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TEST LENGTH AND ACCURACY OF PASS/FAIL DECISIONS IN CRM 

Dato N. M. de Gruijter* 

Summary 

It has been demonstrated that Fhaner's (1974) approximate solution to 

the minimum test length problem, based on an indifference zone approach, 

is inaccurate. A minor modification discussed here will generally pro¬ 

duce satisfactory results. The new procedure is extended to the situa¬ 

tion with stratified random sampling, where an exact solution is not 

feasible. 

1. INTRODUCTION 

In criterion-referenced measurement mastery generally is defined in 

terms of the proportion 7t of items from the relevant item domain that 

the examinee can answer correctly. When this proportion equals or ex¬ 

ceeds a standard n^, the examinee is considered to be a master. Exami¬ 

nees with tKtIq are non-masters. To determine whether an examinee has 

mastered the domain a random or stratified random sample of items from 

the item pool is administered. On the resulting test a minimum passing 

score, the cutoff score, is set. Only examinees with scores at least as 

high as this score are passed. 

In pass/fail decisions two kinds of error can be made: passing true 

non-masters and failing true masters. The probabilities of these two 

kinds of error should be kept at a reasonably low level by choosing an 

appropriate number of items and an adequate cutoff score. This problem 

has been rephrased by Fhaner (1974) in terms of the problem to find the 

minimum test length for which certain requirement are met. He suggested 

a solution to the test length problem for tests with randomly selected 

items. This approximate solution has been criticized by Wilcox (1976) 

who demonstrated the feasibility of an exact solution. 

Here it will be demonstrated that a combination of Fhaner's and 

Wilcox solutions is possible. In the case of the binomial model, the 

* Bureau Onderzoek van Onderwijs, Boerhaavelaan 2, 2334 EN Leiden, 

tel. 071-148333, tst. 5392. 



108 

exact Wilcox procedure can still be used without problems. The new 

procedure can, however, also be used in connection with the generalized 

binomial model, in which an exact solution is not feasible. This will be 

demonstrated for a situation with stratified random sampling. First, 

Wilcox and Fhaner's solutions to the test length problem are reviewed. 

2. THE SOLUTION OF WILCOX 

In the Wilcox procedure an indifference zone around is specified 

from a lower bound Tt^ to an upper bound The decision maker is indif¬ 

ferent with respect to the decisions concerning examinees with n-values 

in this zone. So represents the highest true non-master level and n2 

the lowest true master level. When random sampling of items is assumed, 

the probability of incorrectly passing a non-master at nj for a given 

number of items n and a given cutoff score c, PjO^c), can be computed 

with the aid of the binomial model. In the same way the probability of 

incorrectly failing an examinee at n2,P2(n,c), can be computed. In the 

Wilcox method as formulated by Hambleton and De Gruijter (1983) a maxi¬ 

mum P* is set to the probabilities of classification errors. The minimum 

test length is the smallest n for which the largest of the two error 

probabilities drops to a value equal to or lower than P*, with a cutoff 

chosen so as to make the larger error probability as small as possible. 

In other words, the minimum test length is the smallest n for which 

minc{max [P^^c) ,P2 (n, c) ] }SP*. (1) 

The minimum test length can be obtained as follows. One takes a low 

trial value n. For this value PjCn.c) and P2(n,c) are computed for all 

possible values c. One verifies whether Inequality (1) is satisfied for 

one of the c-values. If not one of the c-values is satisfactory, the 

test length is increased by one. The procedure is repeated until the 

first n is obtained for which the inequality holds. Due to the fact that 

the binomial distribution is discrete, it is possible that Inequality 

(1) is not satisfied when the test length is again increased by one. 

3. FHANER'S APPROXIMATION 

In Fhaner's approximation the binomial distribution is approximated 

by a normal distribution. The probability of incorrectly passing a 
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Tti-level examinee on an n-item test with cutoff c is approximated as 

$(~zj) with 

Zi = (c-nnil/n^S!, (2) 

where 4’ denotes the normal distribution function and Sx = TtxCl-rtxl^. 

Similarly, the second error probability is approximated as <H-Z2) with 

z2 = (n7t2-c)/n^s2, (3) 

where s2 equals n2(l-Jt2) . 

By setting Zx equal to z2 one obtains the cutoff score 

c = n(s27tx+si7t2)/(si+s2) , (4) 

which approximately minimizes max[P^(n,c)jP^Cn,c)] as a function of c, 

for fixed n. 

The common value of z equals 

z = n^(n2-nx)/(si+s2). (5) ffl 

The maximum acceptable error probability P* corresponds to a value of z, 

i.e. P* = 4>(-z*). Setting z^ in Equation (5) equal to this z-value and 

solving for n, the minimum test length is obtained with a c-value given 

by Equation 4. Generally the resulting value is not an integer, in which 

case n is raised to the first largest integer value. The factor 

(7l2-7ti)/(S1+S2) is similar to Birnbaum's global information measure 

(Birnbaum, 1968), the difference being that Birnbaum assumed items of 

equal difficulty. 

With respect to the approximate solution of Fhaner two problems 

arise. First, the accuracy of the normal approximation to the binomial 

migth be questioned. Secondly c in Equation (4) is a continuous function 

of Ttx and h2 and consequently might take all possible values, in con¬ 

trast with the real cutoff score. Fhaner noticed that the approximate 

solution tends to underestimate the minimum test length for a given 

criterion P*. For that reason Wilcox rejected the approximation in 

favour of the exact solution. 
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4. A NEW APPROXIMATION 

The error probabilities Pj and P2 for an optimal choice of c in the 

exact solution are highly irregular functions of n due to the discon¬ 

tinuous character of the raw score scale. The irregularity is nicely 

demonstrated in the numerical example of Hambleton and De Gruijter 

(1984), given in their second table. So, it is possible that the pro¬ 

blems mentioned at the end of the previous section, are not so much due 

to the normal approximation as to the particular choice of the cutoff 

score. This possibility is explored in this section. 

In this section the logistic approximation1 is used, and c is 

restricted to integer values minus a continuity correction of 0.5. For 

example, when examinees with scores equal to 8 or higher are to be 

passed, c is set equal to 7.5. The procedure can be as follows. First, 

preliminary values c0 and n are computed — with the logistic instead of 

the cumulative normal distribution -- using Equations (4) and (5). Next, 

the two permitted values c on both sides of the preliminary value are 

considered; as an example, when the preliminary Cq equals 17.2 the two 

permitted values are 16.5 and 17.5. For the two permitted values the 

probabilities Pj(n,c) and P^(n,c) are approximated with the cumulative 

logistic distribution function, and compared using the minimax rule from 

the Wilcox procedure. When both c-values result in unacceptable error 

probabilities, n is increased by one. The procedure is repeated until a 

satisfactory combination of n and c is obtained. 

For demonstrational purposes the new approximation has been used 

with 7ij=.65 and tt^.SS. Foe n=8 and n=20 the exact error probabilities 

for these two 7T-values, given the correct c-values, are given by Ham¬ 

bleton and De Gruijter (1983). In Table 1 both the exact and the approx¬ 

imated probabilities are given for n=8 to n=20. The final Cp-values of 

the approximation are all equal to the ^-values of the exact solution, 

when 0.5 is added to the c^-values in the approximation. The old, normal 

approximation is not given; there z (Equation 2) and z„ (Equation 3) 

and, consequently, the two error probabilities and are set equal. 

The logistic curve {l+exp(-Dz) 1} with scaling factor D=1.7 deviates 

nowhere more than 0.01 from the cumulative normal distribution <t>(z). 

1 
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Table 1 

Cutoff scores and probabilities of misclassification for 

rti=.65 and n2=.85 

Test exact solution 
Length 
(n) 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

c P1 
both solutions 

7 
7 
8 
9 

10 

10 
11 
12 

13 
13 
14 
15 
16 

0.17 
0.34 
0.26 
0.20 
0.15 
0.28 
0.22 
0.17 
0.13 
0.23 
0.19 
0.15 
0.12 

P2 

0.34 
0.14 
0.18 
0.22 
0.26 
0.12 
0.15 
0.18 
0.21 
0.10 
0.12 
0.14 
0.17 

logistic approximation 

1 

0.16 
0.32 
0.24 
0.19 
0.15 
0.26 
0.21 
0.17 
0.13 
0.22 
0.18 
0.15 
0.12 

0.38 
0.14 
0.18 
0.23 
0.28 
0.11 
0.14 
0.18 
0.21 
0.10 
0.12 
0.14 
0.17 

The largest discrepancy between the exact solution and the logistic 

approximation is less than 0.015 for n^l5; most discrepancies are much 

smaller. When the critical error probability P* is set equal to 0.17 

both the exact and the approximate procedure result in a minimum test 

length equal to 19. 

From the results in Table 1 and other results (for example, those 

from Tables 2 and 3, which will be discussed later) the new approxima¬ 

tion seems fairly accurate. The approximation is a reasonable one, at 

least for cases where rtj and n2 are not too extreme or too far apart, 

and these cases are more likely to occur in criterion referenced mea¬ 

surement . 

5. STRATIFIED RANDOM SAMPLING 

The approximation seems more interesting in case of stratified 

random sampling. Stratified random sampling is frequently used instead 

of ordinary random sampling in order to diminish differences between 
2 

alternative tests and to enhance accuracy of decision making. The gain 

of stratified random sampling over random sampling increases with in- 

2 
Of course, if item characteristics are known, tests consisting of 
randomly sampled items could be equated; in that case random sampling 
is not more than a possible item selection technique. In the present 
context the term 'random sampling' also entails that item character¬ 
istics are not known or not used. 
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creasing differences between stratum difficulties. It should also be 

clear that this advantage can only be fully exploited when the stratum 

difficulties are known. It will be assumed that this is the case. 

Writing 7t(i) for the average item difficulty of stratum i for an 

examinee with domain score 71, and for the relative size of the stra¬ 

tum, it is clear that 

n = if/n(i). (6) 

There are various possible stratified sampling strategies, one being 

proportional sampling. In proportional sampling the numbers of items 

selected from different strata are proportional to the relative sizes. 

The total score in proportional sampling is distributed according to the 

generalized binomial model with parameters n(i). The expected total 

score equals nn and its variance equals 

var(Xl7t)=n2f^7i(i) [l-7t(i) ] 

=n7t(l-rt)-nvar[rt(i) ]. (7) 

With stratified random sampling the two-term approximation to the 

generalized binomial model (cf. De Gruijter & Van der Kamp, 1984, Equa¬ 

tion 6-41) could be used in order to obtain a cutoff score and error 

probabilities for a given choice of n. Alternatively, the simpler logis¬ 

tic approximation could be used, replacing the standard deviations for 

the binomial model in Equations 2-5 by the standard deviations for the 

generalized binomial model; in other words, sf should be set equal to 

n ^varCXjnj), using Equation 7, and s| to n ^var(X|n2). 

As an example, take an item domain with three equally sized strata. 

As stratum difficulties for a rt2-level examinee the values n2(l)=.4, 

n2(2)=.6 and n2(3) = .8 are chosen, i.e. n2 is equal to .6. The difficul¬ 

ties for a Ttj-level examinees are nl(l)=.22, 7ti(2)=.4 and 7i1(3)=.64; in 

other words, /tj is set equal to .42. 

The division of the domain in strata can be neglected in favour of 

random item selection, which produces the results in Table 2. The ap¬ 

proximation is fairly accurate, even better than the one in Table 1. 

Undoubtedly this is due to the fact that the 71-values are less extreme 

in this example. 
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Table 2 
Cutoff scores and probabilities of misclassification for 

7i, = .42 and 7I2=.64 under simple random sampling 

Test 
Length 

(n)_ 
8 
9 

10 
11 
12 
13 
14 
15 
16 

17 
18 
19 
20 

exact solution 

both solutions_ 
5 0.21 0.41 
5 0.31 0.27 
6 0.20 0.37 
6 0.29 0.25 
7 0.20 0.34 
7 0.28 0.23 
8 0.19 0.31 
8 0.26 0.21 
9 0.18 0.28 
9 0.25 0.20 

10 0.18 0.26 
10 0.24 0.19 
11 0.17 0.25 

logistic approximation 
P 
2 

0.20 
0.30 
0.20 
0.29 
0.19 
0.27 
0.18 
0.26 
0.18 
0.24 
0.17 
0.23 
0.17 

0.41 
0.26 
0.37 
0.24 
0.33 
0.22 
0.30 
0.21 
0.28 
0.19 
0.26 
0.18 
0.24 

Table 3 gives the results for the stratified random sampling plan. 

Results are reported only for test lengths which are multiples of three, 

as these are the only possible test lengths in proportional sampling 

from the domain at hand. The approximation to the customary two-term 

approximation is fairly accurate. 

Table 3 
Cutoff scores and probabilities of misclassif ication for 7t1=.42 
and n2=.64 under stratified random sampling 

Test 
Length 
(n)_ both solutions 

two-term approximation logistic approximation 
d P P P 

*2 1 2 

9 
12 
15 
18 

5 
7 
8 

10 

0.30 
0.18 
0.25 
0.16 

0.26 
0.33 
0.20 
0.25 

0.29 
0.18 
0.24 
0.16 

0.25 
0.32 
0.19 
0.25 

From a comparison of Tables 2 and 3 it is clear that stratified sampling 

only resulted in minor improvements in accuracy. For example, the two 

error probabilities for n=9 and c=5 are 0.30 and 0.26 in the two-term 

approximation to the generalized binomial model, and 0.31 and 0.27 for 

the binomial model. This result is not unexpected: only when the varia¬ 

tion in item difficulties is very large, the gain from using the gene- 

rilized binomial model is substantial. 
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6. DISCUSSION 

It has been demonstrated that the normal approximation to the 

probabilities of misclassification in the indifference zone approach, 

which has been suggested by Fhaner, can be improved through a minor 

modification. As such, this result might not be very interesting while -- 

with some extra computational effort — an exact solution can be obtain¬ 

ed for the binomial model. The new approximation has, however, also been 

used with a stratified random selection plan, in which it is an alterna¬ 

tive to the two-term approximation to the generalized binomial model. In 

principle it could be applied with nonrepresentative item selection 

plans, like the optimal item strategy suggested by Hambleton and De 

Gruijter (1983), as well. This could be achieved by substituting the 

relevant relative true scores for the domain scores in Equations 2-5. 
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