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A MULTIPLE REGRESSION TECHNIQUE FOR DETECTING OUTLIERS 

A.Leroy * and P.Rousseeuw ** 

ABSTRACT 

The ordinary least squares regression method is not a 

reliable tool in regression analysis without First diagnosing 

possible outliers present in the data set. The least median 

o-f squares regression technique (Rousseeuw 1984) , which is 

designed to lessen the impact o-f outlying observations, is 

presented and some alternatives are given. The output of a 

Fortran implementation of this regression technique, called 

PROGRES (Leroy and Rousseeuw 1984), is illustrated with an 

example. The results can be interpreted by means of a 

graphical representation of the standardized residuals. It 

is showed how PROGRES can be used as a diagnostic tool in 

regression analysis. Furthermore, conclusions are drawn from 

a small simulation study which compares some robust and 

non—robust regression estimators in different design 

situations. 

1. INTRODUCTION 

In a linear model,an output variable y is written as a linear 

combination of p input variables x^,...,Xp 

yj = xli©l +-.-+ xpiep + ei * i=l,...,n 
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where ej is 

mean zero 

people have 

exclusively 

defined by 

often assumed to be normally distributed with 

and standard deviation a. Until recently, most 

been estimating the coefficients Gi,...,©p almost 

by means of the least squares (LS) method. 

n 

minimize £ r^ 

i = 1 

(1.1) 

where the residuals rj equal yj - xiiGj — ... xpi6p- 

The main advantage of this method lies in the fact that 

explicit formulas exist for the estimates, making it the only 

feasible method in the pre—computer age. For the same reason, 

nowadays many computer programs for LS are available, which 

explains why this method has been used so often. Moreover, 

many mathematicians adore the LS estimator because of its 

nice optimality properties under the condition of a normal 

error structure. In practical situations however, this 

condition is hardly fulfilled, and the LS regression 

technique is quite sensitive to the presence of outlying 

points. Therefore, it is important to have a diagnostic tool 

for identifying such points. In the last decades, several 

statisticians have given consideration to robust regression 

(see Rousseeuw 19S4 for an overview) on the one hand and to 

regression diagnostics on the other hand. Both approaches are 

closely related by two important common aims, namely 

identifying outliers and pointing out inadequacies of the 

model. The books of Belsley, Kuh and Welsch (1980) and Cook 

and Weisberg (1982) are dedicated to regression diagnostics. 

However, most of these methods deal with the effects of 

deleting a single point, and often do not succeed in 

identifying multiple outliers. On the other hand, the robust 

regression technique described in this paper does manage to 

solve this problem. When the robust and the LS fit differ 

substantially, this indicates that the data require a 

thoughtful analysis. 

In order to express in a statistical way the robustness of a 

regression technique against outlying observations, 

Hampel(1971,1975) proposed a general asymptotic definition of 

the breakdown point €*. We will use the finite sample version 
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of this notion given by Donoho and Huber (1982), namely 

€*(X,T) = min Cm/n ; sup ||T(X’)II = m> 

where the X' are obtained by replacing m points of the sample 

X (containing n data points) by arbitrary ones . T stands 

for a regression estimator. In words, €* is the smallest 

fraction of contamination that can cause the estimates to 

take on arbitrarily large values. For LS regression €* equals 

1/n because one bad point is sufficient to carry the LS 

estimator over all bounds. Considering the limit for n going 

to infinity (p fixed), one can establish that LS has €* equal 

to OX. The best possible value for the breakdown point is 

50X, because for larger amounts of contaminated data in a 

sample, one cannot tell the ’good’ and the ’bad’ observations 

apart. The first regression estimator which is equivariant 

for linear transformations on the x^ and which attains a 

breakdown point of 5DX is the least median of squares (LMS) 

estimator (Rousseeuw 1984). 

The LMS estimate of © corresponds to 

minimize median rj* (1.2) 

© i 

Compared to LS (1.1), the sum has been replaced by the 

median. Preceding improvements towards robustness consisted 

of substituting the square by something else, but none of 

these led to a high breakdown point. 

In the following two sections we will outline the algorithm 

we use for computing the LMS estimator as well as some other 

robust regression estimates derived from it. Section 4 is 

devoted to an example. In section 5, the results of a 

simulation study show the finite sample performance of some 

robust and non-robust regression techniques in three 

different situations. 

2. ALGORITHM FOR COMPUTING THE LMS ESTIMATES 

The special case of one—dimensional estimation of location is 

obtained by putting p=l and Xj=l for all i in (1.2). Then the 

minimization becomes x. 

minimize median (yj - 0)2 (2.1) 
A 

© i 

and the sample reduces to (yi)i=l,...,n- 
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The LMS estimate is then equal to the midpoint o-f the 

shortest half of the sample (yi>i = i.n- T*16 shortest half 

is given by the smallest of the differences y(h)-y(l)> 

y<h+l)-y<2>>-» y<n>~y<n-h+l>> Where h=Cn/21+l (Cxi means 

integer part of x), and y<i) < ... < y<n) are ordered 

observations. 

The fallowing simple example will illustrate the LMS 

estimate. Consider the one—dimensional sample consisting of 

the observations: 

21, 23, 25, 26, 26, 299. 
1—1-1-1 1 I 

The halves of this sample are indicated by the lines below 

the values. The LMS estimate of location is 24.5, because it 

is the midpoint of the shortest half. The least squares 

estimate of location is the mean, which equals 70 in this 

sample. Comparing both estimates, it appears that 24.5 is a 

better parameter of location for the majority of the data. 

The aberrant value 299 has badly affected the mean, whereas 

the LMS has completely neglected its presence. 

In the general regression model, it is probably not possible 

to write down a straightforward formula for the LMS estimate. 

For this case we have therefore constructed a heuristic 

algorithm which can be outlined in the following way: 

Choose at random p observations out of the n and determine 

the unique regression surface through these p points. This 

solution gives a trial estimate (©i°,..., 0p°). This 

procedure is repeated m times and the trial estimate for 

which the objective function is minimal is retained. The 

number of replications (m) is determined by requiring that 

the probability that at least one of the m subsamples is 

’good’ is at least 95X. A subsample is ’good’ if it consists 

of p good observations of the sample, which may contain (in 

the most extreme case) up to SOX of bad observations. The 

expression for this probability is 

1 — (1 — (l/2)P)m if n/p is large. 

(This idea was already used by Stahel in 1981 for 

multivariate location.) 

When n and p are rather small, all possible combinations of p 
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points out of n are considered instead of the repeated random 

subsamp1es. 

The basic idea of this algorithm is illustrated in the 

artificial two-dimensional example below: 

For this case n equals 9 and p equals 2. The algorithm will 

handle all pairs of points out of the 9. We will restrict the 

explanation for only three such combinations, namely <f,g), 

<f,h) and <g,h). Let us start with the points f and h. The 

regression surface (which is a line here) passing through the 

points f and h is found by solving the system of equations 

y’ = Q^x’ + e2° 

y" = e1°x" + 02° 

where <x’,y’> and <x",y") are the coordinates of respectively 

f and h. The trial estimate ei" and e2° are the unknows. 
Then, the residuals yj - ei°Xj - e2° corresponding with this 

line are determined for each point i in the sample- The 

median of the squared residuals (which is the objective 

function) is calculated and compared with the best value 

eventually found for previous pairs of points. As 

minimization of the squared residuals has to be performed 

a 
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the trial estimate corresponding with the points -f and h will 

be retained only when it leads to a lower objective function 

value. Examining the scatterplot above, it is easy to find 

out that the pair of points <f,g) will be the ’best’ out of 

the three combinations considered. Indeed, the majority of 

the observations have a small residual with respect to the 

line passing through f and g. Repeating this procedure for 

each pair of points will finally yield the lowest objective 

function value. 

When handling a regression model with intercept, the 

estimator of location is used for finding the constant term. 

Once are found, ep is the U1S estimate of 

location of the sample constituted by 

ys. 

zi = Vi xl,i®l ~ ■•■ ~ xp—l,i®p—1 » i=1,...,n. 

Apart from the regression coefficients, the scale parameter cr 

(r=5tandard deviation of the ej) has to be estimated in a 

robust way. For that purpose a preliminary scale estimate s® 

is calculated. This s° is based on the value of the objective 

function, multiplied by a finite-sample correction factor 

(which depends on n and on p) for the case of normal errors: 

s® = Emin median rj2!** x 1.4826 x (1 + 5/(n-p> ) (2.2). 

6 i 

The factor 1.4826 = l/§~*(3/4) was introduced because 

medj i| (3/4) is a consistent estimator of tr when the 

random variables ^j are distributed like N(0,!r). From an 

empirical study, it appeared that the scale estimator was too 

small in normal error situations, especially for small 

samples. Therefore the multiplication with the factor 

1+5/ (n-p), which has been derived from a simulation study, 

was necessary. 

With this scale estimate the standardized residuals rj/s® are 

computed and used to determine a weight Wj for the i—th 

observation as follows: 
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wi = 

elsewhere 

(2.3) 

Then the final scale estimate for the LMS regression is given 

by 

n n 

ir* = C ( E Wj rj*) / < £ WJ - p) 3^. 

i=l i=l 

At the classical model, or* would be a consistent estimator of 

a if the weights wj wre independent of the data <s<i,yi>. 

This algorithm has been implemented in FORTRAN. We called it 

PROGRES: program for robust regression. 

The output of PROGRES consists of results concerning LS and 

concerning reweighted LS based on the LMS, which is 

described below. For both methods, PROGRES gives the 

regression coefficients with their standard deviations and 

T—values, their variance—covariance matrix, an estimate for 

the scale parameter <r, the determination coefficient (R 

squared), the standardized residuals, and residual plots of 

two types. PROGRES provides also two different options for 

handling data sets with missing values. 

In order to have other classical regression results, like 

F—tests and options for variable selection, one could run 

PROGRES first and then use the weights provided by the LMS in 

a standard package (for example BMDP or SAS). Pursuing this 

course, one is safeguarded against outliers which may disturb 

the ordinary LS regression analysis. 

The program has been written in a very portable way. It 

should run without problems on any FORTRAN IV or FORTRAN 77 

compiler, as it passed the PFORT portability verifier 

completely. The program length of PROGRES is about 1800 

1ines. 

A skilful study of the residuals is an important task of 

applied regression analysis. Therefore PROGRES has a plot 

option which permits to obtain for both regression techniques 

a plot of the standardized residuals versus the estimated 
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value o-f y, or a plot o-f the standardized residuals versus 

the index o-f the observation i (this is called an index 

plot). A point in the scattergram is represented by a digit. 

This digit corresponds to the number of points having 

approximately the same coordinates. When more than 9 points 

coincide, an asterisk is printed on that position. In 

problems with several variables, the residual plots 

corresponding to the reweighted LS estimator are very useful 

for spotting the outlying observations. If the residual plot 

of both the robust and non-robust regression method agree 

closely, the LS result can be trusted. 

In the residual plot a dotted line is drawn through zero and 

a horizontal band on the interval C-2.5,2.51 is marked. These 

lines facilitate the interpretation of the results. When the 

observed y* value equals the estimated yj value, then the 

resulting residual becomes zero. Points in the neighbourhood 

of this zero line are best fitted by the model. 

If the residuals are normally distributed, then one can 

expect that roughly 98% of the standardized residuals will 

lie in the interval C-2.5,2.53. In the residual plots of the 

reweighted LS, the outliers are far away from this zone. So 

observations for which the standardized residual is situated 

•far from the horizontal confidence band can be identified as 

outlying. A warning must be given for this interpretation on 

the residual plots corresponding to the LS estimator. A true 

outlier does not necessary possess a large LS residual. The 

distortion produced by the outlier(s) pushes the otherwise 

’good’ observations away from the regression hyperplane. This 

effect makes it nearly impossible to identify the ’bad’ 

observation(s). This phenomenon is also illustrated by the 

example in section 4. 

Besides the identification of outliers, the residual plots 

contain also very important information for detecting common 

types of model inadequacies. A pattern showing that the 

variance of the residuals increases or decreases with 

increasing estimated y, points out that it could be 

favourable to apply a suitable transformation to either an 

input variable or the output variable. A pattern resembling a 

horse—shoe may be caused by nonlinearity. In this case a 

transformation on an input or on the output variable. or an 
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additional squared term in the model, or the addition o-f 

another input variable may be required. 

3.ROBUST REGRESSION ESTIMATES DERIVED FROM THE LMS REGRESSION 

Several methods exist For improving the eFFiciency oF the 

LMS. Some oF these are presented in this section. 

3.1 The reweighted least squares regression 

The reweighted least squares regression (RLS) technique 

consists oF minimizing the sum oF the squared residuals 

multiplied by a weight wj 

n 

minimize I w^r^2 (3.1). 

e i=i 

The weights Wj are determined From the LMS solution as in 

equation (2.3) but with the Final scale estimate ir* instead 

oF s°. In this way, the result is protected against the 

presence oF outlying points by means oF the weights based on 

the robust LMS estimator. 

3.2 The one-step M-estimator 

An M-estimate is deFined as a solution © = 

the system oF equations 

n ^ 

I Xji'Ytrj/ <^) = 0 

i = l 

The Function^ is absolutely continuous with 

We use the tangens-hyperbolicus Function 

Hampel, Rousseeuw and Ronchetti (1981): 

't(x) = x For O < |x| < p 

= (A (k—1) ) '^tanh( (k—1) B2 / A) ^ 

. (c —|x| )Dsign(x) -for p < |x| < c 

= □ for c < |x| 

<©1.©p)1 oF 

derivative 'T'. 

as defined by 

where p=l.470089, c=3.0, k=5.0, A=.680593 and B=.769313. 
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Let ©*=(©i*.©p*)*1 be the vector of an initial solution 

(we will take here the LMS estimates of ©=(©j,...,©p)^ and <r* 

the corresponding estimate for the scale parameter <r. ) 

Bickel (1975) defined a one—step M—estimate as 

~ <r* t t -1 

9 = ©* + - ("t'(r i*/<r*) ,_j'f'(rn*/(rt) ) X (XX ) 

B(f,5) 

where B(1', 5 ) 

containing the 

(u)d5(u) 

input variables. 

and X is the pxn matrix 

4. AN EXAMPLE 

In order to illustrate the output provided by PROGRES we have 

chosen for the famous ’stackloss data’ set presented by 

Brownlee (1965). The data describe the operation of a plant 

for the oxidation of ammonia to nitric acid. The 3 input 

variables and the output variable can be described as 

follows: 

xi rate of operation 

X2 cooling water inlet temperature 

*3 acid concentration 

y stack loss 

We will use a linear regression model with constant term 

(this is obtained by creating a fourth input variable which 

takes on the value one for all cases). 

We have selected this example because it is a set of real 

data and it has been examined by a great number of 

statisticians (Draper and Smith (1966), Daniel and Wood 

(1971), Andrews (1974), Atkinson (1980) and many others) with 

the help of several methods. Summarizing their findings, it 

can be said that most people concluded that observations 

I>3,4,21 were outliers. According to some people, observation 

2 is reported as an outlier too. Running PROGRES on this data 

set gives rise to the following output: 
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*t**t*****tt***»******»****tttt**tt***********»*t***** 
» ROBUST MULTIPLE LINEAR REGRESSION WITH A CONSTANT. * 
*»**tt*****»*t»t*t***t**t**»t***>Mt»*»»****»**»»»****» 

NUMBER OF CASES = 21 
NUMBER OF COEFFICIENTS (INCLUDING CONSTANT TERM) «= 4 

THE EXTENSIVE SEARCH ALGORITHM WILL BE USED. 

DATA SET = BROWNLEE STACK LOSS DATA 

THIS ROBUST MULTIPLE REGRESSION ALGORITHM IS BASED ON 
THE LEAST MEDIAN OF SQUARES <LMS' METHOD. 
(SEE P.ROUSSEEUW (1984),LEAST MEDIAN OF SQUARES REGRESSION. 
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION.79,871-880) 
THIS PROGRAM HAS BEEN WRITTEN BY A.LEROY AND P.ROUSSEEUW. 
FOR FURTHER INFORMATION OR COMMENTS, PLEASE CONTACT 

A.LEROY 
VRIJE UNI VERSITEIT BRUSSEL 
C.S.O.O. (M203) 
PLElNLAAN 2 
B-1050 BRUSSELS (BELGIUM) 

PRINT OPTION = 2 
PLOT OPTION = 2 
THERE ARE NO MISSING VALUES. 

YOUR DATA RESIDE ON FILE 
THE OBSERVATIONS 

B:GSTACK.DAT 

10 

!i 
13 
14 
15 
16 
17 
18 
19 

OPERATION 
80.0000 
80.0000 
75.0000 
62.0000 
62.0000 
62.0000 
62.0000 
62.0000 
58.0000 
58.0000 

TEMPERATUR 
27.0000 
27.0000 
25.0000 
24.0000 
22.0000 
23.0000 
24.0000 
24.0000 
23.0000 
18.0000 

58.0000 
58.0000 
50.0000 
50.0000 
50.0000 
50.0000 
50.0000 
56.0000 
70.0000 

1?:S 
18.0000 
19.0000 
18.0000 
18.0000 
19.0000 
19.0000 
20.0000 
20.0000 
20.0000 

ACID CONC. 
89.0000 
88.0000 
90.0000 
87.0000 
87.0000 
87.0000 
93.0000 
93.0000 
87.0000 
80.0000 

§2:8888 
82.0000 
93.0000 
89.0000 
86.0000 
72.0000 
79.0000 
80.0000 
82.0000 
91.0000 

STACKLOSS 
42.0000 
37.0000 
37.OOOO 
28.0000 
18.0000 
18.0000 
19.0000 
20.0000 
15.0000 
14.0000 
14.0000 
13.0000 
11.0000 
12.0000 
8.OOOO 
7.0000 
8.0000 
8.OOOO 
9.0000 
15.0000 
15.OOOO 

OPERATION TEMPERATUR ACID CONC. STACKLOSS 
58.0000 20.0000 87.0000 15.0000 

DISPERSIONS = 

OPERATION TEMPERATUR ACID CONC. STACKLOSS 
5.9304 2.9652 4.4478 5.9304 

THE STANDARDIZED OBSERVATIONS 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

OPERATION 
3.7097 
3.7097 
2.8666 
.6745 
.6745 
. 6745 
. 6745 
.6745 
. OOOO 
. OOOO 
.0000 
. OOOO 
. OOOO 
. OOOO 

-1.3490 
-1.3490 
-1.3490 
-1.3490 
-1.3490 
-.3372 
2.0235 

TEMPERATUR 
2.3607 
2.3607 
1.6862 
1.3490 

. 6745 
1.0117 
1.3490 
1.3490 
1.0117 
-.6745 
-.6745 
-1.0117 
-.6745 
-.3372 
-.6745 
-.6745 
-.3372 
-.3372 

. OOOO 

. OOOO 

.0000 

ACID CONC. 
. 4497 
.2248 
. 6745 
. OOOO 
.0000 
. OOOO 

1.3490 
1.3490 

. OOOO 
-1.5738 

. 4497 

.2248 
-1.1242 
1.3490 

. 4497 
-.2248 

-3.3725 
-1.7986 
-1.5738 
-1 . 1242 

.8993 

STACKLOSS 
4.5528 
3.7097 
3.7097 
2.1921 
.5059 
. 5059 
. 6745 
.8431 
.0000 

-.1686 
-.1686 
-.3372 
-.6745 
-.5059 

-1.1804 
-1.3490 
-1.1804 
-1.1804 
-1.0117 

. OOOO 

. OOOO 

SPEARMAN RAN) CORRELATION COEFFICIENTS BETWEEN THE VARIABLES 
< STACKLOSS IS THE OUTPUT VARIABLE) 

OPERATION 
TEMPERATUR 
ACID CONC. 
STACKLOSS 

1.00 
. 74 
.61 
. 92 

1.00 
. 36 
.85 

1.00 
.50 

PEARSON CORRELATION COEFFICIENTS BETWEEN THE VARIABLES 
( STACK LOSS IS THE OUTPUT VARIABLE) 

OPERATION 
TEMPERATUR 
ACID CONC. 
STAC)LOSS 

1.00 
.78 
.50 
. 92 

.00 

.39 

.88 
1.00 
.40 

************* s*t»**»M***tt***t******t*»***t*t»r***tt*******t**t»** 
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**»*»*t»t*****t»**t***»* 

VARIABLE 
OPERATION 
TEMPERATUR 
ACID CONC. 
CONSTANT 

COEFFICIENT 
.71564 

1.2952? 
15212 

-39.91968 

STAND. ERROR 
.13486 
.36802 
.15629 

11.8°600 

T - VALUE 
5.30661 
3.51957 
-.97331 

-3.35572 

SUM OF SQUARES 

SCALE ESTIMATE 

178.83000 

3.24336 

VARIANCE - COVARIANCE MATRIX = 

.1819D-01 
-.3651D-01 
—.7144D-02 
•2876D+00 

.1354D+00 

.1048D-04 
-.6518D+00 

COEFFICIENT OF DETERMINATION (R SQUARED) = 

.1415D+03 

.91358 

NO RES/SC 

42.00000 
37.00000 
37.00000 
28.00000 
18.00000 
18.00000 
19.00000 
20.00000 
15.00000 
14.00000 
14.00000 
13.00000 
11.00000 
12.00000 
8.00000 
7.00000 
8.00000 
8.00000 
9.00000 
15.00000 
15.00000 

38.76536 
38.91748 
32.44447 
22.30222 
19.71165 
21.00694 
21.38949 
21.38949 
18.14438 
12.73280 
11.36370 
10.22054 
12.42856 
12.05050 
5.63858 
6.09495 
9.51995 
8.45509 
9.59826 
13.58785 
22.23771 

3.23464 
-1.91748 
4.55553 
5.69778 

-1.71165 
-3.00694 
-2.38949 
-1.38949 
-3.14438 
1.26720 
2.63630 
2.77946 

-1.42856 
-.05050 
2.36142 
.90505 

-1.51995 
-.45509 
-.59826 
1.41215 

-7.23771 

6 
7 
8 
9 
10 
1 1 
12 
13 
14 
15 
16 
17 
18 

1.00 
-.59 
1.40 
1.76 
-.53 
-.93 
-.74 
-.43 
-.97 
.39 
.81 
.86 

-. 44 
-.02 
.73 
.28 

-.47 
-. 14 
-. 18 
.44 

-2. 23 

BROWNLEE STACK LOSS DATA 

-LEAS SQUARES- 

RESIDU/SCALE 

• 2.5 

I 
I 
I-+ 

INDEX OF THE OBSERVATION 

****t*t*******t**tttt********ttt**s****t***t«t*t**t»»t*****t****t 
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LEAST MEDIAN OF SQUARES REGRESSION 
********************************** 

12TH QUANTILE OF THE SQUARED RESIDUALS IS PERFORMED. THE MINIMIZATION OF THE 

ON A TOTAL OF 2092 SUBSAMPLES (OF 4 POINTS OUT OF 
92 SUBSAMPLES LED TO A SINGULAR SYSTEM OF EQUATIONS. 

THE SOLUTION IS ONLY BASED ON THE GOOD SAMPLES. 

MULTIPLE LMS SOLUTION 
t****«*t»******t*«*tt 

VARIABLE COEFFICIENT 

OPERATION 
TEMPERATUR 
ACID CONC. 
CONSTANT 

.71429 

.35714 

.00000 
-34.50000 

FINAL SCALE ESTIMATE = 1.26134 

COEFFICIENT OF DETERMINATION = .97105 

OBSERVED 
STACKLOSS 

42.00000 
37.00000 
37.00000 
28.00000 
18.00000 
18.00000 
19.00000 
20.00000 
15.00000 
14.00000 
14.00000 
13.00000 
11.00000 
12.00000 
8.00000 
7.00000 
8.00000 
8.00000 
9.00000 
15.00000 
15.00000 

32.28572 
32.28572 
28.00000 
18.35714 
17.64286 
18.00000 
18.35714 
18.35714 
15.14286 
13.35714 
13.35714 
13.00000 
13.35714 
13.71429 
7.64286 
7.64286 
8.00000 
8.00000 
8.35714 
12.64286 
22.64286 

NO RES/SC 

9.71428 
4.71428 
9.00000 
9.64286 
.35714 
.00000 
.64286 

1.64286 
-.14286 
.64286 
.64286 
.00000 

-2.35714 
-1.71429 

.35714 
-.64286 
.00000 
.00000 
.64286 

2.35714 
-7.64286 

11 
12 
13 
14 
15 
16 
17 
18 

7. 70 
3.74 
7. 14 
7.64 
.28 
.00 
.51 

1.30 
-.11 
.51 
.51 
.00 

-1.87 
-1.36 

.28 
-.51 
.00 
.oo 
.51 

1.87 
-6.06 

BROWNLEE STACK LOSS DATA 

-LEAST MEDIAN OF SQUARES- 

RESIDU/SCALE 

.7702E+01 

2.5 

-2.5 

-.6059E+01 

INDEY OF THE OBSERVATION 
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*ty»T«»ft*y*tt****tt**3******tt**t«tS**t» 

VARIABLE 
OPERATION 
TEMPERATUR 
ACID CONC. 
CONSTANT 

COEFFICIENT 
.6B609 
.56710 

-.01725 
-35.48420 

WEIGHTED SUM OF SQUARES 

STAND. ERROR 
.07358 
.12872 
.05305 

3.80302 

16.02457 

- VALUE 
9.32433 
4.40576 

CORRESPONDING SCALE ESTIMATE 

COVARIANCE MATRIX 

.5414D-02 
—.4512D-02 
-.1917D-02 
-.5118D-01 

.1657D-01 
—.3882D-03 

4384D-01 
.2814D-02 

-.1246D+00 

COEFFICIENT OF DETERMINATION (R SQUARED) = 

.1446B+02 

.96288 

THERE ARE 16 POINTS WITH NON-ZERO WEIGHT. 

AVERAGE WEIGHT = .76190 

NO RES/SC WEIGHT 

42.00000 
37.00000 
37.00000 
28.00000 
18.00000 
18.00000 
19.00000 
20.00000 
15.00000 
14.00000 
14.00000 
13.00000 
11.00000 
12.00000 
8.00000 
7.00000 
8.00000 
8.00000 
9.00000 
15.00000 
15.00000 

33.17970 
33.19695 
28.59778 
19.16323 
18.02902 
18.59612 
19.05973 
19.05973 
15.85175 
13.13700 
12.98174 
12.43189 
13.10249 
13.47984 
7.49300 
7.54475 
8.35336 
8.23260 
8.78246 
12.86451 
22.31456 

8.82030 
3.80305 
8.40222 
8.83677 
-.02902 
-.59612 
-.05973 
.94027 

-.85175 
.86300 

1.01826 
.56811 

-2.10249 
-1.47984 

.50700 
-.54475 
-.35336 
-.23260 
.21754 

2.13549 
-7.31456 

10 
1 1 
12 

17 
18 
19 
20 
21 

7.93 
3.42 
7.55 
7.94 
-.03 
-.54 
-.05 
.85 

-.77 
.78 
. 92 
.51 

-1.89 
-1.33 

.46 
-.49 
-. 32 
-.21 
.20 

1.92 
-6.58 

.0 . O 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1. o 
1.0 
1 . o 
1.0 
.0 

BROWNLEE STACK LOSS DATA 

-REWEIGHTED L (BASED ON 

RESIDU/SCALE 

.7945E+01 

-.6576E+01 

I 
I 
I 
I 
+ 
I 
I 
I 
I 
+ 
I 
I 

++++I 
I 
♦ 
I 
I 
I 
I 

+ -f + -4-++ + + +++I 
I 
I 

I 
I 
I 
I 
4- 

I 
I 
I 
I 

1 + 
I 
I 

~ +-+ -I 

INDEX OF THE OBSERVATION 



Examining the residual plot o-f the reweighted LS confirms 

that the observations 1,3,4 and 21 are outliers, as their 

residuals lie far from the confidence band. Observation 

number 2 is an intermediate case because it is just on the 

verge of the area containing the outliers. However, the 

residual plot corresponding to the LS fit masks the bad 

points. 

Concluding this example we would like to emphasize that it is 

necessary to compare the standardized residuals of both the 

LS and the robust method in each regression analysis. Only 

the robust technique can be used as a reliable tool for 

diagnosing the outliers. 

In the following section we will compare the behaviour of the 

LS, the LMS, the RLS based on the LMS and the one—step 

M-estimator based on the LMS for different situations by 

means of a simulation study. 

5. A SIMULATION STUDY 

In order to have an accurate insight into the performance of 

the regression estimators mentioned above, we have resorted 

to a simulation study under three different situations. 

Samples with size 50 and dimension ID were simulated and 

repeated 200 times in each case. 

FIRST SITUATION: the normal error case, without outliers 

All the input variables are normally distributed XjiS:N(0,10) 

and the yj = ><1,1 +...+ xp—l,i + 1 + where the error 

ej ~N(O,1). 

SECOND SITUATION: outliers in the y-direction 

We considered a contaminated distribution, where 805C of the 

cases are generated as in the first situation and 20X of the 

cases are the result of Xjj~N(0,10> and yj = xj^j +...+ 

Xp_i5i + 1 + ej with ej^NdO,!). 

THIRD SITUATION: outliers in the x-direction 

As in the first situation the observations have a normal 

error structure, but in 20X of the observations the original 

xi^j are replaced by some numbers which are distributed like 

N(100,10) while the other xjj and the yj remain unchanged. 
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The -following table shows some summary values resulting from 

the simulation runs. 

ESTI- LS 
IWTOfi 

VAR 1 1.0004 
0.0003 
0.0000 

FIRST SITUATION 
UtS RLS 

1.0018 1.0014 
0.0012 0.0004 
0.0000 0.0000 

OSH 
SECOND SITUATION 

LS LNS RLS 

1,0023 
0.0004 
0.0000 

0.9924 
0.0059 
0.0001 

1.0018 
0.0018 
0.0000 

1.0008 
0.0004 
0.0000 

THIRD SITUATION 
LNS RLS 

1.0011 
0.0004 
0.0000 

0.0407 
0.9215 
0.9203 

1.0018 
0.0018 
0.0000 

1.0007 
0.0004 
0,0000 

OSH 

1.0017 
0.0018 
0.0000 

VAR 2 1.0008 1.0023 
0.0003 0.0015 
0.0000 0.0000 

1.0011 1.0009 

0.0003 0.0004 
0.0000 0.0000 

0.9985 0.9949 
0.0053 0.0013 
0.0000 0.0000 

1.0002 0.9997 

0.0005 0.0004 
0.0000 0.0000 

0.9814 0.9949 
0.0222 0.0015 
0.0004 0.0000 

1.0000 0.9995 
0.0004 0.0007 
0.0000 0.0000 

VAR 3 0.9997 
0.0003 
0.0000 

0.9990 
0.0013 
0.0000 

0.9989 
0.0003 
0.0000 

0.9997 
0.0007 
0.0000 

1.0101 
0.0034 
0.0001 

0.9943 
0.0013 
0.0000 

0.9998 
0.0004 
0.0000 

0.9978 
0.0004 
0.0000 

1.0049 

0.0292 
0.0000 

0.9994 
0.0004 
0.0000 

0.9978 
0.0004 
0.0000 

0.9943 

0.0015 
0.0000 

VAR 4 1.0012 1.0074 
0.0003 0.0015 
0.0000 0.0001 

1.0029 1.0038 
0.0005 0.0004 
0.0000 0.0000 

0.9940 1.0018 
0.0050 0.0014 
0.0000 0.0000 

1.0017 1.0021 
0.0004 0.0005 

0.0000 0.0000 

0.9853 1.0018 
0.0208 0.0014 
0.0002 0.0000 

1.0014 1.0014 
0.0004 0.0004 
0.0000 0.0000 

VAR 5 0.9990 
0.0903 
0.0000 

0.9940 

0.0012 

0.0000 

0.9988 
0.0003 
0.0000 

0.9995 
0.0004 
0.0000 

0.9944 
0.0044 
0.0000 

1.0004 

0.0017 
0.0000 

0.9983 
0.0004 
0.0000 

0.9989 

0.0004 
0.0000 

0.9984 
0.0241 
0.0000 

1.0004 

0.0017 
0.0000 

0.9962 
0.0004 
0.0000 

0.9987 

0.0004 
0.0000 

VAR 4 0.9999 
0.0003 
0.0009 

0.9992 
0.0013 
0.0000 

0,9998 
0.0004 
0.0000 

0.9991 
0.0003 
0.0000 

0.9982 
0.0043 
0.0000 

0.9993 
0.0015 
0.0000 

1.0001 
0.0004 
0.0000 

0.9994 
0.0005 
0.0000 

1.0070 
0.0258 
0.0001 

0.9993 
0.0015 
0.0000 

1.0001 
0.0004 
0.0000 

1.0001 
0.0004 
0.0000 

VAR 7 0.9990 
0.0003 
0.0000 

1.0024 
0.0014 
0.0000 

0.9990 
0.0004 
0.0000 

0.9993 
0.0004 
0.0000 

0.9922 
0.0044 
0.0001 

1.0007 
0.0014 
0.0000 

0.9993 
0.0004 

0.0000 

0.9998 
0.0005 
0.0000 

0.9931 
0.0231 
0.0001 

1.0007 
0.0014 
0.0000 

0.9989 
0.0003 
0.0000 

0.9998 
0.0005 
0.0000 

VAR 8 0.9981 
0.0002 
0.0000 

0.9987 
0.0015 
0.0000 

0.9979 
0.0004 
0.0000 

0.9972 
0.0004 
0.0000 

1.0038 
0.0045 
0.0000 

0.9933 
0.0017 
0.0000 

0.9957 
0.0004 
0.0000 

0.9943 
0.0004 
0.0000 

0.9850 
0.0254 
0.0002 

0.9933 
0.0017 
0.0000 

0.9957 
0.0004 
0.0000 

0.9943 
0.0007 
0.0000 

VAR 9 0.9984 1.0002 
0.0003 0.0013 
0.0000 0.0000 

0.9930 0.9979 
0.0004 0.0004 
0.0000 0.0000 

0.9971 1.0013 
0.0057 0.0015 
0.0000 0.0000 

0.9985 0.9992 
0.0004 0.0004 
0.0000 0.0000 

1.0151 1.0013 
0.0211 0.0015 
0.0002 0.0000 

0.9984 0.9992 
0.0004 0.0004 
0.0000 0.0000 

CON¬ 
STANT 

0.9999 0.9994 
0.0002 0.0015 
0.0000 0.0000 

1.0008 1.0012 
0.0005 0.0004 
0.0000 0.0000 

0.9977 0.9997 
0.0047 0.0014 
0.0000 0.0000 

0.9990 0.9985 
0.0003 0.0003 
0.0000 0.0000 

1,0143 0.9997 
0.0284 0.0014 
0.0003 0.0000 

0.9990 0.9991 
0.0003 0.0005 
0.0000 0.0000 

SCALE 0.9892 1.0941 
0.0115 0.0015 
0.0001 0.0000 

0.8417 0.8929 
0.0400 0.0342 
0.0191 0.0003 

4.5415 1.4145 
12.4127 0.2441 
12.3419 0.1735 

0.9457 1.2824 

0.0227 0.1192 
0.0012 0.0797 

9.4902 1.4083 
74.7344 0.2307 
73.5203 0.1449 

0.9419 1.3140 
0.0205 0.1414 
0.0013 0.0984 
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The -first value in each part o-f the table is the mean 

estimated value 

M 

9j = 1/M Z ®j(k) > where M is equal to 200. 

k=l 

As the theoretical value for the regression coefficients and 

the scale parameter is known (in all our situations the 

theoretical value is 1) the mean squared error (MSE) defined 

by 

MSE(9j) = squared bias + ’variance’ 

M ~ _ M ~ _ 

E (ej(k)_ej)2 = <ej _ ej>2 + 1/M E < ej(k) ~ ®jJ2- 

k=l k=l 

can be computed. (Analogous summary values can be defined 

for the scale parameter cr. ) The MSE and the squared bias of 

each estimate are the second and the third value in the above 

table. 

From these results one can deduce that in the normal error 

design, the mean of the estimates produced by the robust 

techniques are no worse than the optimal LS estimates, except 

for the constant term, for which the MSE is slightly 1arger 

than for the other coefficients. In the designs where 

outliers are apparent, the LS shows its dramatic lack of 

robustness. This conclusion can be drawn from the fact that 

the mean estimated values differ completely from the 

theoretical values. Accordingly the MSE values are too large. 

The robust methods however give rise to mean estimated values 

which are very close to the theoretical values, with a 

moderate bias. The value of the estimated scale parameter is 

also an important criterion to judge the good behaviour of 

the regression fits. In both designs with outliers the LS 

scale estimate lead to values which are far away from the 

theoretical expected one. The LMS and the RLS give a mean 

estimated scale parameter close to one with a rather small 

bias, whereas greater values for MSE and bias appear at the 

OSM scale estimates. 

Summarizing, one can say that the alternative robust 

techniques give rise to very good results for error 

distributions which depart from the normal distribution. 
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while they still yield acceptable results in the classical 

situation where LS is optimal. 
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