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TOE LINEAR FUNCTIONAL RELATIONSHIP MODEL FOR TWO VARIABLES 

* 
Bas Engel 

ABSTRACT 

In recent publications on the linear functional relationship model usually 

prior knowledge of the subject is assumed and often the model is presented in a 

multivariate setting which involves heavy matrix algebra. 

Introductions on the subject in standard textbooks are few. 

Sometimes the model is mentioned in textbooks on linear regression fseber (1977)] 

or presented in a muddlesome combination with the structural relationship model 

[Kendall and Stuart (1968)]. 

This paper contains sufficient information for the use of the two variable model 

on real data. It may also serve as a spring-board to more complicated 

multivariate models [Chan and Mak (1983, 1984), Mak (1981)]. 

Et>r a more detailed account of the two variable model see Engel (1984) . 
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0 INTRODUCTION 

0.1 A simple example 

In table 1 we have 9 pairs of observations, say (Yt1f Yt2) = 1f2,...,9 

[Kendall and Stuart (1968), p.404]. Suppose these to represent observations on 9 

objects made with two measuring instruments, say and M2. We are interested in 

the relationship between the measuring instruments. 

Suppose that measurements can only be made with error and let (xt1, xt2) 

represent the observations without error i.e. is the average of infinitely 

many repeated observations on the t-th object with measuring instrument 

(t = 1,2,...,9, i = 1,2). 

Hence, = E(Yt^) or 

Yti = xti + Eti with E(Etp) = 0 t = 1,2,...,9 i = 1,2 ...(1) 

where the represent the errors of measurement. 

A plot of the data in figure 1 suggests a linear relationship between x^ and 

xt2' say 
xt2 = a + P xti t = 1,2,...,9 ...(2) 

Expressions (1) and (2) represent the functional relationship model, or errors- 

in-variables model, for two variables. 

Thus our object is to estimate the slope and intercept of the line that 

represents the relationship between two variables which both can only be observed 

with observational error. 

A more general formulation of the model is presented in the next section. 

Table 1 
0 10 20 
Fig.1 

Y, 



0.2 Hie functiona] relationship model 
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Let two variables and be linearly related and suppose that we cannot 

observe these variables without error. 

For T observations (Y^, Y^) : 

Yt1 = Xt1 + et1 

Yt2 = xt2 + t:t2 
xt2 = a + p xt1 

where e:^ and are the observational errors with 

e = ( ^ ) . independent, E( e ) = 0 and Var(e.) = Q 
t2 ~c ~ ^ 

Usually the assumption of normality is added to the model 

...(4) 

£t ~ N(0, 0) ...(5) 

It will be convenient to parameterize the dispersion matrix Q as follows: 

Q = o2 (1 ♦P) , a, * > 0 , 

where o2 represents the variance of ^ is the ratio of the variances of e^ 

and Et^ and p is the correlation coefficient between e^ and e^ (t = 1,2,...,9) 

We will new discuss some possible approaches for estimation of a and (3. Observe 

that, given an estimate p for p, since a = x £ - Px 1, a natural estimator for a 

isa = Y2-pYr 

Hence, we are mainly concerned with the estimation of the slope p. 

0.3 Linear regression 

We might try to estimate p by the least squares estimator of the slope of the 

regression of Y^ and Y^, say p^. 

Fran (3) 

t2 = a + p Yt1 + (e,., - P e^,) 
t2 tr 

However, this is not a proper regression model since under normality 

E( et2- P etl Yt1 = Y> = E(Et2" P + 

= (P * - P) (Y 

oov(Et2-P etr Yt1) 

var(Yt1) 

...(6) 

(Y - E(Yt1)) 

xtl) = (P <l> - P) eti ^ 0 in general 



is biased and not consistent for 
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It can be shown [Seber (1977), p.156] that 

estimating p. 

For T not too small 

* T 

EtP^) « P ll + o2 / (1 - X .,)2)}"1 

Fran (7) we may derive a "bias corrected" estimate for p when information on o' 

is available [Richardson and Wu (1970), Halperin and Gurian (1971)]. However, 

there are still two important objections to the use of regression: 

- the estimate is essentially derived from the wrong model and not really 

1 T - 2 
unbiased since 7= E (xn“ x 1) must be estimated from the data, 

T t=1 tl .1 

- when it is not clear which of the variables should be casted for the role of 

independent variable there are two regressions which we may use when inform- 
2 2 2 

ation on both o and 41 o is available. (The regression of on xt2 gives 

us a bias corrected estimate for p ^). Unfortunately the estimators derived 

from the two regressions are unequal since obviously the inverse of an un¬ 

biased estimator for P will be a biased estimator for p 

In this paper we will discuss an estimator derived with the maximum likelihood 

method, for this method no casting for the roles of independent and dependent 

variables is necessary. 

0.4 Maximum Likelihood 

In this section we will simplify the discussion by assuming that a = p = 0. 

2 2 
The independent and unknown parameters left in the model are p, o , 4 and 

xti' = 1,2,...,T. 

Under the normality assumption (5) we find the following stationary point for 

the likelihood function: 

ML 

e y 
t=i 

t2 

E Y 
t=1 

tl 

V2 

. sgn ( E Y . Y ) 
t=1 ^ ^ 

.(8) 

where sgn(z) =1 if z > 0 and 0 otherwise. 

Expression (8) looks quite promising since this is the geometrical mean of the 

slope estimator of the regression of Y^ on Y^ and the inverse of the slope 

estimator of the regression of Ytl on Y^. 



However, g._ is not a consistent estimator for p (T -*■ °°) and does not correspond 
ML 

to a maximum but to a saddle point of the likelihood surface [Copas (1972), 

Kendall and Stuart (1968), 29.14, p.399-400].^ ^ 

This is a set-back but not really surprising since with each pair of observations 

(Yt1, Yt2) an unknown and independent parameter xt1 is entered into the model. 

For infinitely many observations (T -*■ we end up with infinitely many unknown 

parameters. On one side of a pair of scales we have a growing amount of 

information for T on the other side a growing number of unknown parameters 

and unfortunately for us the balance turns the wrong side. 

However, we can tip the scales in our favour when we assume that the variance 

ratio 4>2 is known. This is made plausible in Kendall and Stuart (1968) (29.15 

p.400, 401) by the following argument. The ellipses in figure 2- are confidence 

regions for the points (xt1, xt2) at some probability level. Our problem may be 

conceived as that of finding a straight line to intersect in sane sense as many 

as possible of these confidence regions. But in that case we need to know the 
2 

eccentricity of the ellipses i.e. the parameter * or <1 . 

Since in practice <t> is generally not known we need repeated observations, say K 

pairs of repeated observations at each point (xt1, xt2) • 

Fig. 2 

(*) In spite of this the estimator, which is called the CMFR (Geometric Mean 
Functional Relationship), is used in fishery studies, see Sprent and Dolby 

(1980). 
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0.5 Asymptotics 

Suppose that we have K repeated observations at the point (x^ )» i-e. our 

model is: 

Ytik = xti + Etik 
i = 1,2 

t2 
= a + p x 

tl 

ttk 
= ( ) ~ N(0, Q) independent 

Et2k 

k=1,2,...,K, t=1,2,...,T 

There are two possibilities for an asymptotic theory: 

(i) T constant and K -► ® 

(ii) t “ and K constant. 

In situation (i) ordinary maximum-likelihood theory applies, maximum likelihood 

estimators will be consistent (K ■* “) and asymptotically (K •» ”) normally 

distributed, large sample approximations for variances and covariances may be 

derived from Fisher's information matrix. 

In situation (ii) we meet the problems discussed in the previous section. 

This situation, which frequently occurs in calibration theory, will mainly be 

discussed in this p>ap>er. 

In sections 1 and 2 we will assume that Q is known, the practical implications of 

this assumption are discussed in 3. In fact we only need to assume £2 to be known 
2 

up to a constant, a for instance, but that does not matter for the theoretical 

development. 

1 ESTIMATION 

In this section we assume G to be known in (3 ), (4) and (5). Since Q is a 

positive definite matrix there exists a non singular matrix D such that 

Q~1 = D'D 

In matrix notation (3) can be written as follows 

Y^. = x^. + and B xt = a , 

where Yt = (Yt1, Y^)' , xt = (xt1, x^)' , B = (-p, 1) 

We introduce the following transformation of variables: 



Now 
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Ut = vfc + 6fc and H vt = a ...(11) 

where 

6t = D Et, H = ED-1 

Observe that Var(6t) = D C D' =1. 

We will refer to (11) as the u-v-model. 

1.1 Maximum likelihood and generalized least squares 

To derive the maximum likelihood estimators for the parameters we must minimize 

the quantity: 

U 
ML 

Z (Y - x )’ C 1 (Y - x ) 
t=1 ~ ~ ~ ~ 

...(12) 

In "ordinary" linear models (linear regression, ANOVA, ANCOVA) the maximum 

likelihood method and the method of least squares give the same results. 

In the functional relationship model a generalized least squares approach is 

introduced by Sprent (1966). At the end of this section we will show in theorem 1 

that this method is equivalent to the maximun likelihood method. 

Sprent's approach is as follows. Define residuals 

Rt = B Yt - a = Yt2 - P Yfci - a 

The variances of these residuals are given by 

Var(Rt) = BQB' = o2((t>2-2P(!>p + |i2) = a2 <p 

def 2 2 
where (p === ()>-2P(t>p+p ...(13) 

Minimize the following weighted sum of squares of residuals with respect to the 

unknown parameters: 

def 

GLS 't=i Var (V 
I 

t=1 

(Y _ “ P Y - a) 
t2_tl 

2 . 
a (p 

...(14) 
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In section 0.2 we mentioned a = Y 2 - P Y 1 as a natural estimator for a. 

Substitution ofa=Y2-PY1 in (13) leads to the following sum of squares, 

which does not depend on o: 

U' 
def 

GLS 
T. 

t=1 

«Yt2-?.2> - P(Yt1 Y.1>}2 
2 

o <(- 

= T 

v 
B C B' 

...(15) 

vrfiere ^ Z (Yt - Y ) (Yt - Y.)' is a matrix of sums of squares and 

products of the observations. 

As a third method we may estimate the parameters by minimizing 

U,GI£ with “ = Y.2 - P Y.r 

In the following theorem we will show that the three methods mentioned in this 

section are equivalent. 

Theorem 1 

For the functional relationship model described by (3) and (4) with 0 known 

(possibly upto a constant) the following approaches for estimation of the 

parameters a and p are equivalent: 

(i) Maximim likelihood under normality i.e. minimize from (12). 

(ii) Minimize from (13). 

(iii) Minimize U1^q from (15) with a=Y2~PY 

Proof: equivalence of (ii) and (iii) follows frcxn 

.2 

U = U1 + T 
UGLS GLS 

<Y.2 - P Y,1 - 

<1- a2 

It can easily be shown that the values of and UGLS remain the same after 

transformation according to (10). 

Therefore we will prove the equivalence of (i) and (ii) under the u-v model. 

U' does not depend on the value of the intercept a and the position of the 
GLS 

minimum of U' T„ does not change when we multiply H by a non-zero constant. 
GLo 

Therefore we may restrict ourselves to H = (-h,1). 



Observe that for some fixed set of values for h and a UML is minimal for those 

values vt such that || ut - vt || are the (orthogonal) distances, say dt, of the 

points ufc to the line V2 = oc + h . 

Now in triangle ABC in figure 3: 

tg (A) = h = so BC = h dt and (AB)2 = (AC)2 + (BC)2 = (1 + h2) dt 

T ,2 I (ut2 - h Ut1 - “)2 . 
SO U. y 

t=l c t=1 1 + hz 

Fran this expression it easily follows that and take their minimum value 

for the same values of a and h. This concludes the proof. 

1.2 The estimators 

We will derive the estimator for the slope p by minimizing U'^^. We will start 

in the u-^v model fran (11). 

In the u-v model we have to minimize the expression 

T H MuuH' / HH1. 

where H is a rcw vector, say H = (h , h ), and 
1 2 

Muu=Y 
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Let Muu = r A F' be the spectral decomposition of Muu i.e. the columns of r are 

orthogonal eigenvectors of Muu of length 1 and the elements of the diagonal 

matrix A are the corresponding eigenvalues, say and 

Let z = r'H', so 

H MuuH' = z'A z = Z X. > min(Xi) Z z? = X1 Z z^ = ^HH* 
~ ^ i i i i 

where A1 is the smallest eigenvalue of Muu. The equality sign holds for 

z1 = 1, z2 = 0, say z = er 

(*) 

Hie corresponding value for H, say H, follows from: 

Muufi' = r A r' fi- = r a r- r e, = r A e, = 

so h' is an eigenvector corresponding to the smallest eigenvalue . 

Since H = BD 1 and Q = D'D it follows that the estimator for B, say B, can be 

derived from 

B (Myy - A^) = O' 

where is the smallest root of |Myy - A Q| =0. 

This approach can easily be generalized to vectors Y, X, U and v of length p, 

with B an m x p matrix and a replaced by an m * 1 vector a. 

In that case we use the m smallest roots of |m^- A Q| =0' and the 

corresponding eigenvectors. 

The estimator p is derived from B = (- (3, 1). 

P can be solved fran a second order equation, the solution is 

p = m22 “ lt>2m11 + {(m22 “ l,>2m11)2 + 4 't,(ml2 “ P<l,n11)(<l*n12 “ pm^)}1/2 

2(m12 - pifim^) 
..(16) 

where = (m^j) • The estimator for a is: 

a = Y_2 - p Y>1 ...(17) 

(*) H is unique under the condition: B = B D“1, B = (- p 1). 
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Vfe can also derive estimators for xtl, say xtl, for t = 1,2,...,T. 

In the u-v model we obtain the orthogonal projections, say vt, of the points Ut 

on the estimated line. Fran (10) we use vt = D xt to derive the estimators 

xt = (xti, a + p xt1^' ' ttle result 

Xt1 

($ - p P) Yt1 + (p - p 4.) (Yt2 - a) 
t = 1,2,...,T ...(18) 

2 - -2 
where 4'=4> - 2P4>p + p analogous to (13). 

2 PROPERTIES OF THE ESTIMATORS 

2.1 Consistency of the intercept and slope estimators 

We will show, following a rather informal line of argument, that a and p are 

consistent estimators of a and p, notation: a ■* a and p -*■ p, under mild 

regularity conditions. 

Theorem 2 

For the functional relationship model described by (3) and (4) with £2 known, the 

following conditions are sufficient for a and p to be consistent estimators of 

a and p: 

lim x 1 exists and takes a finite value, say x^. 
T-xo 

T •••(19) 

lim h I (x.. - x .) exists and is equal to a finite positive value, 
T-ko T t=1 1:1 

say mg. 

Proof: Define analogous to frori (15) the matrices Mxx, M£.e;, MX£, Mex. 

Observe that M =M +M +M +M ■> M + Q , where the matrix Mn is 
yy xx ee xe ex t+<ji 0 u 

defined by ' 
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So Q-1Myy T^oo C + I. Since Hq is semi positive definite and rank (Mq) = 1 

the smallest eigenvalue of G 1Mg + I is equal to 1. 

Fran I'Vy - X Cl = 0 or |G ^ l| = 0 it follows by taking the limit T-*-“ 

that 1- 

Fran B x. = a we have B(x - x ) =0 and from multiplication by (x. - x )’ and 

summation it follows that B Mxx = 01. 

When we take the limit T -*• “ we find B Mq = O’. 

Now B = (- p, 1) follows fron B(Myy ~ Q) =0' and B is a continuous function of 

the elements of Myy- 

Hence, from M^ - X^ ^ Mq it follows that B B or p ^ p. 

“ = Y.2 " ^ Y.1 (“ + P V " P x0 = “• 

This concludes the proof. 

2.2 Asymptotic normality 

Under the normality assumption (5) the regularity conditions are also sufficient 

for asymptotic normality of the estimators a and p, see Mak (1983). 

- -1/2 
It can be shown, see Malinvatd (1980), p.399-400, that B/(B OB') / is a 

- -1/2 
linear function of M^y. Hence B/(B C B') is asymptotically normally 

distributed when Myy is. When we do not adopt assumption (5) we may add the 

following condition to the regularity conditions (19): 

T 

lim T + £ I y-i - y. 12+Y = 0 for some y > 0 ...(20) 
T-w t=1 

Fran Liapounov's theorem, see Parzen (1960), p.431-432, it follows from (19) 

and (20) that M^y and consequently B/(B C B')V2 is asymptotically normally 

distributed. Asymptotic normality of p easily follows from the consistency of B. 

2.3 Asymptotic variances and covariances 

In this section we will adopt the normality assumption (5). The estimators a and 

p are functions of the observations through the elements of the vector Y and the 

matrix Mw only. 
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From Taylor series approximations the asymptotic variances and covariance of 

a and p can be derived as functions of the asymptotic variances and covariances 

of the elements of Y and M and these will follow fron (5) and (19). 
yy 

Results derived by Patefield (1978) are given below. These expressions are not 

the same as those derived from Fisher's information matrix, see Patefield (1977). 

Therefore the results obtained by Barnett (1973) for the case p = 0 are not 

correct although as we shall see in section 3 in practice it will not really 

matter. 

Var (P) =2. ^ {ip m + (1 - p^) ... (21) 
33 T 2 0 

Var=><=(“) = 1 o2 (p + x2 Var (p) 
as T o 33 

Cov (a, p) = - x Var (p) 
as q as 

where rIq and xQ are fron (19) and <P is fron (13). 

In these expressions <P, x0 and m0 may be estimated by ip fron (18), Y 1 and 

io^o ^ ^ ~ 2 1 222 
{<p - PP) m,,+ 2 ip(()) - pP) (0 - pip) m _ + (P- pip) m22} - i- (1 - P ) <p o 

y,2 “ >P 

The last expression follows from: 

T — ^2 
E (2 S (x - x )2) = m + °~'t> (1 - p2) , for large T, by replacing the 

T t=1 t1 ’1 0 <p 

expectation on the left hand side by its realization and using (18). 

3 UNKNOWN DISPERSION MATRIX Q 

When there is no sufficient prior information on Q this matrix may be estimated 

fron repeated observations. When we have K repeated observations at the point 

xt t = 1,2,...,T, say Y^ k = 1,2,...,K t = 1,2,...,T, we may analyse the 

means Yt and use the pooled "within" dispersion matrix D in the formulae i.e. 

we replace D by Q/K. Direct application of maximum likelihood on the rrodel with 

repeated observations and C unknown gives the same results (Anderson (1984), 

Villegas (1961)). 
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When we have unequal nunbers of repetitions, say 1^ ,K2,... ,KT, we replace N1 by 

yy 
2 
T 

T 
Z K (y - y ) (y - y )' , 

T _ T T K T 
where y = Z K y / E K = £ y. ./ £ K , 

t=1 ~ t=1 t=l j=1 ~ 3 t=1 

and Q by Q. 

When we carp are two measuring methods, say M1 and M^, and the observational 

errors are uncorrelated it may be interesting to collect more repeated 

observations for the least accurate method. Suppose that we use repetitions 

for method ft (i=1,2) with r2 K > 0 t=1,2,...,T. By formulating the 

problem in terms of Yt 1 and (Yt 2K/|t>) we can easily derive expressions for the 

maximum likelihood estimators and their asymptotic variances and covariances. For 

more complicated patterns of repetitions we refer to Mak (1983). 

The extra variation due to the fact that Q is estimated fran the data is not 

taken into account in Patefield's results for the asymptotic variances and 

covariances of the estimators. Under the normality assumption (5), when £ follows 

a Wishart distribution, the asymptotic variance of p for £2 estimated from the 

data can be derived from Amemiya and Fuller (1984): 

Varas(P) = i ^ m0 + IT *2(1 “ p2) <1 + FT .-.(22) 
mo 

for K repeated observations at each point xt. 

When we compare (21) and (22) we see that both expressions are of the order 

2 2 2 
0(—-r——) but that their difference is 0( {° ^}^). Since in practice wiu 

mo Itl0 m0 
be small, the difference between (21) and (22) is not really important and in 

applications the following simple expression will do the job quite well: 

Var (P) = 1 4. g?/K ...(23) 
T mo 

A similar observation can be made with respect to the results derived frcm 

Fisher's information matrix in Barnett (1970). Although these results are 
2 

incorrect the difference with (21), (22) and (23) is 0( {-2-^. })2 and not really 

important. ^ 
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Consequently the same estimators and the same approximations for their variances 

and covariances may be used under the schemes (i) and (ii) from section (0.5) in 

most applications. 

4 MODEL VALIDATION 

4.1 A test for goodness-of-fit 

Let G = 1 (yt - xt)' 0-1 (yt - xt) ...(24) 

t=1 

is obtained by an oblique projection of yt on the estimated line L:x2= a+px^. 

Let zt be the projection on the true line L:x2 = a + p x^. 

Under the regularity conditions a and p are consistent (T-*->) estimators for a and 

p, so L will be close to L for large T. 

Under the normality assumption (5): 

T 
» I 

T-k* T=1 
(£t " ft)’ C~1 (£t ~ ^ ~ 4 

since (yfc - z^)' B ^ (yt - zfc) is the residual sum of squares in a weighted 

linear regression (with 2 observations and one unknown parameter x^ ), with 1 

degree of freedom. 

The chi-square approximation still holds when we replace 0 by a consistent 

estimator. 

The goodness-of-fit test based on G is similar to the "test for dimensionality" 

in canonical variate analysis (see Mardia, Kent and Bibby (1979), 12.5.3 p.341) 

and the likelihood ratio test mentioned in Anderson (1984) for the case T 

constant, K + “> from (9) (i). 

4.2 Residual plots 

The random variables 

Rt = - P Yti and 

Zt = UU ~ PP) Ytl + (P - P4>) (Yt2 - a) }/4- 

with <(< fran (13) are uncorrelated. 
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Replacing a and P by their estimators a and (3 the resulting statistics Rt and 

are similar to the residuals and fitted values in analysis of variance and linear 

regression. 

We may plot Rt against to check for departures from the model assumptions. 

Probability plots may be derived for residuals Rt or Y^- xfc^ i = 1,2. 

5 TESTS AND CONFIDENCE SETS 

Derivation of approximate tests and confidence sets for a and p fran the 

asymptotic distribution of a and p under the regularity conditions and (5) 

is straightforward. 

Alternatively we may derive exact confidence sets under assumption (5) as 

illustrated below. 

Suppose that we replace £2 by an independent estimator Q following a Wishart 

distribution on v degrees of freedom. 

When we insert the true values for a and p in (14) it can easily be shown that 

ip ugls ~ ft • v' 30 ^-distribution on T and v degrees of freedom. 

Hence, C = { (“) | UnTC;(g,P) < T Fi_a.T.vl is 30 exact (1-a) confidence set for 

(a, P)'. 

Similarly a confidence interval for p may be derived from using an F- 

distribution on T-1 and v degrees of freedom. 

Villegas (1964) defines a confidence set R for the line L : Xj = a + p x1 as 

follows: R = { x | there are a and b in C s.t. X2 = a + b x^}. 

Observe that when C is not the empty set the estimate (a, p)' must be in C. 

Both size and form of C may be unacceptable (a similar situation occurs in 

non-linear regression), this can easily be understood by looking at a similar but 

more simple situation. Suppose that we derive a confidence set for the unknown 

n 2 2 
mean of a N(n, 1) distribution from Z (U, - n) ~ X- , where U.... U are n 

i=1 1 ^ in 

independent observations. There may be no real valued solution to the equation 

n 2 2 
Z (U. - n) < x , . Furthermore the asymptotic relative efficiency of the 

j_=1 * 1 

test based on the chi-square distribution for the hypothesis |i = Hq relative to 

Student's test is equal to zero (Kendall and Stuart (1968), p.115, Ex. 20.5 and 

p.281. Ex. 25.3). 
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6 RELATED M3DELS 

In this section we will discuss, very briefly, models which are related to the 

functional relationship models. 

6.1 The structural relationship model 

The model is defined by (3), (4) and (5) with the added assumption: 

xt1 ~ N(ti, a2) ...(25) 

When Q is known, possibly upto a constant, maximun likelihood estimates of 

parameters are the same as in the corresponding functional relationship model. 

In the ultra structural model (25) is replaced by 

Xt1 ~ N<V 0 1 t = 

see Patefield (1978) and Dolby (1972). 

6.2 Factor analysis 

Suppose that we extend the structural model to situations with more than two 

variables. In section (0.1) we may be interested in a comparison between three 

measuring methods and where the triples of observations are made on 

2 
objects randomly chosen frcm a N((i, a ) distribution (see for instance Barnett 

(1969)). 

Without loss of generality we may formulate the model as follows: 

Yt1 = “i + ?! xt + eti 

Yt2 = “2 + P2 xt + Et2 ’•■(26) 

Yt3 = “3 + P3 Xt + et3 

with, say, , Et2, xt independently normally distributed with mean 0 and 

variance o2 and respectively. 

The model may be explored by factor analysis techniques. For examples in 

calibration see Theobald and Mallinson (1978), Joreskog (1979), Jansen (1980), 

for an application in a prediction problem see Ganse, Amemiya and Fuller (1983). 

Assumption (25) may not be tenable, but even in situations where (25) is valid it 

can be argued that the functional relationship model may be preferred, see 

Linssen (16) (p.2, 3). 

However, there are problems such as the prediction problem in Ganse, Amemiya and 

Fuller (1983) which cannot be solved with a functional relationship model. 
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7 APPLICATIONS 

It is difficult to find applications on real data which do not ask for too much 

background information. Therefore example 7.1, although not the most spectacular 

of applications, was worked out in detail because it offers a relatively straight 

forward and uncomplicated application of the functional relationship model. Data 

are presented in the appendix. 

Thanks are due to J. Aalbers, G.J. Eikelenbocm and P. Oostenbach of the Research 

Institute for Animal Production "Schoonoord". 

7.1 Gauging instruments for measuring the concentration of spermatozoa in 

pigsemen 

A measuring instrument of the type Spectronic 20 may be used to determine the 

concentration of spermatozoa in pigsemen for artificial insemination. 

The instrument determines the percentage transmission of light thrown through a 

suspension. 

For a particular instrument of this type, say instrument Mg, the following 

relationship between the concentration of spermatozoa, say C, and the percentage 

transmission, say P, was established: 

log(C) = a + b logit(P) where logit(P) = log -.. - . 

100 - P + 0.5 
The constants a and b were determined quite accurately. 

For two other instruments of the same type, say M1 and , relationships between 

concentration and percentage transmission are determined by comparing each of 

these instruments separately with Mg. 

From each of 15 (unknown) concentrations 18 sanples are obtained. Every 

instrument measures the percentage transmission of 6 of these samples. 

Let us denote the observations of instrument M^ by P^ i = 0,1,2. 

For each of the instruments the mean and sample variance on 5 degrees of freedom 

of the 6 sanples of each concentration are determined. Results for Mg are plotted 

in figure 4. Che concentration with a very large variance excepted we see a 

"Binomial pattern" i.e. large variances in the middle and smaller variances at 

the extremes. 

In figure 5 the percentage transmission Pg is replaced by logit(Pg) and the 

"Binomial pattern" has disappeared. The same holds for M1 and M2. 

In figure 6 the means of logit(Pg) and logit(P^), say yQ and y.) respectively, 

are plotted. 
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Motivated by figures such as 5 and 6 we adopt the following model for comparing 

M0 and Mi (i =1,2): 

yti = xti + Eti 

^to _ aoi + ^oi xto + Eto 

et^, Eto t=1,2,...,15 independent with mean zero, Var(Eto) = o^, Var(Et^) = a? 

i = 1,2. 

2 2 2 2 2 
the variances a and a. and the ratios if . = cr/a. are estimated from the data 

o i oi a i 
by pooling the "within concentration" sample variances. 

The variances of concentrations 7 for , 14 for M1 and 5 for Mj are rather large 

(see table 2) and not used in the estimation of o^, and c^. 

Results are given in table 3. 

In figure 7 the residuals Rfc are plotted against the fitted values (see 4.2) 

for Mq versus M^. The outlying residual corresponds to concentration 7. 

When we replace the value 10.0 (see appendix A) for Mg by the mean of the other 5 

repeated observations on concentration 7 the value of the goodness of fit 

statistic drops to 8.18. 

Similarly in comparing Mg and M2 when we replace the value 19.0 for concentration 

5 and M2 by the mean of the other five repeated observations the goodness of fit 

becomes 8.70. 

In figure 8 a probability plot of the residuals Rfc is given. The critical region 

is constructed by the method discussed in Michael (1983). When one of the fifteen 

points is in the critical region this is an indication of a strong departure from 

normality. Strictly speaking, the number of residuals is too small in this example 

for a probability plot to be reliable. 

concentration 
Mean of logit (p) Variance of logit (p) 

"o "2 "o "i "2 

1 
2 
3 
4 
5 

0.9462 
0.1124 

-0.4396 
-0.8383 
-1.1708 

0.8147 
0.0495 

-0.4847 
-0.9019 
-1.1844 

0.8578 
0.0859 

-0.4959 
-0.9016 
-1.2202 

0.0014 
0.0015 
0.0032 
0.0026 
0.0023 

0.0013 
0.0006 
0.0016 
0.0034 
0.0014 

0.0017 
0.0039 
0.0082 
0.0015 
0.0161 

6 
7 
0 
9 

10 

-1.4847 
-1.8621 
-1.9351 
-2.1468 
-2.3157 

-1.4625 
-1.7413 
-1.8984 
-2.0686 
-2.2655 

-1.4627 
-1.7345 
-1.8556 
-2.0699 
-2.2379 

0.0025 
0.0249 
0.0014 
0.0050 
0.0036 

0.0008 
0.0050 
0.0021 
0.0007 
0.0014 

0.0017 
0.0039 
0.0026 
0.0047 
0.0048 

11 
12 
13 
14 
15 

-2.4208 
-2,5867 
-2.6512 
-2.7929 
-2.8711 

-2.3767 
-2.4888 
-2.5850 
-2.6950 
-2.8082 

-2.3361 
-2.4538 
-2.5602 
-2.6645 
-2.7644 

0.0032 
0.0057 
0.0039 
0.0023 
0.0017 

0.0007 
0.0033 
0.0009 
0.0121 
0.0026 

0.0039 
0.0018 
0.0017 
0.0038 
0.0063 

Table 2 
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Fig. 7. Standardized residuals against 
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Mq versus Mq versus M2 

0O1 - 1.061 ± 0.007 

a01 « 0.074 ± 0.013 

Odv(^ 01, 1 02) * 0.0001 

G « 16.94 (15 df) 

■ 1.5 
01 

a* « 0.0003 

- 0.0005 

P02 = 1.065 ± 0.008 

a02 = 0.060 ± 0.016 

Gov (a 02f. £ 02) * 0.0001 

G = 17.01 (15 df) 

*02 -0-8 

• 0.0006 

Table 3 
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This example is intended as a warning against routine use of the functional 

relationship model. 

For 80 carcasses of calves 45 minutes post mortem the right M.rectus abdominis 

was removed. With the "Hunter Labscah" colour measurements were made in 4 

repetitions, both before and after 24 hours of cold-storage. In this example we 

restrict ourselves to the so called a-value (red/green axis of the spectre). 

Although a plot of the means of the repeated measurements after cold storage 

against the means of the repeated measurements before cold storage strongly 

suggested an underlying linear relationship the goodness-of-fit of the functional 

relationship model was 145.78 on 79 df which clearly indicates serious lack-of- 

fit. This may be explained as follows: for a randomly selected carcass let the 

"true" a-values before and after cold storage be represented by the randan 

variables x1 and X2 respectively following, say, a bivariate normal distribution. 

We may always write: 

x2 = a + P x1 + 6 , 

where x^ and 6 are independently distributed, and a, p and Var(6) are suitably 

chosen. For observations y1 and obtained before and after cold-storage 

respectively we have: 

yi = xi+ 

y2 = a + p x, + 6 + e2 

When we have a random sample of carcasses a, p, Var(6), Var(e^) and Var( e2) may 

be obtained from sums of squares and products within and between carcasses. When 

we do not have a randan sample, i.e. carcasses are selected, conditioning on x^ 

results in a functional relationship model. 

However, when the correlation between x^ and x2 is unequal to -1 or 1, i.e. when 

Var(6) # 0, we find ourselves in trouble because fron the repeated measurements 

we can obtain estimates of Var() and Var(e2) only, there is no information in 

the data on Var(6). When we ignore 6, effectively we analyse the data conditional 

upon both x1 and 6. The underlying relationship is not linear and although a plot 

of the data may suggest otherwise the goodness-of-fit may be quite poor. 

In example 7.1 we do not meet these problems because repeated observations on the 

same concentration correspond to different samples of that concentration. 
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7.3 Conversion of breeding values of imported bulls 

A bull is selected for breeding purposes on the basis of its predicted breeding 

value. This prediction is derived with BLUP (Best Linear Unbiased Prediction), 

see Searle (1971) and is a function of the daughter average of the bull and its 

relations (for instance the father and mother's father). 

In the simple situation that bulls are unrelated the predicted breeding value f 

of the bull is: 

f=wm+(1-w)M 

where m is the daughter average of the bull based on n daughters and M is a 

weighted mean of the observations on the offspring of all the sires in the data. 

The weight w is determined fran 

2 
where h is the heritability of "the trait in question. 

An important problem is hew to determine the breeding value of an imported sire 

from the breeding value determined in its country of origin. 

Let f2 be the breeding value of the bull in the importing country and f^ in the 

country of origin and assune that 

f2 = a + p f 1. 

Suppose that we have observations on offspring of the sire in both countries with 

daughter averages and m^, then 

mi = fi + Ei i = 1,2 

where is the mean of the within sire variation between offspring (i = 1,2). 

Var(E^) i = 1,2 may be estimated from the data. 

The parameters a and (5 may be estimated, by the techniques described in this paper 

and their estimates a and p may be used in the following conversion formula (see 

Wilmink, Meijering and Engel (1984)). 

f2 = a + p f,. 
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APPENDIX 

Data of application 7.1 

Concentration zero is a control and not used in the analysis. 

concen¬ 

tration 

Dbservation 

nunber 

perc. transm. 

meter 0 

perc. transm. 

meter 1 

perc. transm. 

meter 2 

concen¬ 

tration 

observation 

nunber 

aerc. transm. 

meter 0 

perc. transm. 

meter 1 

>erc. transm. 

meter 2 

0 

1 

2 

3 

4 

5 

6 

100.0 

99.5 

99.5 

100.0 

99.0 

100.0 

99.0 

99.0 

98.0 

100.0 

99.0 

100.0 

99.0 

98.5 

99.0 

99.5 

97.0 

99.5 

8 

49 

50 

51 

52 

53 

54 

12.5 

12.0 

13.0 

12.0 

12.0 

12.0 

12.0 

13.0 

13.5 

12.5 

12.5 

14.0 

13.0 

13.5 

13.0 

12.0 

13.0 

13.0 

1 

7 

8 

9 

10 

11 

12 

73.5 

72.0 

71.5 

71.5 

72.5 

72.5 

70.0 

68.5 

69.0 

69.0 

70.0 

70.5 

70.5 

69.0 

70.0 

70.5 

71.0 

71.5 

9 

55 

56 

57 

58 

59 

60 

10.5 

10.0 

10.0 

10.0 

9.0 

11.0 

11.5 

11.5 

10.0 

11.0 

10.0 

11.0 

11.0 

10.5 

11.0 

11.0 

10.5 

11.0 

2 

13 

14 

15 

16 

17 

18 

54.0 

53.0 

53.0 

51.0 

53.0 

53.0 

52.0 

52.0 

51.0 

51.0 

50.5 

51.0 

53.0 

54.5 

53.0 

50.5 

51.0 

51.0 

10 

61 

62 

63 

64 

65 

66 

9.0 

8.5 

9.0 

8.0 

8.0 

9.0 

9.0 

9.0 

10.0 

8.5 

9.0 

10.0 

9.5 

9.0 

9.0 

8.5 

9.0 

9.0 

3 

19 

20 

21 

22 

23 

24 

40.0 

37.0 

38.0 

40.0 

40.5 

39.0 

39.0 

37.5 

38.0 

38.0 

39.0 

36.5 

38.0 

38.5 

33.5 

39.0 

38.5 

39.0 

11 

67 

68 

69 

70 

71 

72 

8.0 

7.5 

8.0 

8.0 

8.0 

7.0 

8.5 

6.5 

8.5 

9.0 

8.5 

7.5 

8.0 

8.0 

8.0 

8.0 

8.5 

8.0 

4 

25 

26 

27 

28 

29 

30 

30.0 

29.0 

29.0 

32.0 

30.0 

30.0 

29.0 

27.0 

28.0 

30.0 

30.0 

28.0 

29.0 

28.0 

28.0 

30.0 

29.0 

28.0 

12 

73 

74 

75 

76 

77 

78 

6.0 

7.0 

7.0 

7.0 

6.0 

6.5 

7.5 

8.0 

7.5 

7.5 

7.0 

7.5 

7.5 

8.0 

7.0 

7.0 

7.0 

7.0 

5 

31 

32 

33 

34 

35 

36 

23.0 

22.0 

23.5 

24.5 

23.5 

24.0 

23.5 

22.0 

23.5 

24.0 

23.0 

23.0 

25.0 

23.0 

21.0 

24.0 

23.5 

19.0 

13 

79 

80 

81 

82 

83 

84 

6.0 

6.0 

6.0 

6.0 

6.0 

7.0 

6.5 

7.0 

6.5 

7.0 

7.0 

7.0 

6.5 

6.5 

6.5 

7.0 

6.5 

6.5 

6 

37 

38 

39 

40 

41 

42 

18.0 

17.0 

18.0 

19.0 

19.0 

18.0 

18.5 

19.0 

18.0 

18.5 

19.0 

18.0 

19.5 

18.5 

18.0 

18.0 

18.0 

19.0 

14 

85 

86 

87 

88 

89 

90 

5.5 

5.0 

5.5 

5.0 

5.5 

5.5 

6.0 

6.0 

6.5 

5.5 

6.5 

6.0 

6.0 

5.5 

6.0 

5.0 

6.0 

7.0 

7 

43 

44 

45 

46 

47 

48 

13.5 

10.0 

14.0 

15.0 

12.5 

14.0 

14.0 

15.0 

15.0 

14.0 

13.5 

16.0 

15.0 

15.0 

14.0 

14.0 

14.0 

16.0 

15 

91 

92 

93 

94 

95 

96 

5.0 

5.0 

5.0 

5.0 

4.5 

5.0 

6.0 

5.5 

5.0 

5.0 

5.5 

6.0 

5.5 

5.5 

5.0 

5.0 

5.0 

5.5 


