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Abstract 

A family of models for memory effects of answers to retrospective questions 

is discussed. These models can be used when a respondent is asked how many 

times he undertook a certain action in a time interval T. The models take in¬ 

to account that the memory effect may depend on the elapsed time since the 

actions took place and the number of actions that have taken place. The theo¬ 

ry is illustrated by examples from the Dutch Health Survey 1981. 

Keywords: stochastic process, negative binomial distribution, recall 

errors, medical consumption. 
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1. INTRODUCTION 

In survey research it is a common situation that the respondents are asked 

to remember events that took place in some reference period. However, it is 

a well known fact that the respondent’s memory is not completely reliable. 

Some textbooks, e.g. Som (1973), Sudman and Bradburn (1974) and Moss and 

Goldstein (1979) are completely or partly devoted to effects of memory on 

response as a function of time. There are two different types of errors 

that play a role in data that are based on retrospective questions: 

1. Memory effects, which lead to underreporting of events because the res¬ 

pondent has forgotten that some events took place. 

2. Telescoping effects, where the respondent does remember the events, but 

places them incorrectly on the time axis. This may lead to underrepor¬ 

ting as well as overreporting. In Schneider (1981) this phenomenon is 

distinguished in forward-telescoping (placing an event forward in time) 

and backward-telescoping (placing an event backward in time). 

In Sudman and Bradburn (1973) some 500 studies on memory and telescoping 

effects are examined and they conclude that both play a role, dependent on 

the subject of the study which may be medical, financial, voting or house¬ 

hold expenditures. The larger the reference period, the stronger the memory 

effects. In medical studies, which is also the subject matter in this pa¬ 

per, the net effect of memory and telescoping effects did not result in 

overreporting, even when the reference period was small. 

When in the above mentioned literature models were adopted, they were of 

the form r=4>(T), where r is the fraction of events that were reported in a 

given reference period, r is the length of that reference period and 4 is a 

function that generally declines when x is large. An example of 4 that was 

used in Sudman and Bradburn (1973) is 

-b. x (- b x-, 
♦(x) = ae 1 + log . (1*1) 

Here a and bj are parameters that relate to memory effects and b2 refers to 

telescoping effects. This three parameter model appeared to fit various da¬ 

ta sets rather well. Apart from fitting such models the literature focuses 
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on interviewing methods and extra devices that may reduce the memory and 

telescoping effects to some extent. 

In this paper we take the point of view of a statistical office with a 

mass production of data and a decreasing budget. Our basic motivation con¬ 

sists of questions like: 'Does it make sense to use large reference pe¬ 

riods, when events in the past are easily forgotten?', 'Does it make sense 

to ask the respondent data about more than m+ events?' and, most important, 

'How can data that are contaminated by memory effects contribute to effi¬ 

cient estimation?' (so that there is a trade of between sample size and 

length of the reference period, given the required precision of the estima¬ 

tes). We will try to achieve this by using a model that describes the sto¬ 

chastic process of the occurrence of events and then treating the memory 

effects as a part of the model. 

We will concentrate on items of the following type: 'How many times did 

you undertake action a during t time units immediately preceding the in¬ 

terview and when did these actions take place?' Questions of this type were 

asked in the Dutch Health Survey 1981, e.g. the number of contacts with the 

general practicioner (GP) or the number of hospitalizations. In the case of 

the GP, the total reference period was 3 months and of every contact (up to 

a maximum of six) it was asked how many weeks before the interview it took 

place. This made possible the following approach. 

The reference period T (of length x) is partitioned into t subintervals. 

It is assumed that in the first of these intervals there is no memory ef¬ 

fect. In the other intervals there may be memory effects and their size is 

estimated. They may depend on the number u of the interval (u=2,3, ...,t) 

and the number of actions already reported before interval u. 

In section 2 the basic process that generates the actions is described. 

In section 3 the models for the memory effects are given. Section 4 deals 

with the likelihood function. In section 5 some practical examples are 

given. Section 6 contains the main conclusions. In appendix A the deriva¬ 

tion of the likelihood function is sketched. 
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2. THE PROCESS OF ACTIONS 

We assume that on individual level the actions are generated by a Poisson 

process. Let be the number of actions of individual i in reference 

period T with length t, then 

-V (v)m 
P{M = m) = e 1 -- , (2.1) 

i m! 

where f^ is called the frequency of the actions of individual i. This 

amounts to assuming that the intervals between two consecutive actions of 

individual I are i.i.d. random variables, exponentially distributed with 

parameters 1/f^. This assumption may not be tenable in all situations, but 

when the process on individual level is 'random* enough it may be a good 

approximation to reality. We did, however, investigate the more general as¬ 

sumption that the intervals between two consecutive actions were gamma-dis¬ 

tributed (see section 5). The results, however, suggest that this generali¬ 

zation leads to a lot of mathematical troubles and consumption of much com¬ 

puter time with hardly any improvement of the model. 

When at random an individual is drawn he has a score fj on the variable 

F, which is his frequency parameter of the Poisson-process. Thus in a ran¬ 

dom sample, F is a latent random variable, which has some distribution. We 

assume that this can be approximated by a gamma-distribution with parame¬ 

ters b and k, i.e. its density function is 

g(f) 
e-f/bfk-1 

r(k)bk 

(2.2) 

When M is the number of actions of a randomly drawn individual it is well- 

known (see e.g. Johnson and Kotz, 1969) that M has a negative binomial 

distribution, i.e. 

P{M=m} 
k(k+l)...(k+m-1) 

m! 
(bT)m 

(l+bT)^ ' 
(2.3) 
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This is a widely used model e.g. for the case where the actions consist of 

buying non-durable consumption goods, see e.g. Chatfield et al. (1966). 

A slight complication to the distribution of M is that questionnaires 

sometimes leave room for only a limited number of actions, due to lack of 

space. We define m+ to be the maximum number of actions that can be regis¬ 

tered in the questionnaire. Then {M=m"**} means (a randomly drawn individual 

has undertaken m+ actions or more). 

3. MODELS FOR MEMORY EFFECTS 

Let the total reference period T be partitioned into t subintervals Ti,T2, 

...,Tt with length Tx,T2,...,Tt respectively. Because we are looking back 

in time from the moment of interview, Tu precedes Tu, if u>u’. It is assu¬ 

med that in Tj no actions are forgotten. In T2,...,Tt there may be memory 

effects. This implies that we disregard a possible telescoping effect in 

Tj. Given the results of Sudman and Bradburn (1973) this seems justified. 

There was, however, hardly a choice in this decision since only data on the 

reported actions and not those on the true actions were available. 

We now assume that in an interval Tu the rate of actions that are for¬ 

gotten is constant, but depends on j, the number of actions that are repor¬ 

ted in the intervals Tj,T2,•..,T^_^. To be more precise, we assume that the 

probability that a respondent reports an action that he undertook in T is 
u 

equal to v . If he has undertaken more than one action in T he reports 
ut 1 u 

each of them with probability v independent of each other. It should be 
U » J 

noted that the memory effect is in this way only related to the number of 

reported actions, not to the true actions. When no data on the true ac¬ 

tions are available this is fundamentally impossible. But our definition 

covers the idea that a respondent may very well remember his first action 

but maybe not his third action preceding the interview, so that we can in¬ 

vestigate if it makes sense to ask explicitly for this third action. A more 

fundamental drawback of this setup may be that the choice of the subinter¬ 

vals Tj,T2,.. is subjective. When these intervals are sufficiently small, 

and the memory effects are more or less smooth functions of u and j, this 

is no problem in practice. In our examples, partitioning into six subinter¬ 

vals and into twelve subintervals hardly made any difference for the re¬ 

sults. 
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The model for memory effects, as presented here, Implies that the number 

of reported actions in of individual i who has parameter f^ for the true 

Poisson-process, is Poisson-distributed with parameter Tu(l_vu j)f^» given 

that he has reported j actions up to T^. The rest of the derivation remai¬ 

ning the same, this amounts to measuring the number of actions as if the 

length of T is not x but 
u u 

T* 
u, j 

(1 - V .) (3.1) 

This implies that we have (t-l)*m++2 parameters (including b and k). When t 

and m+ are moderately large, the total number can be very large. For this 

reason it is desirable to reduce, if possible, the number of parameters by 

making more restrictive models in order to estimate b and k efficiently. An 

additional advantage may be that restrictive models may give an extra in¬ 

sight into the structure of memory effects. The following models are inves¬ 

tigated. 

1. saturated time-number : 

2. additive time-number : 

3. time : 

4. number : 

5. linear time-number : 

6. linear time : 

7. linear number : 

8. 0-1 time-number : 

9. 0-1 linear time-number: 

10. 0-1 number : 

11. no memory effects : 

u,J 

Vj 

Vj 

Vu,j 

Vu, j 

Vu, j 

j 

Vj 

Vj 

V j 

V j 

has no functional form 

= v^ + v! (vo=0 by definition) 

= v 

(Vq=0 by definiton) 

= B1(T1+...+tu_1+iTu)+B2j 

= B(T1+... + Tu_1+iTu) 

= Bj 

= vu + Y.sign(j) 

= B(T1+...+Tu_1+$Tu)+r.sign(j) 

= Y.sign(j) 

= 0 

Sign(j) equals 1 If j>0 and 0 If j=0. 

The models 3f 6 an 11 are independent of the number of reported actions 

in T^u...UTu_j. The models 4, 7, 10 and 11 are independent of time. The 

idea behind models 8, 9 and 10 is that the crucial distinction may be 

between the first and the second action preceding the interview and that 

there is no distinction in memory effect between action 2, 3, etc. 
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It should be noted that the models are partly nested. Model 1 Implies 

every other model. Model 11 is implied by every other model. In table 1 it 

is indicated which model is implied by which. 

Table 1. Nesting of the different models for memory effects 

implied models 123456789 10 11 

implying models 

1. saturated time-number x x x x x 
2. additive time-number x x x x 
3. time x 
4. number x 
5. linear time-number x 
6. linear time 
7. linear number 
8. 0-1 time-number 
9. 0-1 linear time-number 

10. 0-1 number 
11. no memory effects 

X 

x 
x 
x 
x 
x 
X 

x 
X 

X 

4. LIKELIHOOD 

The behaviour of an individual In the sample (that is assumed to be random) 

is characterized by a vector ffi=(Mi( 1) ,Mi(2) ,... t) )', where M^u) is 

the number of reported actions of individual i in T ut U...UT . The vector 
12 u 

of actions of a randomly selected individual is in the same way given by 

M=(M(1),M(2),...,M(t))'. Such a vector, which we will call a 'profile', 

consists of t non-descending integers >0 and <m+. The number of possible 
* 

profiles is denoted by p . Then 

* f m++t l 
P = [ t J • (4.1) 

The probability distribution of M can be derived from the multivariate 

negative binomial distribution, the multivariate version of (2.3), see 

appendix A. 

We obtain maximum likelihood estimates by standard procedures. We dif¬ 

ferentiate with respect to the unknown parameters and set the partial first 

order derivatives to zero. Standard errors are computed by inversion of the 
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matrix of second order derivatives. We were not able to prove that the li¬ 

kelihood function was globally concave. For numerical calculation of the 

estimates the standard Newton-Raphson algorithm appeared to work well. In 

our example the results did not depend on initial values in the sense that 

the algorithm always converged to the same values or did not converge at 

all. Moreover, the estimates of b and k under different models were more or 

less similar, which contributes to the confidence in the results. However, 

strictly speaking, it can not be guaranteed that the estimates in the exam¬ 

ples correspond with global maxima of the likelihood function. 

The likelihood approach allows us to test how well the models fit the 

data, but when t and m+ are even moderately large, the standard goodness of 

fit statistic poses a problem. The estimation procedure is based on the in¬ 

complete t-way table m(l) by m(2) by...by m(t) of all possible profiles. As 

can be seen from (4.1), the amount of possible profiles can be very large, 

many of them being very unlikely. This amounts to analyzing a t-way table 

with many empty cells, on which we cannot apply asymptotic theory. The test 

statistic, which indicates the goodness-of-fit is 

G 
2 

2 I n-* log(n-*-/ n-*-) , 
■+ m m m 
m 

(4.7) 

where n-*- is the number of individuals in the sample who have profile m, and 
m 

n-*- is the estimate of n-»- under a model. has a x^-distribution with a 
m m 
known number of parameters when relatively many n-*- are large. This, however, 

m 

is very unrealistic. There are several solutions to this problem, e.g. as¬ 

suming a prior distribution in the t-way table, see Bishop et al. (1975, 

pp. 410 ff). In the examples of the next section we will evade the problem 

by collapsing categories. In the model which is saturated with respect to 

the memory-effects, first we examine the G^-statistic using only the cate¬ 

gories ’O', 'l* and f2 or more’ for the m(u) (u=l,2,...,6). In such a table 

the cells are well-filled, hence we may apply asymptotic theory. When there 

is a reasonable fit, we assume the model holds, and analyze the rest of the 

models on the basis of likelihood ratio test statistics, the alternative 

hypothesis being the saturated model 1. But then we can use categories ’O', 

'6 or more* for the m(u). The likelihood-ratio test statistic 

Gf2 is x^-distributed, the number of degrees of freedom being the differen¬ 

ce between the number of parameters of the saturated model and the more re¬ 

stricted model, see Cox and Hinkley (1979, pp. 321 ff). 
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5. EXAMPLES 

In the Dutch Health Survey 1981 among others the following three variables 

were analyzed with respect to their memory effects: the number of contacts 

with the GP (general practitioner), the number of contacts with specia¬ 

lists, and the number of contacts with the dentist. For all variables we 

used t=6. In the case of the GP and the specialists we had m~*~=6, (except 

for the saturated model, where m+=2) tj=1| week, T2,...,t^=2 weeks. The 

number of contacts with the dentist was measured over a longer reference 

period: t^=1| month and T2,...,t^*2 months. In that case we had m+=4. The 

total number of respondents in the survey was equal to 10218. We will dis¬ 

cuss the contacts with the GP extensively and then give shortly some re¬ 

sults of the contacts with specialists and dentist. 

The results of the model tests of contacts with the GP are given in 

figure 1. The models are represented in a graph. When there is a path from 

model i to model j, then model j is a restriction of model i. For the satu- 
o 

rated model G is the test statistic with alternative hypothesis 'no model 

at all’; G'2 of the other models does have a x2-distribution with df de¬ 

grees of freedom where the saturated model forms the alternative hypothe- 
O 

sis. The values of G' show that with a=0.05 all models differ significant¬ 

ly from the saturated model, with the exception of the additive model. How¬ 

ever, the goodness of fit statistic indicates that the 0-1 linear model is 

still remarkably close to the saturated model given the large amount of 

respondents and we may hope that with this model, which has only four para¬ 

meters, we still obtain a good approximation of reality. Figure 1 shows 

that the model that allows no memory effects is considerably worse than all 

other models. 

In table 2 estimates are given of the parameters b and k, and f, the 

mean frequency of the individuals for four models. In the case of the addi¬ 

tive and the 0-1 linear model the estimates of the parameters of the memory 

effects are given. It appears that the estimates of f in the case of the 0-1 

linear model is slightly different from the saturated and additive mo¬ 

dels, but it has a considerably lower standard error. This is a natural 

consequence of the fact that the memory effects are described in a rigid 

model which we a priori believe to be the truth. In the additive case we 

find that V2 through vg are smoothly increasing, but the estimates of v^ 
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Figure 1. Results of the model tests for contacts with the GP 
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through are rather bizarre, which may be due to the fact that and 

have a high standard error. (Note that negative values for v , indicate 
u, j 

overreporting.) In the sample there were few respondents who had four or 

Table 2. Estimates in the saturated, the additive, the linear 0-1 and 
the 'no memory effects' m^del for contacts with the GP (time 
measured in weeks, t=6, m =6) 

Parameter Estimate Standard error 

saturated time-number 
b 0.0978 0.0085 
k 0.6175 0.0491 

f 0.0604 0.0021 

additive time-number 
b 
k 

f 

0.0965 
0.6256 

0.0604 
0.0352 

0.0997 

0.1578 

0.2021 

0.2760 

0.2516 

0.1347 

0.2093 

-0.2057 

0.2322 

0.0080 
0.0469 

0.0021 
0.0433 

0.0440 

0.0451 

0.0469 

0.0459 

0.0456 

0.0639 

0.0751 

0.1424 

0.1407 

0-1 linear time-number 
b 0.1051 0.0078 
k 0.5832 0.0385 

f 0.0613 0.0016 
6 0.0227 0.0038 
Y 0.2443 0.0424 

no memory effects 
b 0.0594 0.0029 
k 0.8009 0.0367 

f 0.0476 0.0008 



100 

more contacts with the GP. The estimates of the memory effects in the 0-1 

linear model are much easier to interpret. The memory effect increases 

with 2.27% a week. After the first reported contact there is an additional 

effect of 24.43%. When no memory effects are assumed, the error of the es¬ 

timate of f is further reduced, but this estimate is obviously very wrong. 

Table 3. Empirical distribution after 11.5 week and estimates 
with standard errors for the saturated, additive and 
0-1 linear model for contacts with the GP 

Saturated Additive 0-1 linear 
Measured - - - 

Contacts % % s.e. % s.e. % s.e. 

0 65.45 
1 22.91 
2 6.89 
3 2.87 
4 0.79 
5 0.64 * 
6 0.45a) 
7 
8 
9 
10 

62.74 1.00 62.63 
20.53 1.00 20.64 
8.80 0.78 8.83 
4.07 0.52 4.07 
1.95 0.33 1.94 
0.95 0.20 0.95 
0.47 0.12 0.47 
0.24 0.07 0.23 
0.12 0.04 0.12 
0.06 0.02 0.06 
0.03 0.01 0.03 

0.97 62.94 0.72 
0.95 20.11 0.80 
0.74 8.72 0.64 
0.50 4.12 0.44 
0.31 2.02 0.28 
0.19 1.02 0.18 
0.11 0.52 0.11 
0.07 0.27 0.06 
0.04 0.14 0.04 
0.02 0.07 0.02 
0.01 0.04 0.01 

Total 100 99.97 99.97 99.96 

a) This percentage indicates '6 or more'. 

The description of the memory effects is hardly an end in itself. But it 

may serve some higher purpose by identifying the parameters of the true 

process from which we can deduct statistics which are adjusted for memory 

effects. Such statistics are given in table 3, where the empirical distri¬ 

bution of contacts with the GP is compared to the adjusted distributions 

according to the three foregoing models. It is clear that the models are 

very similar compared to the empirical distribution. The categories 'O' and 

'1' have higher empirical percentages, whereas these percentages in the 

other categories are considerably lower. The 0-1 linear model performs 

slightly better than the others with respect to the standard errors. 

A result which was highly significant for the research project is that 

in the saturated model the standard errors of the estimate appeared to be 

more or less constant as a function of t, the number of two-week intervals. 
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Table 4. Estimates in the saturated, the additive, the linear time 
and the no memory effects model for contacts with specia¬ 
lists (time measured in weeks, t=6, m =6) 

Parameter Estimate Standard error 

saturated time-number 
b 0.1393 0.0140 
k 0.2040 0.0176 

f 0.0284 0.0015 

additive time-number 
b 
k 

f 

linear time 
b 
k 

f 
8 

0.1375 
0.2066 

0.0284 
-0.0452 

-0.0173 

0.0986 

0.1922 

0.1690 

0.0509 

0.0753 

0.0112 

0.2914 

0.1513 

0.1379 
0.2194 

0.0303 
0.0267 

0.0132 
0.0166 

0.0015 
0.0676 

0.0723 

0.0708 

0.0720 

0.0733 

0.0809 

0.0970 

0.1208 

0.1218 

0.1938 

0.0082 
0.0101 

0.0011 
0.0038 

no memory effects 

b 0.1181 0.0064 
k 0.2180 0.0100 

f 0.0258 0.0007 

This was not the case in the 0—1 linear model. When the reference period 

was artificially reduced to 3.5 weeks (by ignoring all earlier contacts), 

the standard errors increased to the level of the saturated model. This de¬ 

monstrates the fact that when we use restricted models, events that are re¬ 

ported with memory effects, still contribute to the efficiency of the esti¬ 

mators 
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Figure 2. Results of the model tests for contacts with specialists 
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The results of the second variable, contacts with specialists, are given 

in figure 2. All models are significantly different from the saturated 

model with a=0.05. The best fitting model that uses few parameters seems to 

be the linear time model. The number effect does not seem to play a role. 

Parameter estimates are given in table 4 for the saturated, additive linear 

time and no memory effects model. Here the difference between the no memory 

effect model and the other models with respect to the estimate of f is much 

less than in the case of contacts with the GP. Apparently contacts with 

specialists are remembered better. The standard errors in the linear time 

model are smaller than in the other models which contain memory effects. 

This again indicates that it pays to use restrictive models. 

The third variable under analysis is the number of contacts with the 

dentist. It could be expected that here the model would fail completely and 

so it did for the following reasons. We can split up the population in 

three groups: 1. those who often go to the dentist; 2. those who go regu¬ 

larly to the dentist every half year; 3. those who never go to the dentist. 

In group 2 and 3 we surely do not have the assumed Poisson-process on indi¬ 

vidual level. In group 2 the process is much too regular, in group 3 there 

is no process at all. Using m+=4 and t=6 we found for the saturated model 

G =7542 with df=187. Therefore it does not make sense to look at more re¬ 

stricted models. The differences between model and reality are best illus¬ 

trated by table 5, where the residuals of the profiles are given that in 

absolute value were larger than 100. When in a profile there is a sequence 

of exactly 3 ones (a six month period) the empirical frequency is much lar¬ 

ger than predicted. When there is a shorter or longer sequence of ones, the 

empirical frequency is much smaller than predicted by the model. 

We tried to improve the model by dropping the assumption that on indivi¬ 

dual level there is a Poisson process. A Poisson process implies that the 

interval between two consecutive actions has an exponential distribution. 

The most natural generalization is that this interval is gamma-distributed 

with parameters and 1, where Yj^ is the scale-parameter and t is twice 

the number of degrees of freedom. For 1=1 we have the exponential distribu¬ 

tion. We can interpret 1 as a 'regularity' parameter. The higher 1, the 

more regular the process of undertaking actions. For integer values of 1, 
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Table 5. Frequencies, estimated frequencies and residual 
3 ) 

frequencies of some profiles in the saturated 
time—number model for contacts with the dentist 

Profile Observed Estimated Residual 

000111 605 
001111 413 
011111 254 
111111 199 
001112 943 
111112 18 
000122 15 
001122 94 
011122 867 
111222 754 
0 0 2 2 2 2 27 
022222 12 

358 
516 
455 
392 
185 
265 
131 
195 
204 
176 
168 
120 

247 
-103 
-201 
-193 
758 

-147 
-116 
-101 
663 
578 

-141 
-108 

a) In the profiles the cumulative number of contacts is 
given over the (u=l,2,...,6). 

and in particular i“2, the process was studied in the context of non-dura- 

ble consumption goods in Chatfield and Goodhardt (1973). In our approach, i 

was not restricted to integer values. Further it was assumed that there 

were individual differences in the parameter which, again, could be ap¬ 

proached by a gamma distribution with parameters b and 1c. The results, af¬ 

ter going through a lot of mathematical trouble, were disappointing. For 

contacts with the dentist the estimated value of t (on the basis of maximum 

likelihood) was 1.173 with hardly any improvement of the fit. We must there¬ 

fore conclude that for processes which are rather regular and that are dif¬ 

ferent for distinct groups, tailor-made models are necessary in which all 

special features of the process are accounted for. 

6. CONCLUSIONS 

The model presented here could give a good insight into the structure of 

memory effects. When it is possible to describe the memory effects with a 

limited number of parameters they result in efficient estimation procedures 

of statistics of interest, e.g. the average frequency of contacts. A draw- 
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back is that due to the basic assumptions they are not generally applic¬ 

able. When the process is 'random' enough, the assumption that we have the 

Poisson property on individual level may be a satisfactory approximation. 

This seemed to be the case in contacts with the GP and specialists. However, 

the model performed very poorly when analyzing contacts with the dentist. 

As far as the basic questions of this research project concerned, we may 

conclude that it does make sense to ask retrospective questions about 

events that are contaminated with memory effects, provided that we have a 

good model for 1. the process that generated these events and 2. the pro¬ 

cess of forgetting. When we have a plausible model, then events that lie 

relatively far in the past, or that are followed by many other (reported) 

events contribute to the efficiency of the relevant estimators. 
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APPENDIX A 

The derivation of the likelihood function of M is a rather tedious excer- 

cise, although all steps consist of elementary operations. Here we give a 

rough sketch of how this function can be derived without proving all steps 

in detail. Our starting point will be the multivariate version of (2.3). 

When there are no memory effects, and m(t)<m+ (i.e. the category 'm+ or 

more' Is not contained in the vector in) we have: 

P{M=m} = ♦J'tj.Tj.--. ,Tt>t) 
m 

t 

= n 

X=1 

T m(x)-m(x-l) 

x_ 

(m(x)-m(x-l))! 

k(k+l).. ■ (k+m-1) bm(l:) 

(l+bT)m(t)+k 
(A.l) 

If m is contained in m, matters are more complicated. Let us assume that 

m(u)<m+ for u=l,2,...,s and m(u)=m+ for u=s+l,s+2,...t. Then 

P{M=m} = P{M(l)=m(l),... ,M(s)=m(s)} P{M(s+l)>m |M(s)=m(s)} 

= MTl>T2.Ts’s) 

m+-1 
1 - I P{M( s+l)=m |m( s)=m(s) } 

m=m(s) 

* T2.Ts ’s) •(1_T1 ’ T2 ’ • • • ’ Ts , TS+ r s) ) ' (A.2) 

where 

m+-l 

VT1.-- 
m 

’ * s+1 
>s) 

m-m(s) fl+b Z T 1 

L x-1 XJ 

ra(s)+k 

m=m(s) 
(m-m(s))! s+1 -^nri-k f T 

1+b V* L x= 1 J 

(k+m(s))...(k+m-1) 

(A.3) 

If we define f to be zero when m+ is not contained in m, then (A.2) gives 

the general expression for P(M=m) when there are no memory effects. 
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Now let us assume that memory effects do occur. Then according to (3.1) 

this amounts to measuring as if the length of T is not t but Tf = 
& ° u u u,m(u-l) 

t (1-v , When we have a restricted model, say the linear time-number 
u u,m(u-l) 

model, we can substitute the appropriate expression for y Thus 

u,m(u-1) 
T<{l-B1(T1 + ...+ T_1+iTj + B0j} 

u-1 
(A.4) 

Now the general expression for the probability of a profile m is: 

P{M=m> = y /1x,...,t’ / . v , s) ( 1- ^ / i n »• • • » T', , / \»s)) 
-*• 1’ 2,m(l), s,m(s-l) -*• 1 2,m(l)’ s+l,m(s) 
m m 

(A.5) 

From here the derivation of the likelihood function is standard since the 

numbers of profiles mj,m2... in the sample have a raultinominal distribu¬ 

tion with parameters P{M=m^}, P{M=m2}... • 
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