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Abstract 

Transition matrices are frequently analysed using probabilistic models. 

Two basic models are the independence model and the quasi-independence 

model. In the context of transition matrices this last model is used 

to eliminate the influence of diagonal elements with a very high or 

very low frequency. Usually the independence models do not fit very 

well. In this paper we propose to analyze the residuals from these 

models with classical correspondence analysis and a generalization of 

correspondence analysis recently suggested by Escofier. Several 

advantages of this approach are discussed. Furthermore, a solution is 

proposed for the more general problem that in correspondence analysis 

single cells can dominate the solution. Two examples are given. 
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1.0 Introduction 

Longitudinal categorical data are frequently represented or summarized 

in transition matrices with elements f.., where f. . is the number of 
1J 

individuals in state i at time t and in state j at time t+1. In this 

paper we propose to analyse matrices of this kind with correspondence 

analysis. Correspondence analysis can be used to construct a multi¬ 

dimensional representation of the departure from independence of row 

and column variables of a matrix. When the departure from the 

independence model is not of primary interest, a generalization of 

correspondence analysis can be used to study the departure from other 

models, e.g. the quasi-independence model. Correspondence analysis 

has proved a useful tool to analyse ordinary contingency tables. We 

will show that correspondence analysis is also very suitable for 

broadening one's understanding of the structure in a transition matrix, 

especially when the number of categories is large. The present method 

can also be considered as a solution to a more general problem in 

correspondence analysis, i.e. that a solution is sometimes dominated 

by a single cell, or a few cells. It is shown that by using quasi¬ 

independence models together with a generalization of correspondence 

analysis this problem can be solved. 

A transition matrix is constructed from a series of observations of a 

variable. When this variable is observed at T time points (l,.,t,.,T), 

it is possible to construct a T-way contingency table by defining 

this variable at each time point as a different variable. A cell of 

this matrix corresponds for each time point with one category. In 

this cell a frequency represents the number of objects for which the 

corresponding combination of categories was scored. 

The total frequency in the T-way transition matrix is n, the number of 

observed objects. The total number of cells equals 1^*, where I is 

the number of categories, or states, of the variable that is observed. 

When T=2, we deal with a two-way transition matrix. When T>2, it is 

often found that the number of cells is larger than the number of 

objects. This is a very unfortunate situation in contingency table 

analysis: test statistics do not follow a known theoretical 

distribution, and solutions of exploratory analyses are very unstable. 

Therefore, in this situation the k-way matrix is often reduced to a 

two-way matrix. In such a two-way matrix a frequency f. . represents 

the number of occasions that category i at time t is followed by 
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category j at time t+1. When one subject is measured at say 20 time 

points, there will be 19 transitions. An implicit requirement for the 

correctness of such reductions in the data is that the transition 

process is stationary, i.e. that the transition probabilities p(j/i) 

do not change over time. 

Usually, transition matrices are analysed with loglinear models. In 

this paper we propose to analyse these matrices with correspondence 

analysis. We will show that this has several advantages for 

applications in ethology and social mobility respectively, especially 

in the case that the number of categories is not too small. 

We distinguish these two different fields of application because these 

fields have different traditions in the analysis of transition matrices 

with which correspondence analysis should be connected. In social 

mobility table analysis, where generally the sample size n is large 

and the number of time points T = 2, there is a tradition of model 

fitting: dozens of models are proposed to account for the structure 

in these tables. The use of a multi-dimensional scaling technique 

such as correspondence analysis is uncommon in this context, but can 

very well supplement the original analyses. In ethology, where often 

n=l and T is large, factor analysis is sometimes used to study the 

transition matrix. It is hoped that only a few tendencies (or motives, 

drives, etc.) are found that account for the diverse exposed behavior. 

Factor analysis is used in order to find these tendencies. However, 

in this context factor analysis is criticized for several reasons. In 

this paper correspondence analysis is proposed to circumvent some of 

these criticisms. 

In the sequel we will first discuss some of the usual methods to 

analyse transition matrices. In section 3 correspondence analysis will 

be explained briefly. In section 4 we consider the two fields, and 

discuss an example from each field. 

2.0 Usual ways to analyse transition matrices. 

In this section we give a brief sketch of the most commonly used 

methods to analyse transition matrices. Such matrices are usually 

analyzed with the independence model, whereby the scores on the 

variable for t and t+1 are independent. Mostly, this model fits badly. 

We will discuss a less restrictive model, the quasi-independence 

model, which allows special attention to be given to the diagonal 
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elements of the transition matrix, i.e. to the cases in which an 

object remains in the same state. We will conclude with a brief 

discussion of Markov chain models, which are treated here as a means 

to evaluate whether the data can adequately be described by a two-way 

transition matrix. 

A starting point in the analysis of sequences of observations (also 

called 'sequential analysis') is often the comparison between observed 

transition frequencies and transition frequencies expected under the 

assumption that the independence model holds, i.e. when the state on 

time t+1 does not depend on the state on time t. Under the independence 

model expected frequencies m^^ have the form 

(1) m. . = m.,m,./m,. 
ij 1+ +j ++ 

where a '+' indicates summation over the corresponding index. The 

difference between the observed frequencies f ^ and expected 

frequencies is tested with Pearson's chi-square statistic 

(2) X2 = II(f..-m..)2/m. . 
- ij ij' ' ij 

or with the likelihood ratio statistic 

(3) G2 = 2IZf..log(f../&..). 
ij ij ij 

When the independence model does not hold (which is usually the case) 

one either fits a less restrictive model to all cells, or one tests 

individual cells for significant departure from the expected value 

under the assumption that the independence model holds. This last 

approach is often used in sequential analysis. 

Although the testing of all cells individually is often done in 

applications, it should not be recommended. From a statistical point 

of view, it should be remarked that the tests are not independent. By 

studying individual cells one may loose sight of the relationship 

which may exis't between significant cells or categories. 

In ethological literature often the less restrictive quasi¬ 

independence model is fitted. This model states that for some cells in 

the matrix the expected frequencies are to be equal to the observed 

frequencies, and for other cells a sort of independence model should 

hold. This model can be useful when the elements on the diagonal of 
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the matrix are either extremely large, or extremely low. Extreme 

diagonal elements can be the result of the sampling strategy that 

is employed: for example when time sampling is used (e.g. the observed 

behavior is recorded every 3 seconds) or when only the transitions to 

other states are registered (in which case the diagonal is empty by 

design). When for the diagonal elements the observed frequencies are 

equal to the expected frequencies, the quasi-independence model can 

be written as 

(4) m.. = f.. when i=i 
ij ij J 

m.. ='a.b . when i#i, 
ij 1 J J’ 

where a^ and Ik can be estimated iteratively (cf. Bishop, Fienberg & 

Holland, 1975, p.188-202). The difference between observed and 

expected frequencies is usually tested using (2) or (3). Snijders 

(1975) developed a test in which it is explicitly taken into account 

that a transition matrix, and not a contingency table, is being 

analyzed. The quasi-independence model can also be used when there 

are off-diagonal structural zeros (e.g. in Slater & Ollason, 1972, 

where certain behavior states cannot be followed by each other by 

design) or when there are outliers in the matrix. In this context an 

outlier is a cell which departs a great deal from the specified 

restricted model, while other cells do not (Gokhale & Kullback, 1979). 

For example in communication research, the state 'question asked' is 

in most cases followed by 'question answered'. In section 4.2 we will 

analyse an example with an outlier. When the quasi-independence model 

does not fit - which is almost always the case in social mobility 

applications - less restrictive models can be fitted. We will come 

back to these models in section 4.2, when we discuss the social 

mobility literature. Of course, it is possible to test individual 

cells for departure from the quasi-independence model, but generally, 

this is not done. 

In applications, it is sometimes investigated whether the two-way 

transition matrix is an appropriate way to summarize the T-way 

transition matrix (cf. section 1). This can be done using Markov 

chain models. When a first-order stationary Markov chain holds, at 

any time the information on the state at time (t-1) is sufficient to 

predict the state at time t. Space limitations withhold us from 

treating this matter more thoroughly. Feller (1968) gives an overview 
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of properties of Markov chains. Bishop et al. (1975, p. 261-279) show 

that loglinear models can be used to fit Markov chain models. 

In Markov chain models transition probabilities play an important 

role. In the sequel these probabilities, which add row-wise up to one, 

will be called 'profiles'. As is also the case in usual contingency 

tables, profiles are important: when the state at time t is known, 

the profile specifies the probabilities that, given this known state, 

some other state will follow at time t+1. When for the transition 

matrix the independence model holds, the profiles in the matrix will 

be the same. Often one is interested in differences between profiles. 

In the next section a method is discussed which facilitates the study 

of these differences. 

3.0 Correspondence analysis 

For the analysis of contingency tables, loglinear analysis is already 

a very popular technique in the English speaking countries. In the 

last few years there is a growing interest in correspondence analysis, 

which has been the most important data analytic technique in France 

for many years. The basic works are those of the group around Benzecri 

(1973, 1980). In the English speaking world the growing interest is 

apparent from works written by De Leeuw (1973), Nishisato (1980), 

Gifi (1981) and Greenacre (1984). Apart from these books, the number 

of articles and contributions at conferences is growing rapidly. 

Strangely enough, correspondence analysis was already known in the 

English literature for a long time be it under several other names. 

Nishisato (1980) gives a full survey of the history of correspondence 

analysis. Greenacre (1984) accentuates that the various approaches 

have a different rationale and interpretation. He discusses this for 

the approaches 'reciprocal averaging', 'dual (or optimal) scaling', 

'canonical correlation analysis', and 'simultaneous linear 

regressions'. Van der Heijden (1984) and Van der Heijden & De Leeuw 

(1985) discuss relations between loglinear analysis and correspondence 

analysis. The recent flourishing in the use of correspondence analysis 

as a data analytic technique is probably due to the heavy emphasis put 

on the geometrical aspect of the method. On the other hand, canonical 

correlation analysis of categorical data (Kendall & Stuart, 1973, p. 

588-598), which is proved by De Leeuw (1971) to be formally identical 

to correspondence analysis, emphasizes the quantification aspect. 
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Here we will treat correspondence analysis briefly, emphasizing 

both geometrical and quantification aspects. A more elaborate 

description can be found in Van der Heijden & De Leeuw (1985). For 

details and proofs we refer to Gifi (1981) or Greenacre (1984), and 

the references mentioned there. First we discuss classical 

correspondence analysis, and secondly a generalisation of 

correspondence analysis, proposed by Escofier (1983), and applied in 

Van der Heijden (1984) and Van der Heijden & De Leeuw (1985). 

3.1 Classical correspondence analysis 

Correspondence analysis is a technique with which it is possible 

to construct a multi-dimensional representation of the dependence 

between the row and column variable of a two-way contingency table. 

This representation can be constructed using scores found for row and 

column categories as coordinates for category points. These scores can 

be normalized in such a way that distance's between row points or 

between column points in Euclidean space are equal to chi-square 

distances. This property implies that the use of correspondence 

analysis can be recommended in those cases in which the chi-squared 

distance is a meaningful measure for the difference between row or 

column entities of the matrix at hand (D. Sikkel, pers. comm., 1985). 

One field of application is in the analysis of contingency tables. 

Consider a two-way contingency table F with elements f.., having I 

rows (i=l,..,i,.,i',.,1) and J columns (j=l,••,j,.,j',•.J)• The 

chi-square distances are computed on the profiles of the corresponding 

rows or columns, where for instance the profile of row i is the row 

of values f^/f^. So 2jf„/f^+ = 1. The chi-square distance between 

rows i and i' is defined as 

(5) 62(i,i') = l. (fii/fP ~ . 

V" 
Formula (5) shows that 62(i,i') is a measure of the difference 

between the profiles of row i and i': when i and i' have the same 

profile, 62(i,i') = 0. 

Correspondence analysis proceeds as follows: let F be the matrix to 

be analysed; D^. and Dc diagonal matrices with marginal row frequencies 

fi+ and column frequencies f+^ respectively; E = Drtt'Dc/n,, where 

n = f++ and t is a vector of ones, the length of which depends on the 
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context. Elements of E have the following form 

(6) e.. = f. f ,/n, 
ij 1+ +J 

and thus E is the matrix with expected frequencies computed under 

independence model (1). Subsequently the singular value decomposition 

of the matrix D ^(F-E)D ^ is computed. Elements of this matrix have 
L r c L 

value (1/n2)((f..-e..)/e.. ), which are standardized residuals scaled 
' / ij ij" ij 

by (1/n) . These residuals are decomposed with (7): 

(7) Dr'^(F-E)Dc"^ = UAV , 

where U'U = I, V'V = I, and A is a diagonal matrix with singular 

values in descending order; a is the index for dimension. The 

dimensionality of the solution is equal to min (I-1,J-1). For the 

remaining dimensions = 0. 

U and V contain scores corresponding with the row and column 

categories. The scores for rows and columns are normalized as follows: 

(8a) R = D U n5 
r 

(8b) C = Dc'^ V n^. 

So R'D R = nl and CD C = nl. Furthermore t'D R = 0 and t'D C = 0: 
r c r c 

for each dimension row scores and column scores have a weighted 

variance of 1 and a weighted average of 0. 

One can make a simultaneous representation of row and column points in 

three ways (Gifi, 1981, p. 134-151): 

a) by using scores R and C=CA as coordinates, so that the Euclidean 

distances between column points are equal to chi-square distances. The 

weighted variance of the coordinates of the column points equals the 

eigenvalue Aa2 for each dimension. 

b) By using R=RA and C as coordinates so that the analogous result 

holds for the row points. 

c) By using RA and CA , so that a symmetric representation of row and 

column points is chosen. 

Row scores can be derived from column scores (and column scores from 

row scores) with the so-called 'transition formulas': 
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(9a) R = Dr‘1FCA'1, 

(9b) C = Dc'1F'RA'1. 

Bringing A from the right to the left side of (9a) and (9b), it can 

be seen that in the above mentioned simultaneous representation b) the 

row scores R are in the weighted average of the column scores C, and 

in a) the column scores C in the weighted average of the row scores R. 

This property is called the baricentric principle. In these averages 

the weighting is done by the column and row profiles. The transition 

formulas define the rationale for the 'reciprocal averaging' approach, 

since, apart from the multiplicative constant A, the row points are 

in the weighted average of the column points, while at the same time 

the column points are in the weighted average of the row points. 

The so-called reconstitution formula (Benzecri et al., 1973, 1980; 

Greenacre, 1984, p.93) can be found by substituting (8) in (7): 

(10a) Dr'1(F-E)Dc'1n = RAC, 

so that 

(10b) F = E + D RAC’D n-1 = n_1D (tf + RAC)D . 
r c rv ' c 

Elements of RAC are equal to (C^-e^)/e^j. Formulas (10a) and (10b) 

show that correspondence analysis decomposes the departure from 

independence in a matrix. This decomposition has the following 

relation with the well-known Pearson goodness-of-fit X2 statistic, 

which is defined in (2): 

(11) trace A2 = X2/n, 

where trace A2, the sum of the eigenvalues, is called the total 

'inertia'. Thus correspondence analysis decomposes the X2-value of a 

matrix (Kendall & Stuart, 1971, p. 588-594). The importance of 

dimension a can be evaluated by the ratio of the inertia of dimension 

a and the total inertia This quantity can be interpreted as 

the proportion 'explained' inertia for dimension a, or the proportion 

of X2 that is decomposed in dimension a. Thus the technique tries to 

picture the most important respects of the dependence of the row and 
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column variables in the first few dimensions. 

Clouds of points can be interpreted using chi-square distances: when 

two row points (or column points) are near each other, their profiles 

are similar. When profiles differ considerably, the distance between 

the points is large. The profiles of the marginal row and column 

frequencies of F, i.e. the profiles with values f^+/n aud f+j/n, are 

projected into the origin. When the distance of a category point to 

the origin is small, the profile of this category point does not 

differ much from the mean profile. The distance of row i and column j 

can be interpreted with the transition formulas; roughly one can say 

that i and j will be near each other when f.. >> e.and that i and i 
ij ij J 

are far apart when f. . « e. .. 
ij iJ 

An important aid for interpretating a solution is the property that 

the sum of the weighted squared distances of the row points (or column 

points) to the origin, is equal to for dimension a: 

(12) V * y v W- 
Using (12) one can evaluate the relative contribution of row i to 

dimension a with the ratio ((fi+/n)ria2^a2)/^a2■ The same holds for 

column point j, when one uses the last term of (12). Using Pythagoras' 

equation, it is also possible to compute for row i on dimension a 

the ratio of the squared projected distance and squared total distance 

to the origin. With this ratio it is possible to evaluate how good the 

total chi-square distance of row i to the origin is represented on 

dimension a. 

In the introduction of this section it was stated that correspondence 

analysis is formally identical to canonical correlation analysis of 

contingency tables. From this follows the special relation between 

and the Pearson product-moment correlation coefficient: the 

correlation between the row and column variable is, under all possible 

rescalings of the row and column categories, maximal and equal to Aj, 

when as quantification for the categories of both variables the scores 

for the first dimension is taken. X2 is equal to the maximal 

correlation of the quantified variables, where the quantification is 

restricted to be orthogonal to the quantification for the first 

dimension, etc. (Kendall & Stuart, 1973, p. 588-594). Correspondence 

analysis thus finds the maximal canonical correlations between the 

quantified row and column variable. 
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Practice with ordinary contingency tables shows that correspondence 

analysis is a suitable method to gain insight into the relation 

between the variables of a contingency table when the number of 

categories is large. 

3.2 A generalisation of correspondence analysis 

In this section we will briefly describe a generalization of 

correspondence analysis proposed by Escofier (1983). A more elaborate 

description can be found in Escofier (1983), Van der Heijden (1984) 

and Van der Heijden & De leeuw (1985). 

Escofier generalizes correspondence analysis by computing the singular 
-k -Si 

value decomposition of the matrix S (G,-G„)S ^ instead of the 
-h -k r 1 2y c 

matrix Dr ^(F-E)Dc ^ (see formula (7)), to find row and col-umn scores 

R and C, and singular values A. Here G^ and G2 are matrices of the 

same size, and and are diagonal matrices with weights for row 

and column categories. In contrast to classical correspondence 

analysis, Sr, Sc, Gj and G2 are not necessarily related in the way 

that D , D and E are to the matrix F. 
r c 

In the above mentioned references it is indicated that this 

generalization is difficult to interpret in its most general form. 

It is advised to use this generalization only in cases that G^ and 

have identical marginal frequencies, which are also taken as diagonal 

elements of and S^. Thus the generalization simplifies to the 

situation that in formula (3) only for E a matrix different from the 

independence model is taken. When we denote this matrix as G, formula 

(7), (8), (10) and (12) remain unchanged (apart from replacing E by G). 

Thus, 

(13) Dr'^(F-G)Dc'^ = UAV , 

etcetera. It should be noted that formula (11) does not 

since elements of the left term of (13) are not 

% residuals, but are equal to (f..-g..)/e..' 
ij 6iJ ij 

specified in (2). Formula (9) becomes 

where e. 
ij 

hold anymore, 

standardized 

has the form 

(14a) R = Dr'1(F-G)CA*1 

(14b) C = Dc"1(F-G)'RA'1. 
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Using the appropriate normalization, the Euclidean distances between 

the points are still equal to chi-square distances. A row point 

represents the difference between the profiles of the row in F and G. 

Interpretation of solutions remain basically the same (see Van der 

Heijden & De Leeuw, 1985). 

The reconstitution formula can be found by substituting (8) into (13): 

(15) F = G + DrRAC'Dcn"1, 

which is the same as the first two terms of (10b), apart from the 

fact that E is replaced by G. 

This generalization can be used for the analysis of residuals of 

various sorts of models. In Van der Heijden (1984) and Van der Heijden 

& De Leeuw (1985) it was used to decompose the difference between two 

loglinear models. Other possible examples of applications are to take 

for G expected frequencies following specific models for social 

mobility tables, confusion matrices, and import-export tables. In this 

paper we compare observed frequencies with the quasi-independence 

model. 

A further comment has to be made about the choice of the weights in 

and Dc. When the margins of F and G are equal, it is usually 

advisable to take these margins as weights in and (see the 

references mentioned above). In this way the row points are in the 

weighted average of the column points, and the other way around. 

Furthermore, a point represents the difference between the profiles of 

the corresponding category in F and G. A point of a different nature 

is that by choosing margins as weights for D^ and Dc, it is possible 

to find the generalized solutions using programs for classical 

correspondence analysis by taking (F-G+E) as input matrix. 

In the context of the quasi-independence model it may be useful to 

take other weights for and Dc- One possibility is to take as 

weights the margins of the cells to which the model ntj=a^bj (see 

equation (4)) is fitted. Of course, this makes no difference in case 

of structural zeros, when f..=m..=0. However, when there are cells for 

which f^j=nKj>0, this weighting is more "fair", since we are only 

interested in the cells to which expected values are fitted. Another 

possible choice for the weights, as suggested by D. Sikkel (pers. 

comm.), is to take elements a^ as row weights, and b^ as column 

weights. This has two advantages: first, elements of the left term of 
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(13) become equal to standardized residuals (f..-g..)/g-scaled by 
j, tj ij ij 

(1/n”5). (When g^j=0> the residuals will be zero). Therefore, (11) 

still holds, and the solution shows us the decomposition of the 

appropriate chi-squared statistic. Secondly, this weighting is also 

"fair". However, in spite of these advantages, we haven chosen for the 

usual weighting, since in this application we want to study the 

differences between profiles in F and G. Using the alternative 

weightings, this property is lost (compare equation (14)). However, 

in most cases these three alternatives will not lead to substantially 

different solutions. 

4.0 Correspondence analysis of transition matrices 

The rationale for applying correspondence analysis to transition 

matrices is the following. First, we saw in section 2 that profiles 

are an important concept in the analysis of transition matrices. It 

is often interesting to study whether and how two row profiles differ. 

This can be done using correspondence analysis, since, with the 

appropriate normalization, Euclidean distances between the rows are 

equal to chi-square distances. These distances can be interpreted as 

a measure of the difference between rows. Secondly, one of the 

arguments in section 2 for not recommending the study of significant 

cells was that one might loose sight of the relationship that may 

exist between significant cells. Correspondence analysis can be used 

to find this relationship. A third reason to apply correspondence 

analysis is that it can be used to find maximal canonical correlations 

between the row and column variable. This will be especially 

interesting in the case of social mobility tables, since there the 

number of time points T equals 2, and the canonical correlation can be 

interpreted as the correlation between for instance the occupations of 

a father and son. Finally, in ethology there is a tradition of 

factor analysis of standardized residuals of transition matrices. 

However, this approach can be critized for various reasons. 

Correspondence analysis, which also uses standardized residuals, 

circumvents many of these criticisms. We will come back to factor 

analysis of transition matrices in section 4.2. 

We have the following reasons for using Escofier's generalisation of 

correspondence analysis. First, we need it to compare the observed 

transition frequencies with other models than the independence model. 
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Often the diagonal elements of transition matrices cause a 

degeneration of classical correspondence analysis solutions. These 

elements are often either extremely high (compared with the diagonal 

elements for the independence model) or zero. In the sequel we will 

show examples of this. Here we will use the generalization to compare 

the observed frequencies with the quasi-independence model. In this 

model, for some cells the expected frequencies are equal to the 

observed frequencies, so that for these cells there is no difference 

to be reconstituted (see formula (15)). We think this is an elegant 

way to get rid of the usual dominating influence of the diagonal 

elements in classical correspondence analysis. A second reason to use 

a generalization of correspondence analysis is the following: single 

cells sometimes cause the degeneration of a correspondence analysis 

solution, in the sense that the solution is uninteresting. This is 

likely to happen when cell f^ is an outlier in the sense we discussed 

in section 2. In section 3 we pointed out that the categories of the 

row and column variable get a quantification in one or more dimensions 

(depending on the smallest number of rows and columns). A single cell 

can sometimes produce a dichotomy in the quantifications: for instance 

row category i and column category j have an extreme quantification, 

whereas the other categories have about the same non-extreme 

quantification. This problem is solved by defining these cells as 

structural zeros (Bishop, Fienberg & Holland, 1975, p.177-202) before 

computing expected frequencies, and decomposing the difference between 

thus defined quasi-independence model and the observed frequencies. 

We continue with two examples of transition matrices: one from 

ethology, and one from social mobility research. We have chosen for 

examples with large numbers of categories, since in these situations 

the advantages of correspondence analysis are most clearly visible. 

All correspondence analysis plots are made using the symmetric 

normalization. 

4,1 An example from ethology 

In ethology sequences are frequently encountered and they are analysed 

in various ways. A recent survey is Van Hooff (1982). Sometimes 

transition matrices are analysed with factor analysis on correlation 

matrices constructed from a transition matrix. This procedure is 

particularly useful when transition matrices are large, and when it 

is assumed that the manifest behavior states are triggered by a 
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smaller number of latent motives, drives, or comparable concepts. 

In this context factor analysis is used to find these concepts. 

First we will provide a more detailed description of this approach, 

then we discuss some criticisms. Finally it is shown how 

correspondence analysis circumvents these criticisms. 

Wiepkema (1961) was the first to apply factor analysis to transition 

matrices, in order to study the reproductive behavior of the 

bitterling. He transformed the transition matrix to a matrix with 

elements f^/m^, where the expected values m^ have the form as in 

formula (1). Subsequently Spearman rank correlations were computed 

between the rows, and between the columns, yielding two correlation 

matrices. On these matrices factor analysis was performed. A varimax 

rotation was used to facilitate interpretation. In some later 

applications this approach was modified by computing elements 

(f. ,-m. .)/m. .'5 - standardized residuals - instead of Balthazar 
tj iJ ij ij' ij 

(1972) compared results using not only the Spearman rank correlation, 

but also Kendall's rank correlation and Pearson's product-moment 

correlation. 

The following criticisms were raised against this procedure. First, 

factor analysis of the correlation matrix for the rows can produce 

results different from the factor analysis for the columns. These 

differences are due to the asymmetry of the matrix. Differences can be 

found, for instance for the number of extracted factors, for the 

interpretation of the factors, and for the values of the component 

loadings. These differences lead to different conclusions on the 

number and types of latent drives, between which it is difficult to 

choose. A second criticism is raised by Balthazar (1972), who showed 

examples in which correlations sometimes do not reflect the observed 

associations between the data: it is possible that a correlation is 

around zero or negative while two kinds of behavior trigger each 

other. He stressed that correlations should be meaningful in the 

context in which they are used. 

We propose to analyse transition matrices with correspondence analysis 

rather then with factor analysis. It seems that the two criticisms can 

be circumvented using correspondence analysis: first correspondence 

analysis produces the same number of factors for the rows and for the 

columns. Corresponding states can have a different position on these 

factors, which is the result from asymmetries in the data matrix. 

Secondly, the chi-square distance seems a meaningful association 



64 

measure for the similarity between two rows or two columns, as was 

pointed out in section 4.0. Clearly, in this context the chisquare 

distance seems to be a more meaningful measure then the correlation 

coefficient. Another advantage is that it is not necessary anymore to 

choose between f../m.. versus standardized residuals, and between the 
ij iJ 

three sorts of correlation coefficients. Furthermore, in section 3 it 

was stressed that classical correspondence analysis can be described 

as a method with which a matrix with standardized residuals is 

decomposed. In the ethological tradition sometimes correlations are 

computed on these standardized residuals, followed by the factor 

analysis decomposition of the correlation matrix. From this it is 

clear that correspondence analysis stays much 'closer' to the original 

data then factor analysis does. A last advantage is that 

correspondence analysis seems more malleable when certain cells should 

not influence the final solution, because it is possible to choose 

between a large variety of quasi-independence models. 

We will now discuss the analysis of a transition matrix, that we have 

taken from Slater & Ollason (1972). This matrix has the special 

property that there are off-diagonal structural zeros. We will show 

how to deal with such a situation. The behavior of isolated male 

zebra finches was recorded for several birds. As an example Slater 

& Ollason provided the transition matrix for bird 27 (table 1). The 

behavior states are stretching (STHTCH), locomotion (L0C0M), singing 

(SING), preening (PREEN), scratching (SCRTCH), bill-wiping (BWIP), 

sand taking (SAND), stereotypes (STYP), drinking (DRINK), feeding 

(FEED), gaps in behavior (GAP), ruffling (RUFFE), wing shaking (WSHK) 

and cuttle fish bone taking (FBONE). Precise descriptions of the 

Table 1: The matrix of transitions shown by bird 27. 
Source: Slater 6 Ollason (1972). 

3. 4. 5. 6. 7. 8. 9. 10. 11. 

1. Stretching 
2. Locomotion 
3. Singing 
4. Preening 
5. Scratching 
6. Bill wiping 
7. Sand taking 
8. Stereotyping 
9. Drinking 
10. Feeding 
11. Gaps in behavior 
12. Ruffling 
13. Wing shaking 
14. Cuttle fish bone 

taking 

121 
19 
2 

25 
2 

18 
69 
39 
7 

16 
1 

33 

3 
129 

18 
4 
2 
0 
2 
0 
1 
0 

12 
0 
3 

14 355 174 TT 

0 
3 
2 
9 

0 
0 
1 
1 
0 
0 
2 
0 
0 

TB~ 

2 
16 
3 
0 
1 

0 
1 

16 
2 
3 
1 
0 
0 

~FT 

0 
23 
4 
1 
0 
0 
0 

1 
1 
2 
0 
0 
1 

1 
82 

1 
2 
0 
6 

0 
42 

3 
1 
0 
2 

33 95 52 19 

12. 13. 14. 

1 0 0 
5 0 32 

11 0 4 
15 8 2 

1 2 0 
2 0 0 
0 0- 

2 0 2 
0 0- 

10 
1 0 0 

0 0 
0-0 
0 0- 

39 To inr 
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behaviors can be found in Slater & Ollason (1972). Only transitions 

to other states were recorded: a state cannot be followed by itself. 

Therefore the diagonal frequencies are zero. Furthermore, the matrix 

contains off-diagonal structural zeroes, since the four states sand 

taking, drinking, feeding and cuttle fish bone taking cannot follow 

each other: these activities take place in different locations, and 

are therefore interspersed with locomotion. We have omitted the 

category wing shaking from all analyses, since it has a very low 

marginal frequency, and it is followed and follows preening almost 

exclusively. In the plots we made, it was placed at an extreme and 

therefore clouded the relationship between the other states. 

Since we do not want the structural zeros to influence the solution, 

we use generalized correspondence analysis, where the differences 

between the observed frequencies and expected frequencies according to 

a quasi-independence model are decomposed. In this example, for all 

structural zeros f..= m.. =0, and for the other cells m. . = a.b.. The 
ij i j 

departure from the quasiindependence model is significant: X2 = 557 

with 119 degrees of freedom. The resulting correspondence analysis 

solution is displayed in figure 1. On the right hand side of the plot 

the grooming behaviors can be found, while on the left hand side the 

feeding and drinking behaviors are shown near locomotion, for (t) and 

(t+1). So, two clusters of behaviors are distinguished, accounting for 

47% of the departure from quasiindependence. Oh the one hand, bird 27 

performs different grooming behaviors which follow each other, on the 

other hand it performs a lot of nurturing behaviors with locomotion in 

between. It is not possible to interpret the second dimension in terms 

of clusters of behaviors, because corresponding points are on opposite 

sides from the origin. Therefore we should interprete this dimension 

in terms of asymmetries in the data (since if the data matrix would 

have been symmetric, corresponding points would have the same 

coordinates). The important asymmetries can be found by comparing the 

row and column contributions for corresponding points to the first and 

second dimension. On dimension 1 large differences can be found for 

e.g. ruffling (contribution to first dimension on time is t: .07; time 

is t+1: .29) and locomotion (time t: .32; t+1: .08), on dimension 2 

for singing (t: .03; t+1: .22), bill wiping (t: .04; t+1: .21) and 

ruffling (t: .00; t+1: .07). A further inspection of the data teaches 

us e.g. that ruffling is followed (relatively) much more by locomotion 

then the other way around; that preening is followed much more by bill 
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wiping than the other way around. It is not clear to us how these 

peculiarities should be interpreted. We do not discuss this further, 

because our main purpose was to show how one can deal with structural 

zeroes. For substantive discussions on zebra finches we refer to 

Slater & Ollason (1972). In the next example we discuss the situation 

where some frequencies are extremely high. 

Figure 1: Slater & Ollason, generalized correspondence analysis, 

structural zeroes excluded; X2 = 557, df is 119; 

large label denotes t, small label t+1. 

Xj = .492 (.465); X2 = .361 (.250); A = .255 (.125) 

DIMENSION 1 
-l.l« -0.95 -0.72 -0.50 -0.27 -0.0U 0-19 0.U1 0.6U 0.87 1.08 1.32 1.55 1.7B 2.00 
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STRTCH 

SAND 
FBtWfoM 

tTOp 
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R1IFFI 
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FEED STTP ojy 

DRINK 

L0Cffl0NE 

-1.18 -0.9S -0.72 -b.SO -0.27 0.19 0.41 0.64 0.87 

PREEN 

1.32 1.55 1.78 2.00 
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4.2 An example from social mobility 

Social mobility tables are most often analyzed using extensions of 

loglinear models: a simple model such as the independence model does 

not fit, while the saturated model uses too many parameters to 

describe the departure from independence. Haberman (1974) mentions two 

special aspects of social mobility tables. First, inheritance of 

status requires special attention - which implies special attention to 

the diagonal of the table. Secondly, in case of transitions to a state 

different from the original state, the stepsize is important: small 

steps are more likely than large steps. Models should account for the 

fact that the states are ordered in this respect social mobility 

tables differ from other transition matrices. To account for these 

properties, very many models have been proposed, e.g. by Goodman 

(1979), Haberman (1974), Bishop, Fienberg & Holland (1975), and Duncan 

(1979). In these models parameters are fitted to account for concepts 

as 'occupational inheritance', 'occupational immobility and/or 

persistence', 'overall upward or downward mobility', 'occupational 

mobility inertia', 'occupational mobility barriers' and 'perfect 

mobility'. 

In examples matrices are usually highly aggregated before models are 

fitted to them. Only recently has attention been given to the question 

in which situation this results in a loss of information (Breiger, 

1981; Goodman, 1981). We will show that from a data analytic point of 

view such an aggregation is not necessary. Furthermore we will 

illustrate how correspondence analysis can be used to trace the 

structure in social mobility tables. Earlier this was done by Klatzky 

and Hodge (1971), using classical correspondence analysis. We will 

TABLE 2: Social mobility from father's occupation to son's first full-time occupation 

FATHER'S OCCUPATION-^ 1. 2. 3. ^ 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 

1. Professional, self-employed 
2. Professional, salaried 
3. Managers 
4. Sales, other 
5- Proprietors 
6. Clerks 
7. Sales, retail 
8. Crafts, manufacturing 
9. Crafts, other 

10. Crafts, construction 
11. Service 
12. Operatives, other 
13. Operatives, manufacturing 
14. Laborers, manufacturing 
15. Laborers, other 
16. Farmers 

17- Farm laborers 

25 107 20 
8 395 64 
14 317 116 
7 120 34 

19 187 69 
4 203 41 
5 77 20 
7 208 49 
6 215 54 
6 132 29 
8 122 47 
•5 142 33 
9 160 37 
2 33 5 
4 54 11 

13 252 58 
2 39 8 

11 
42 

89 
^5 
52 
26 
20 

33 
38 
20 
24 
18 
28 
5 
8 

34 
3 

3 27 8 8 8 8 
9 116 40 34 59 15 
6 144 68 40 56 31 

2 73 27 13 25 7 
33 112 82 34 50 36 
4 145 42 23 49 19 
2 57 47 13 23 8 
2 174 52 151 67 29 
5 172 54 65 195 53 
6 131 51 54 71 170 
3 170 49 56 65 36 
6 184 71 55 102 49 
1 188 75 108 93 36 
0 40 13 26 22 13 
6 86 24 37 42 30 

10 188 94 86 145 121 
3 39 23 27 42 21 

5 12 11 4 7 2 1 
40 61 75 20 30 4 16 
33 82 89 16 60 5 7 
11 31 33 5 21 1 4 
35 69 103 24 63 11 14 
34 74 95 28 42 3 13 
12 48 46 11 19 3 4 
59 104 262 81 75 8 16 
57 195 175 47 110 6 34 
43 142 158 39 130 4 40 
126 130 174 51 110 6 37 

8l 391 239 67 149 11 58 
89 171 529 118 123 10 36 
25 55 97 92 38 1 26 
53 101 126 47 142 6 45 

102 323 399 150 259 457 981 
40 96 114 46 83 18 376 
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also do this using generalized correspondence analysis. The data from 

our example were taken from Featherman & Hauser (1975), and were also 

analysed by Breiger (1981) (see table 2). Breiger aggregated the 

categories on different theoretical grounds and tested which level of 

aggregation is permissible. After this he fitted several models to his 

aggregated data. 

First we analyzed these data with classical correspondence analysis. 

The first singular value, which can be interpreted as the first 

canonical correlation between the occupation of the father and the son, 

is .512. However, this correlation is for the greatest part based on 

the difference between farmers and farm laborers versus the other 

occupations. After ommitting these two categories, the analysis on the 

15x15 matrix resulted in a correlation of .356. 

Let us presume we are interested in the cases that sons do not have 

the same occupations as their fathers. In this case an interesting 

analysis is to compare the observed frequencies with the quasi¬ 

independence model as defined in (4). In the context of socia). 

mobility this model is called the 'quasi-perfect mobility model' with 

which is meant that, apart from occupation inheritence, the occupation 

of father and son are not related. The result of this correspondence 

analysis is shown in figure 2. The solution is dominated by the 

outlier frequency for farmer (father) (contribution on first dimension 

.693) and farm laborer (son) (.738). To have a better view of the 

relations between the other off-diagonal cells, we repeat this 

analysis by defining the quasi-independence model in such a way that, 

not only for the diagonal elements, but also for this outlier ^.=6^. 

The correspondence analysis solution can be found in figure 3. Only 

the first dimension is shown since 68% of the total inertia is 

decomposed in this dimension. The eigenvalues of the second and third 

dimension are not clearly separated. So, apart from the transition 

from farmer to farm laborer, there seems to be a one-dimensional 

structure for the cases that fathers and sons do not have the same 

occupation. From this dimension it can be seen how a certain 

occupation for' fathers is followed by different occupations for the 

sons, and vice versa. Note that the categories of fathers and sons are 

not ordered in the same way. For fathers this order is self-employed 

professional, manager, other sales, proprietor, clerk etcetera, for 

sons the order is other sales, salaried' professional, manager, 

self-employed professional and so on. If the solution were perfectly 
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one-dimensional, this could be interpreted as that for instance 

fathers who are self-employed professional, have sons who become 

(corrected for marginal frequency) other sales, salaried professional, 

manager etc, while sons who are other sales have mostly fathers are 

self-employed professional, then manager, proprietor, clerk and so on. 

Figure 2: Breiger, generalized correspondence analysis, diagonal 

elements excluded; X2 = 4785, df is 239. 

large labels denote occupations of fathers. 

= .367 (.658); X2 = .210 (.215); X3 = .081 (.032) 
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Figure 3: Breiger, generalized correspondence analysis, diagonal 

elements and cel (FARMERjFARMLAB) excluded; X2 = 2058, df is 238. 

Xj = .248 (.680); \2 = .083 (.077); \3 = .078 (.068) 

Original category numbers vs. quantifications for first dimension. 

Father-line is solid. 

0RIGINFIL SCORES 

5.0 Conclusions and discussion 

It is shown that correspondence analysis is a suitable method for the 

analysis of transition matrices. This has the following reasons: in 

transition matrices the profile concept is an important one, while in 

correspondence analysis distances between these profiles are projected 

on low-dimensional spaces; correspondence analysis can help to find 

Q
U
A
N
T
I
F
I
C
A
T
I
O
N
S
 



71 

relations between significant cells; maximal canonical correlations 

between the row and column variable are provided; correspondence 

analysis is an alternative for the use of factor analysis of 

transition matrices in ethology. Furthermore, correspondence analysis 

provides a clear view of the important asymmetries in the transition 

matrix. 

A generalization of correspondence analysis can be used to decompose 

the departure from the quasi-independence model. In this way problems 

with diagonal cells and outlier cells can be circumvented. 

Correspondence analysis is probably also a suitable method to study 

the departure from models other than the quasi-independence model. 

Furthermore, the study of the departure from the quasi-independence 

model will probably also be a good way to tackle similar problems with 

diagonal cells and outlier cells in other matrices, such as confusion 

matrices, import-export tables, and ordinary contingency tables. These 

two areas need further research. 
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