Xj^ a predecessor of x^. 

Path 

A path from Xj^ to x^ is a finite set of arcs of the form: 

(x ,x ),(x ,x ),...,(x 
11 12 2 13 

Connectivity 

When there is a path from x^ to Xj we call x^ connected with Xj. 

this by the binary relation C: 

We denote 



94 
is connected with x 

j 

When G is the graph of the binary relation R we have R* = C. 

Strong connectivity 

When C x^ 

this by the binary relation S: 

x^ S Xj <=> Xj^ is strongly connected with Xj 

The set of all strongly connected nodes is called a the maximal strongly 

connected set. A set of strongly connected nodes Y O X is called a strongly 

connected component when Y satisfies: 

x. S x., for every pair x.,x. e Y 
i j i J 

A maximal strongly connected component (MSSC) is a strongly connected com¬ 

ponent that is not contained in a larger strongly connected component. 

Essential node 

When the arc (x^.x^) e U, we call xk an essential node. The set of all es¬ 

sential nodes of a graph is called the maximal essential set. 

Cycle and acyclic graph 

A cycle is a path from a node Xj to itself. An acyclic graph is a graph that 

does not contain any cycles. 

Subgraph 

If we remove from a graph G = (X,U) a subset of its nodes, together with all 

the arcs incident to or from these nodes, we are left with a subgraph of G 

of the form: 



95 

Gy - (Y,U n (Y*Y)), for Y C X 

Removing a node 

We define the subgraph obtained from G = (X,U) by the removal of as: 

Absorbing a node 

Let G' be the graph obtained of the graph G = (X,U) by joining each 

predecessor of xk to each successor Xj of xk by an arc (x^.Xj). 

G' - (X,U U {(x1,xJ) e XxX | (xi>xk) e U, (xk,xJ) e U}) 

We define Gk as the graph obtained from G' by removal of the node xk- We say 

that Gk is obtained from G by absorbing the node xk- 

Feedback node set 

We call F C X a feedback node set of G = (X,U), when is acyclic. We 

denote the set of all feedback node sets of G by F(G). When the cardinality 

of F e F(G) is minimal in F(G), we call F a minimal feedback node set. We 

denote the set of all minimal feedback node sets by F*(G). 

3. SOLVING A PROBLEM WITH BACKTRACK PROGRAMMING 

To understand how the problem of determining all minimal feedback node 

sets is solved we must have insight in the attack of solving a problem with 

backtrack programming. 



96 

Specialization and simplification rules 

The general concept underlying backtrack programming is the application of 

specialization rules to the problem. A specialization rule creates several 

smaller versions of the problem, whose solutions solve the original problem. 

We may repeat applying this rule on the smaller problems we have created, 

until the starting problem is reduced to a collection of sub-problems whose 

solutions are immediately obtainable. A specialization rule which creates 

only one smaller version of the problem is called a simplification rule. 

The following rule is essential for backtrack programming: 

At every stage we apply the specialization rule to one of the most recently 

created sub-problems. 

This rule called depth-first search, may be implemented in a natural way in 

computer languages as ALGOL and RASCAL, which allow recursive procedure 

calls. 

The 'branch-and-bound' principle 

Suppose we have a problem whose solution consists of a set of sub-solutions 

and we have a backtracking method to find them. If we are only interested in 

sub-solutions which satisfy some optimality criterium in this set of sub¬ 

solutions, the backtracking method can be made more efficient by applying 

the 'branch-and-bound' principle in the following way. In the course of the 

search for sub-solutions, we keep record of the optimal sub-solutions yet 

discovered. Further we apply a bounding rule to find out if all sub-solu¬ 

tions of a sub-problem are not optimal. If this is the case, the exploration 

of this sub-problem is terminated. 

1|. OUTLINE OF THE ALGORITHM 

To solve the problem of finding all minimal feedback node sets we first 

construct a backtracking algorithm to find all feedback node sets. Then we 

apply the 'branch-and-bound' principle to find all minimal feedback node 

sets. The backtracking algorithm is constructed by using simplification and 



97 

specialization rules. The 'branch-and-bound' algorithm is then constructed 

by using a bounding rule and an additional simplification rule. 

The problem 

Let G = (X,U) be a graph and Y a set of nodes for which X fl Y = 0. We define 

the problem P as: 

P(G,Y) - fF U Y I F e F(G)} 

The starting problem 

The starting problem of finding all feedback node sets of G is now defined 

by: 

P(G,0) = F(G) 

The trivial problem 

The problem of a graph G = (X,U), where X = 0 is immediately solved by: 

P(G,Y) = {Y} 

Simplification rule 

Every feedback node set of G must contain its essential nodes. So we remove 

all essential nodes of G and record them: 

P(G,Y) - P(Gx_e. T U E), 

where E C X is the maximal essential set of G 

Specialization rule 

We have for G - (X,U) and 0 F C X: 



98 

is acyclic <=> 

(Gx p)' is acyclic, and xk is not essential 

Further we have for xk i F: 

^X-F^k ” ^Gk^X-F 

This implies: 

F is a feedback node set of G and x^ i F <=> 

F is a feedback node set of G', and xk is not essential 

This results in the following specialization rule. Choose a node xk e X that 

is not an essential node. Decompose the problem P in a sub-problem with the 

chosen node removed and recorded and a sub-problem with the chosen node ab- 

sorbed. 

P(G,Y) = {F U Y | F e F(G), xk e F} U {F Vj Y | F e F(G), xk t F} 

- P(Gk,Y U {xk})U P(Gk,Y) 

The backtrack algorithm 

We define the algorithm that solves the problem P(G,Y) by: 

- Remove all essential nodes and record them. 

- If there are any nodes left then choose one of these nodes and: 

- solve the problem with the chosen node removed and recorded, 

- solve the problem with the chosen node absorbed. 

- If there is no node left we have a trivial problem that may be solved by 

using all recorded nodes. 

At every stage of this backtrack algorithm the specialization rule creates 

two new problems which treats two smaller graphs. This ensures the reduction 

of the original problem by the algorithm in a collection of trivial 

problems. 



Bounding rule 

99 

When G has at least one strongly connected node we have: 

min {card (F) | F e P(G,Y)} > card (Y) 

An additional simplification rule 

The nodes which are not envolved in a cycle do not play a role in the search 

for minimal feedback node sets. Hence we may simplify the search by removing 

these nodes: 

F*(G) - F*(GX_S), 

where S C X is the maximal strongly connected set of G. 

The 'branch-and-bound' algorithm 

We define the algorithm that solves the problem of finding all minimal feed¬ 

back node sets of G by: 

- Search for all feedback node sets with the backtracking algorithm. 

- Remove all nodes not involved in a cycle before specializing each problem. 

- Record only the sub-solutions of the smallest cardinality yet found. 

- Use the bounding rule to decide if a sub-problem has no optimal sub-solu¬ 

tions and does not need to be solved. 

A refinement 

When there are several MSCC's in a graph G, it is possible to simplify the 

search for feedback node sets: 

F*(G) ■= {U^ Fi | Fx e F*(GC )}, 
i 

where are all the MSCC's of G 



100 

This rule may be implemented as a specialization rule in the algorithm, but 

we can't use it when there is only one MSCC. Then we have to apply the 

original specialization rule. An efficient MSCC identification algorithm is 

described by Tarjan (1972). 

5. PASCAL SOURCE TEXT OF THE ALGORITHM 

Here we list the source text of the algorithm in PASCAL. Comments are 

inserted to clarify the meaning of the several procedures and variables. The 

procedure warshall we uses the algorithm given by Warshall (1962) to compute 

the transitive closure of a graph. The last given specialization rule, which 

treats all MSCC's of a graph, is not implemented. 

TYPE 
node = 1..maxnode; 
(* Node-index i for xi; xi is identified with its index i *) 
nodeset = SET OF node; 
(* Set of nodes xi *) 
successors = ARRAY [node] OF nodeset; 
(* Used to store all the successors of each node in a nodeset *) 
graph = RECORD 

x : nodeset; 
sue : successors; 

END; 
(* Used to store a graph *) 
solutions = FILE of nodeset; 
(* Used to store feedback node set solutions *) 

FUNCTION firstnode (x : nodeset) : node; 
(* This procedure returns the first node of the nodeset *) 
VAR i : INTEGER; 
BEGIN 

i 1 ; 
WHILE NOT (i IN x) DO i i + 1 ; 
firstnode := 1 

END; 

PROCEDURE connect‘(VAR g : graph; k : node); 
(* This procedure connects each predecessor of xk with all its successors *) 
VAR i : INTEGER; 
BEGIN 

WITH g DO 
FOR i := 1 TO maxnode DO 

IF i IN x THEN 
IF k IN sue[i] THEN suc[i] := suc[i] + suc[k] 

END; 



101 

PROCEDURE findrafb (Var g : graph; VAR sol : solutions); 

(* 
This procedure writes all minimal feedback node sets of g on the file sol 

*) 
VAR bound : INTEGER; 

(* The minimal cardinality of the feedback node sets yet found *) 

PROCEDURE problem (g : graph; y : nodeset); 

(* 
This procedure solves P(G,Y). The specialization rule is executed by 
recursive procedure calls. 

*) 
LABEL 1 ; 

(* Exit label *) 
VAR k : node; 

(* The node used in the specialization rule *) 
BEGIN 

simplify (g, y); 
(* Simplification of the problem *) 
IF g.x <> [] THEN WITH g DO 

(* The trivial sub-problem with g.x = [] has solution {Y} *) 
BEGIN 

IF CARD (y) >= bound THEN GOTO 1; 
(* The bounding rule *) 
k := firstnode (x); 
(* Choose a node xk in X *) 
x := x - [k]; 
problem (g, y + [k]); 
(* Solve the problem with node xk removed and recorded *) 
connect (g, k); 
problem (g, y); 
(* Solve the problem with node xk absorbed. *) 

END 
(* Specialization of the problem *) 

ELSE 
BEGIN 

IF CARD (y) > bound THEN GOTO 1; 
(* The 'branch-and-bound' principle *) 
IF CARD (y) < bound THEN 
(* Is this solution better then all other solutions? *) 
BEGIN 

bound :» CARD (y); 
rewrite (sol); 

END; 
(* There is a new bound and forget the old solutions *) 

WRITE (sol, y); 
(* Write the solution y on the file sol *) 

END; 
(* record solution *) 

1:END; 

BEGIN 
bound := maxnode; 
(* Bound is assigned to its maximum value *) 
problem (g, []); 
(* The starting problem *) 

END; 



102 

PROCEDURE Marshall (VAR g : graph); 

(* 
This procedure computes the transitive closure of a graph, xj is a 
successor of xi in the transitive closure if there exist a path from 
xi to xj. 

*) 
VAR i : INTEGER; 
BEGIN 

WITH g DO 

FOR i 1 TO maxnode DO 
IF i IN x THEN connect (g, i) 

END; 

PROCEDURE findme (VAR g : graph; VAR me : nodeset); 
(* This procedure identifies the maximal essential set me of g *) 
VAR i : INTEGER; 
BEGIN 

me := []; 
WITH g DO 

FOR i := 1 TO maxnode DO 
IF i IN x THEN 

IF i IN sue[i] THEN me :=■ me + [i] 
END; 

PROCEDURE findmsc (g : graph; VAR msc : nodeset); 

(* This procedure identifies the maximal strongly connected set msc of g *) 
VAR i : INTEGER; 
BEGIN 

Marshall (g); 

(* Compute the transitive closure of g *) 
findme (g, me); 

(* 

The strongly connected nodes of a graph are the essential nodes of its 
transitive closure 

*) 
END; 

PROCEDURE simplify (VAR g : graph; VAR y ; .nodeset); 
(* This procedure executes the simplification rules *) 
VAR me,msc : nodeset; 

(* The maximal essential and strongly connected node sets *) 
BEGIN 

WITH g DO 
BEGIN 

findme (g, me); 
x := x - me; 
y := y + me; 

(* Remove all essential nodes and record them *) 
findmsc (g, msc); 
x := msc; 

(* Remove all nodes not involved in a cyclepath *) 
END 

END; 



103 

SUMMARY 

The described non-parametric method determines all subsets with a maximum 

number of elements of a finite data set, that are compatible with the strong 

axiom of revealed preference. This goal is obtained by deleting data points 

to obtain subsets with consistent choices. The strong axiom of revealed 

preference can be used to depict a graph as a set of nodes with arcs from 

to Qj if > pi,qj and qi ^ '•j' stated in these terms the problem is: 

Find all sets with a minimal number of nodes for which the removement of 

these nodes q^, with its arcs from and to q^ results in an acyclic 

subgraph. 

The computer program to solve this problem uses backtrack and 'branch-and- 

bound' principles and Warshalls' algorithm. 

REFERENCES 

Afriat, S.N. (1967), The Construction of Utility Functions from Expenditure 

Data, International Economic Review 7, 67“77 

Carre, B. (1979), Graphs and Networks, Oxford 

Guardabassi, G. (1971), A Note on Minimal Essential Sets, IEEE Transactions 

on Circuit theory CT-18, 557-560. 

Koo, A.Y.C. (1963), An Empirical Text of Revealed Preference Theory, 

Econometrlca 33, 6H6-664 

- (1971), Revealed Preference - A Structural Analysis, Econometrica 

39, 89-97 

-, and G. Hasenkamp (1972), Structure of Revealed Prefrence - Some 

Preliminary Evidence, Journal of Political Economy 80, 724-744 



104 

Landsburg, S,E. (1981), Taste Change In the United Kingdom, 1900-1955, 

Journal of Political Economy 89, 92-104 

Maks, J.A.H (1978), Consistency and Consumer Behaviour In the Netherlands, 

1951-1977, European Economic Review 11, 343-362 

- (1980), Empirical Preference Orderings and Applied Demand 

Analysis, Dissertation, University of Groningen 

- (1982), A Supplementary Method for Consumer Demand Analysis and 

Welfare Comparision Applied to United Kingdom and West German Data Sets, 

Kwantitatieve Methoden 5, 56-77 

- (1984), Consumer Behaviour in the Netherlands, 1951-1977, A 

Nonparametric Approach, Presented at the 1984 European Meeting of the 

Econometric Society in Madrid, forthcoming in the European Economic 

Review 

Mossin, A. (1972), A Mean Demand Function and Individual Demand Functions 

Confronted with the Weak and Strong Axioma of Revealed Preference: An' 

Empirical Test, Econometrlca 40, 177-192 

Smith, G.W. and Walford, R.B. (1975), The Identification of a Minimal Vertex 

Set of a Directed Graph, IEEE Transactions on Circuits and Systems CAS- 

22, 9-14 

Tarjan, N. (1972), Depth-first Search and Linear Graph Algorithms, SIAM 

Journal Computing 1, 146-160 

Varian, H.R. (1983), Nonparametric Tests of Consumer Behaviour, The Review 

of Economic Studies 50, 99-110 

Warshall, S. (1962), A Theorem on Boolean Matrices, Journal of the American 

Association for Computing Machinery 9, 11-12 


