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CORRESPONDENCE ANALYSIS OF INCIDENCE AND ABUNDANCE DATA: 

PROPERTIES IN TERMS OF A UNIMODAL RESPONSE MODEL 

Cajo J.F. ter Braak*) 

SUMMARY 

Correspondence analysis is commonly used by ecologists to analyse data 

on the incidence or abundance of species in samples. The first few axes are 

interpreted as latent variables and are presumed to relate to underlying 

habitat variables. In this paper correspondence analysis is shown to 

approximate the maximum likelihood solution of explicit unimodal response 

models in one latent variable. These models are logistic-linear for 

presence/absence data and loglinear for Poisson counts, with predictors that 

are quadratic in the latent variable. The approximation is test when the 

maximum and tolerances (widths) of the response curves are equal and the 

species' optima and the sample values of the latent variable are equally 

spaced. It is still fairly good for uniformly distributed optima and sample 

values, as shown by simulation. For the models extended to two latent 

variables the approximation is often bad tecause of the horseshoe effect in 

correspondence analysis, but improved considerably in the simulations when 

this effect is removed as it is in detrended correspondence analysis. 
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1. IOTRODUCTION 

Correspondence analysis is a multivariate technique primarily 

developed for the analysis of contingency table data (Nishisato, 1980). 

However, in ecology and archaeology correspondence analysis is commonly 

applied to incidence or abundance matrices (Gauch, 1982). In ecology these 

matrices typically record the presence/absence or abundance of species in 

samples, e.g. plant species in quadrats or animal species in areas. Such 

matrices are not transformed to m-way contingency tables 'on the grounds 

that the data are essentially asyrmetric and the absences indicate little' 

(Hill, 1974). Clearly a different rationale is needed for the application 

of correspondence analysis to incidence or abundance data. 

Hill (1973) introduced correspondence analysis to ecology, under the 

name of "reciprocal averaging". He suggested the technique as a natural 

extension of the method of weighted averaging used in Whittaker's (1956) 

'direct gradient analysis'. Whittaker, among others, observed that species 

typically show unimodal ('bell shaped') response curves with respect to 

environmental gradients. Ror example, a plant species may prefer a 

particular soil moisture content, and not grow at all in places where the 

soil is either too dry or too wet. Each species is therefore largely 

confined to a specific interval along an environmental variable. The value 

most preferred by a species was termed its "indicator value" or optimum. 

In Whittaker's method, the indicator value of a species is estimated by 

taking the average of the values of the environmental variable in those 

samples in which the species occurs. (Bor quantitative data, the average 

is weighted by species abundance). Conversely, with known indicator values 

of species, weighted averaging is used to estimate the value of an 

environmental variable in a sample from the species that it contained (see 

e.g. Kovacs, 1969 for an application). Hill (1973) showed that if 

iterated, this process of 'reciprocal averaging' converges to a solution 

independent of initial indicator values, namely the first nontrivial axis 

of correspondence analysis. Hill's method therefore amounts to arranging 

samples and species along a latent variable, an activity Whittaker (1967) 

termed "indirect gradient analysis". After such analysis, attempts are 

made to identify the latent variable by comparison with known variation in 

the environment (Gauch, 1982). The Petrie-matrix (Hill, 1974) provides a 

deterministic example of a response model wherein the response curves are 
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(weakly) unimodal "block functions". Unimodal models also play an 

important role in unfolding theory (Coombs, 1964). 

In this paper correspondence analysis is regarded as an estimation 

method for latent variable models and is compared with maximum likelihood 

under parametric unimodal response models with respect to one or twa 

latent variables. Ihe models considered are loglinear and logistic-linear 

models with predictors that are quadratic in the latent variable(s). Ter 

Braak and Barendregt (in prep.) showed that these are the only models with 

Poisson and binomial error, respectively, for which the weighted average 

of indicator values can achieve unit asymptotic efficiency with respect to 

maximum likelihood. The comparison gives seme idea about the model that is 

implicitly invoked when correspondence analysis is applied to incidence or 

abundance data. This comparison is important because the maximum 

likelihood approach may be computationally too demanding for the numbers 

of species and samples commonly encountered in ecological research. 

Moreover, when the maximum likelihood approach is considered worthwhile, 

the results suggest that good initial estimates can be derived from 

correspondence analysis or, for two latent variables, from detrended 

correspondence analysis (Hill and Gauch, 1980). 

2. CORRESPONDENCE ANALYSIS 

Nishisato (1980) takes the view that correspondence analysis, alias 

dual scaling, assigns real numbers or "scores" to rows and columns of a 

table so as to optimize a particular criterion. Consider a species-by¬ 

sample matrix Y = [y ] (k = 1, ..., m; i = 1, ..., n) of nonnegative 
~ ki 

real numbers, denoting the presence/absence (y^ = 1 or 0) or count of 

individuals of each of m species in n samples. Let u = [u ] (k = 1, 

__ m) and x = [x ] (i = 1, ..., n) contain the scores for species (rows) 
~ i 

and samples (columns), respectively. In correspondence analysis these 

scores are chosen so that the weighted sum of squares of the sample scores 

is maximun with respect to the weighted sum of squares of the sample 

scores within species, i.e. the criterion maximized is 

d2 = I y+.(x.-z)2/£ l yki(x.-uk)2 (2.1) 

where z = V y . x. /y 
f •'+1 i -'++ 

and the subscript + denotes summation over that 



subscript. Maximization of D2 will give each species a score close to the 

scores of those samples in which it is abundant. (An alternative 

interpretation of this criterion is given in §4.3.) With the Lagrange 

method of multipliers and the sample scores centred so that z = 0, we 

obtain after some rearrangement the transition formulae of correspondence 

analysis (with a = 0) 

x1~“xi= l yxiV^+i (i =1.n> (2.2) 

uk = S ^kiV^ (k=1. (2.3) 

where \ is a real number (0 < X < 1). Hie extra parameter a governs the 

scaling of the species scores and the samples scores with respect to one 

another. There are three choices of a in common usage, namely a = 0, 1 

or 1/2. Criterion (2.1) leads to a = 0. With a = 0, the species scores 

ufc are weighted averages of the samples scores X£ (Eq. (2.3)) and the 

sample scores are proportional to the weighted averages of the species 

scores (Bg. (2.2)). With a = 1, the role of species and samples is 

interchanged, also in the criterion being maximized. The third choice, 

a - V2' is a compromise in that it treats species and samples scores in a 

synmetric way. 

The transition formulae have more than one solution. All solutions 

can be obtained from the singular value decanposition of R~1^2 Y C-1-22 

(see Hill, 1974) with R = diag (y ) and C = diag (y ). 
~ k+ ~ +i 

When the left and right normalized eigenvectors in this decanposition 

are denoted by q and r , corresponding to eigenvalue p = A 
~s ~s s s 

(s = 0, 1, 2, ...), then the solutions are 
-1/2 1/2 . -1/2 1/2 „ 

u - p R 1 y, , and x = C r y . The maximum eigenvalue is 
~s s ~ ~s -H- ~s ~ ~s ++ 
always 1, corresponding to the trivial solution in which all samples and 

species scores equal 1. The first nontrivial solution (s = 1) is 

orthogonal to the trivial solution, hence satisfies the previously applied 

centering z = 0, and maximizes the criterion D2 with u = u , x = x 
~ ~1 ~ ~1 

and D - 1/(1-\^). Moreover, the singular value decomposition implies 

that the species and sample scores, u and x, approximate the data in a 
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weighted least squares sense by the bilinear model (see Nishisato, 1980) 

yki ^ki 

eki 

with e = y y ,/y , the expectation under the assumption of row/column 
ik k+ ti ++ 

independence in contingency tables. 

3. A UNIMODAL RESPONSE MODEL 

Fran now on the species-by-sample matrix Y will be assumed to consist 

either of counts y^. that are independent Poisson variables with 

expected value , or of presence/absence (1/0) data that are 

independent Bernoulli variables with probability that the k-th species 

is present in the i-th sample. The models assumed for are loglinear 

and logistic-linear models (Nelder and Wedderburn, 1972) in which the 

linear predictor is a quadratic polynomial in the latent variable x. It is 

convenient to write these models in the form 

link (pki) = ak - ^ - uk)2/t£ (3.1) 

where link is the logarithmic function for counts and the logistic 

function for the 1/0 data. In (3.1) the parameters for the k-th species 

are a^, the maximum on log- or logit-scale, u^ the mode or optimum, 

(i.e. the value of x for which the maximum is attained), and t^ the 

tolerance, a measure of ecological amplitude. The value of the latent 

variable in the i-th sample is Xi, which is treated as a fixed 

incidental parameter. Fig. 1 displays an example for 1/0 data. The 

loglinear model is precisely the "Gaussian" response curve that is put 

forward by ecologists as an ideal for species responses along a gradient 

(see Austin (1976) and Gauch (1982) for reviews). 

The arbitrariness in the scale of the latent variable can be 

resolved, for example by centring as in correspondence analysis 

(jy^x^ = 0) and by setting the mean square of the tolerances to unity 
i 
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Fig. 1• Unimodal response curves (3.1) for the probability (P) of 

occurrence along a latent variable (x), fitted by correspondence 

analysis to Table 2. The species optima and sample points are 

indicated by ticks below and above the abscissa. Ihe length of a 

tick is proportional to the number of sample points. The numbers 

below the optima corresponds to row numbers in Table 2. The 

horizontal bar is one tolerance unit. 

(£t£/m = 1), so that the latent variable can be measured in (mean) 

tolerance units. Then, the maximum likelihood equations for the parameters 

x=[x](i=1, ...,n) and u = [u ] (k = 1, ..., m) become, after 
~ i ~ k 
some rearrangement 

x. 
i = l k 

v u 
*ki k 

(x.-u )n y 
[i. \ 4-ki /i .£] 
k t2 k t2 

(3.2) 

ak = ? ykiXi/yk+ [l 'VV^kAJ (3.3) 

4. THEORETICAL COMPARISONS 

Hill's approach to correspondence analysis makes plausible that the 

species scores and sample scores in § 2 play a role similar to the species 

optima and sample values in § 3: that is why similar symbols are used in 

§ 2 and § 3. Our aim is to show the terms between square brakets in (3.2) 

and (3.3) are negligible in certain cases, so that the maximum likelihood 
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equations reduce effectively to the transitional formulae (2.2) and (2.3) 

of correspondence analysis. These cases are: either is snail or 

is symmetric around x-^ and around u^. 

4.1 Equations for the sample scores 

For the comparison of the estimation equations (2.2) and (3.2) let us 

first assume that the environmental variable is manifest, and that the 

species' tolerances are equal (t^ = t = 1). With known species' optima 

and maxima, a missing value of the environmental variable in a sample can 

be estimated by using (3.1) as calibration relation. The naive estimator 

is the weighted average (2.2) with ce = 1. The maximum likelihood equation 

(3.2) would give the same result when the term between square brackets is 

negligible, e.g. if for all species the maximum of as a function of x 

is close to zero (a^ —»). This case may have some practical relevance, 

as it implies very sparse matrices, which are not uncommon in ecology. 

A more interesting case arises when n)« i-s symmetric around Xj. 

This happens under the species packing model (MacArthur and Levins, 

1967). This is an ecological model based on the idea that during evolution 

species evolve to occupy maximally separated niches with respect to a 

limiting resource. Christiansen and Fenchel (1977, ch. 3) provide a lucid 

introduction. With x the resource, maximally separated niches mean minimal 

overlap between the response curves and thus, for a given number of 

species on a fixed length interval and equal maxima, equal spacing between 

the optima (apart from edge effects). If in this situation (1) the 

interval is longer than, say, 10 tolerance units, (2) the spacing between 

the optima on this interval is closer than ca. 1 and (3) the sample value 

Xi is well within this interval, then the term between square brackets 

is negligible because of the symmetry in the model (3.1). Simulations 

showed that under the stated conditions the weighted average has, in terms 

of mean squared error, an efficiency of 1.00 with respect to the maximum 

likelihood estimator (with an uninformative prior for Xi). Moreover, Ter 

Braak and Barendregt (in prep.) showed that the asymptotic efficiency is 

unity when the spacing decreases to zero on an interval of increasing 

length and that in the class of response curves that form a location 

family on x, the models considered here are the only models with this 

property. 

The weighted average still has approximately unit efficiency when the 

species maxima and optima vary in a cyclic pattern along the environmental 
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variable, i.e. when the species can be divided in sets so that within each 

set the species have equal maxima and equally spaced optima with spacing 

less than one tolerance unit. However, the efficiency may drop 

considerably when the tolerance varies. Por example, with two tolerances 

differing a factor two, the efficiency drops to ca .6 in the logistic 

model with maximun probability of occurrence .5. In that case the term 

between square brackets still vanishes, but what remains is not a simple 

weighted average. If the tolerances are known apriori, then the weighted 

average should be applied to y ./t2, instead of to y , in order to retain 
ki k ki 

high efficiency. 

More realistically, let us assume a superpopulation of response 

curves in which (1) the optima are independently and uniformly distributed 

on an interval (cf. Whittaker, Levin and Hoot, 1973), (2) the species 

maxima are either constant or random variables independent of the species 

optima and (3) the tolerances are equal. In this superpopulation the 

numerator of the term in square brackets in (3.2) vanishes in expected 

value, provided the sample value xi is, again, well within the interval 

on which the optima are uniformly distributed. Because expectation is 

involved now, neglecting the term in square brackets makes weighted 

averaging less efficient with respect to maximum likelihood. In the 

logistic model with equal maxima, the asymptotic efficiencies are .96, .79 

and .50 when the maximum probability of occurrence is .1, .5 and .9 

respectively (Ter Braak and Barendregt, in prep.). 

With a = 1, the difference between the correspondence analysis 

equation (2.2) and the maximum likelihood equation (3.2) for latent x is 

the term between square brackets. The above comparisons for manifest x 

indicate in which situations neglecting this term does not affect the 

solution too much. Note that Bq (2.2) does not involve the species maxima 

and further that, for Bq (2.2) to be efficient for all samples, the 

sampled interval should be amply contained in the interval of the optima. 

With the choice a = 1 the latter condition is pre-assumed. 

4.2 Equations for the species optima 

When the sample values are known apriori, estimation of the optima is 

a regression problem. Fran the symmetry between sample values and species 

optima in model (3.1) when the maxima and tolerances are equal, we deduce 

that the results of the previous section carry over to those species whose 
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optima lie well within the sampled interval. Por those species the 

weighted average is therefore asymptotically fully efficient with respect 

to the maximum likelihood estimator of the optimum, when the sample points 

are equally spaced with spacing less than one tolerance unit, and has a 

somewhat lower efficiency when the sample points are independently and 

uniformly distributed over the sampled interval. (That the maximum and the 

tolerance are to be estimated as well does not matter, because for these 

species the estimator for the optimun has under the stated conditions 

negligible correlation with the estimators for the maximum and the 

tolerance). However, for species whose optima lie near the edge of, or 

even outside, the sampled interval, the weighted average is biased towards 

the center of the sampled interval, because these species' response curves 

are truncated. Por example, the weighted average always gives a value 

inside the sampled interval, whereas the true optimum may lie outside this 

interval. This is where the eigenvalue \ of correspondence analysis comes 

in. With a = 1 as in the previous section, Eq (2.3) can be rewritten as 

= £ ykiXi/yk+ - (X-1)uk 
(4.1) 

The term (X-I)u^ can be considered as an overall correction term for the 

bias, or, alternatively, as a crude approximation to the term between 

square brackets in the maximum likelihood equation (3.3). The first 

nontrivial solution to the transition formulae has an eigenvalue \ closest 

to 1 and is therefore the solution where the least correction is 

required. This must be the solution with the longest underlying gradient, 

because the edge effects that cause the bias, decrease with increasing 

length of the sampled interval. Although the correction term acts in the 

right direction, it overcorrects for optima well within the sampled 

interval and still undercorrects for optima on the edge of or outside the 

sampled interval. This observation explains the 'compression of the first 

axis' ends relative to the axis middle' (Gauch 1982) in correspondence 

analysis. 

4.3 Scaling of the correspondence analysis solution 

The choice of a in the transition formulae (2.2) and (2.3) affects 

the scaling of the species scores with respect to the sample scores. If 

the sampling interval is contained well within the interval of the species 

optima, then a should naturally be 1 (§4.1). If the converse applies, then 



a should be zero. In practice the intervals may coincide or may only 

partly overlap. Hie choice of a is then arbitrary and should be decided 

upon by other means (see §6.2). 

Hie standardization of the sample scores also requires attention. 

Commonly the dispersion s2 of the sample scores, s2 = £ y+ix2/y++, 

is set equal to the eigenvalue so that differences between sample 

scores approximate 'chi-squared distances' between samples (see e.g. 

Greenacre, 1981). In the maximum likelihood approach (§3) the mean squared 

tolerance is set to unity. Assuming the loglinear model and the species 

packing model Hill (1979) estimated the mean squared tolerance by 

I I Vu'(x--u, )2/y.. and standardized the correspondence analysis solution 
^ X K ' 

so that this estimator becomes 1. Hill's standardization gives as 

dispersion of the sample scores 1/(1-\) for a = 0 (see §2) and l/(1-X) for 

a = 1. Under the species packing model an alternative interpretation of 

criterion (2.1) is therefore that correspondence analysis maximizes the 

dispersion of the sample scores, subject to maintaining species response 

curves with unit mean squared tolerances. (By contrast, principal 

component analysis maximizes the variance of the sample scores subject to 

the condition that the sample scores are a normalized linear combination 

of the species' abundances.) 

4.4 Conclusion 

In conclusion, the transition formulae of correspondence analysis 

approximate the maximum likelihood equations for model (3.1). For equally 

spaced optima and sample points and equal maxima and tolerances 

correspondence analysis uses a rough approximation to correct for edge 

effects. For uniformly distributed optima and sample points a second kind 

of approximation is involved, namely that the expectation is taken with 

respect to these uniform distributions over those parts of maximum 

likelihood equations that do not depend on the data y^p. Hie equality of 

the species maxima does not appear to be a crucial assumption. Bor unequal 

and unknown tolerances the approximation is worse, because the transition 

formulae then need to be weighted as well by the tolerances, which is not 

done in correspondence analysis. 
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5. TOO LATENT VARIABLES 

5.1 A unimodal model 

The obvious extension of model (3.1) with equal tolerances to two 

latent variables is 

1 ? 1 ? 
linkf^J = ak - - (xiruk1) - - (xi2-uk2) (5.1) 

The maximum likelihood equations for x , x and u , u are analogous 
~1 ~2 ~1 ~2 

to (3.2) and (3.3) and nothing new arises in the comparison with the 

transition formulae. However, the edge effects due to truncation are 

likely to be more severe in two dimensions. Firstly, there is more edge; 

secondly, the bias of the weighted average for, say, uk1 will in 

general not only depend on u^ but, through also on uk2- 

Approximating this bias by (\1-1)uk1 is thus dubious; yet only with such 

approximations do the maximum likelihood equations reduce to the 

transition formulae of correspondence analysis. 

5.2 Detrended correspondence analysis 

Hill and Gauch (1980) developed detrended correspondence analysis as 

a heuristic modification of correspondence analysis, designed to correct 

two major 1 faults': (1) that the ends of the first axis are often 

compressed relative to the axis middle (see §4.2); (2) that the second 

axis frequently shows a systematic, often quadratic relation with the 

first axis. The latter 'fault', known as the horseshoe or arch effect, can 

be proven to occur for certain matrices (Hill 1974, proposition 8; 

Schriever, 1983). 

Hill and Gauch (1980) adopt the species packing model to remedy the 

compression problem. The 'species turnover rate' (assumed constant) can be 

estimated at a point along the gradient by the dispersion of the species 

scores in a sample at that point. Hill and Gauch therefore try to equalize 

the mean within-sample dispersion of the species scores at all points 

along the axis by rescaling the species scores (see Hill, 1979 for the 

details). Thereafter the sample scores are simply derived by weighted 

averaging. 

The horseshoe effect is considered by Hill and Gauch (1980) as 'a 

mathematical artifact, corresponding to no real structure in the data'. 
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They eliminate the horseshoe by 'detrending'. Detrending intends to assure 

that, at any point along the first axis, the mean value of the sample 

scores on the subsequent axes is approximately zero, lb this end the first 

axis is divided into a number of segments and within each segment the 

sample scores on axis 2 are adjusted by centering them to zero mean. The 

program by Hill (1979) uses running segments for this purpose. This 

process of detrending is built in the reciprocal averaging algorithm that 

generates the normal correspondence analysis solution, and replaces the 

usual orthogonalization procedure. Subsequent axes are derived similarly 

by detrending with respect to each of the existing axes. 

Detrended correspondence analysis has been tested on data sets 

simulated under the Gaussian response model in one to four dimensions and 

was found to recover the structure of the data well (Hill and Gauch, 1980; 

Gauch, Whittaker and Singer, 1981). 

6. NUMERICAL COMPARISONS 

6.1 Introduction 

The theoretical comparisons described so far are approximate and are 

supplemented in this section by numerical comparisons, using simulated 

data sets and one real data set. The performance of correspondence 

analysis is judged by correlations of the sample scores with the real 

values or their maximun likelihood estimates and by log-likelihood. For 

the real data set comparisons are made in terms of Bartholomew's (1980) 

measure of how much of the original departure from the null model is 

accounted for by the model fitted. This measure is defined analogously to 

the coefficient of determination (R^) with sums of squares replaced by 

deviances (minus-two-log-likelihoods). 

6.2 Methods 

Data were simulated under the response models (3.1) and (5.1) in one 

and two dimensions, respectively, using unit tolerance and equal maxima. 

The optima and sample points were drawn in each simulation independently 

from a uniform distribution on an interval and rectangle with prechosen 

length and sides, respectively. Ecologists refer to such simulations as 

coenocline and coenoplane simulations (see Gauch, 1982). The simulations 

were constrained to give at least three species occurrences in each sample 
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and three occurrences per species, to ensure that all parameters could be 

estimated. 

Subroutines from Hill (1979) were used to calculate the (detrended) 

correspondence analysis solution for the species optima and sample scores 

with a = 1 and Hill's (1979) standardization (§4.3). With these scores and 

t = 1 the species maxima were estimated by maximum likelihood, 

analytically in case of Poisson counts (Kooijman, 1977) and numerically in 

case of 1/0 data. Par this solution the likelihood was calculated. In this 

simple approach the choice of a is arbitrary, but influences the 

likelihood. In a second approach this problem was solved by calculating 

for each species the regression of the species' responses on the sample 

scores, this is easy because models (3.1) and (5.1) are generalized linear 

models (Nelder and Wedderburn, 1972). The tolerances were kept fixed to 1 

in the regressions. 

The maximum likelihood solution was derived by alternating 

'regressions' to estimate the species parameters and 'calibrations' to 

estimate the sample parameters, the latter being centred and, in two 

dimensions, rotated to principal axes in each iteration (Kooijman, 1977). 

As usual it cannot be guaranteed that the overall maximum of the 

likelihood is found, but the algorithm is at least hill climbing. 

6.3 Simulation results 

Table 1 summarizes simulations of incidence matrices (A-E) and 

matrices with counts (F-I), the former simulated from the logistic 

response curves (3.1), the latter from the loglinear response surfaces 

(5.1), all with unit tolerance. The maximum probability of occurrence is 

.7 in A, B and C and .5 in D and E. The maximum count is either 5 (F, 

G, H) or 1 (I). 

Table 2 shows an example of B in which the length of the sampled 

interval is five tolerance units and Fig. 1 displays its correspondence 

analysis solution. Although some of the species scores are out of order, 

the correlation of the scores of samples and of species with the true 

values is over .9 and the deviance is even lower than under the true 

parameters values. Table 1 shows that in all simulations correspondence 

analysis performed well for the first dimension, but in simulations F to I 

badly for the second dimension. Detrended correspondence analysis is 
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Table 1: Results of simulations of the models (3.1) and (5.1) with unit 

tolerance, for 1/0 data in one dimension (A-E) and for Poisson 

counts in two dimensions (F-I). Shown are average values of at 

least four simulations (first axis 1, then axis 2, if appropria¬ 

te). (no. = number; u = species optima; x = sample scores; par. = 

parameters; df = degrees of freedom; CA = correspondence analysis; 

DCA = detrended correspondence analysis; (D)CA + REGR = (D)CA 

followed by regression on (D)CA sample scores; ML = maximun 

likelihood) 

SIMULATION ABODE F G H I 

no. of species 

no. of samples 

range of u 

range of x 

value of a 

no. of par. 

df 

EIGENVALUES (x 100) 

CA 

DCA 

DEVIANCES 

null model 

true par. 

CA 

DCA 

CA + REGR 

DCA + REGR 

ML 

CORRELATION WITH TRI 

30 10 30 30 

20 50 50 50 

12 6 5 5 

10 5 4 4 

1110 

79 69 109 109 

521 431 1391 1391 

90 50 38 52 

90 50 38 52 

634 654 1941 1641 

327 483 1556 1396 

308 458 1506 1289 

292 445 1533 1324 

264 441 1475 1280 

279 423 1495 1309 

217 417 1440 1259 

SAMPLE SCORES (X 100) 

CA 98 90 95 95 

DCA 98 90 96 91 

ML 99 86 94 92 

30 

50 

3 

2 

0 

109 

1391 

18 

18 

1936 

1883 

1778 

1789 

1758 

1781 

1739 

67 

51 

67 

40 

50 

10;5 

8; 4 

1.6 

218 

1782 

88; 63 

88;45 

3448 

836 

1696 

1010 

1167 

775 

648 

97; 57 

98; 83 

99; 95 

40 

50 

5;5 

4;4 

1.6 

218 

1782 

61; 49 

61 ;39 

4316 

1377 

1708 

1433 

1320 

1255 

1170 

40 40 

50 50 

7;4 7;4 

6; 3 6; 3 

1.6 0 

218 218 

1782 1782 

77; 44 81 ;57 

77;34 81;44 

4000 1477 

1225 856 

1958 907 

1194 681 

1374 754 

1070 642 

994 598 

98;64 96;53 

99;91 96;77 

99; 93 96; 77 

meaningless 
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11111111110110010101000001000100000000000000000000 

11101111100111111100110010010000000000000000000000 

11000001100101101111111100100000110000000000000000 

01110011111011001011101101010111101011000000000000 

11111110010011110111100111010010110000000010000000 

00110001011101101011110111110111011111011000000000 

00010101011000011111011111001000101111101100111000 

00000000000000011010000100100011111101111111111111 

00000000000010100000111001001101100110111011111111 

00000000000000000000000000001000101001011101001111 

Table 2: Incidence matrix simulated from unimodal response curves (3.1) 

under condition B in Table 1. The species (rows) and samples 

(columns) are arranged in increasing order of the true optima and 

sample values, respectively. 

comparable to correspondence analysis in one dimension (A-E), but far 

superior in two dimensions (F-I). 

In two dimensions each solution of corrrespondence analysis showed 

the horseshoe, most in F and H, least in G and I. The lower the maximum of 

the response curves, the better correspondence analysis (D vs C and I vs 

H), in accordance with the theory. The simulations also confirm the 

observation of Hill and Gauch (1980) that correspondence analysis works 

more satisfactorily with square sampling regions as compared to 

rectangular regions (G vs F, H). In order to determine whether the success 

of detrended correspondence analysis is due to the rescaling of the axes 

or to the detrending, some tests were done with rescaling, but without 

detrending. These tests showed a slight, but unimportant improvement over 

the results of correspondence analysis. The success of detrended 

correspondence analysis is therefore mainly due to the detrending. 

The eigenvalues showed little variation between simulations of the 

same type: for example, in A ar«d F the standard deviations were below 

0.05. 

The estimates of the species optima can be improved by regressing 

each species' response on the sample scores, as can be seen from the drop 

in the deviance (Table 1) and the increase in correlation with the true 
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optima (not shown). The deviance after regression on the sample scores 

from detrended correspondence analysis was in nearly all simulations less 

than the deviance under the true parameters. 

The maximum likelihood solution has, by definition, the lowest 

deviance, but does not always give the highest correlation with the true 

sample scores. Of the three sets of initial values used to derive the 

maximun likelihood solution, the true values and the values from detrended 

correspondence analysis gave nearly identical solutions. Starting from the 

correspondence analysis solution the maximization procedure frequently 

became trapped in a local maximum in simulations F to I. 

6.4 A real data set 

The real data set, taken from Van der Aart and Smeenk-Enserink 

(1975), concerns the distribution of twelve wolfspiders (Lycosidae) in a 

dune area and consists of the accumulated catches of these spiders in 100 

samples. The maximum count in the data is 189, far higher than in the 

simulations, but zeroes are equally abundant as in the simulations. How 

does correspondence analysis perform on these data? The first axis with 

eigenvalue .65 accounts for only 26% of the original departure from 

independence. After regression this percentage becanes 41% and 59% for 

curves with equal and unequal tolerances, respectively. These figures are 

poor compared with the 78% that is accounted for by the maximum likelihood 

solution. Yet the correlation between the sample scores is .85. The small 

second eigenvalue (.09) of detrended correspondence analysis shows that 

the second dimension is unimportant for these data, in agreement with the 

maximum likelihood results of Kooijman (1977) who also fitted two- 

dimensional Gaussian response models to these data. 

7. DISCUSSION 

Both the unimodal model (3.1) with t = t and the bilinear model 

(2.4) stand at the basis of correspondence analysis. The clue to this 

apparent paradox is data transformation. In linear regression, data 

transformation can be used to linearize monotone relationships. In 

multivariate analysis, data transformation can also be used to linearize 

non-monotone relationships. Correspondence analysis is not the only 

example. Kooijman (1977) showed that principal component analysis recovers 
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exactly the parameters of equal tolerance Gaussian curves and surfaces 

from error-free data when the data matrix is centered by rows and by 

columns after logtransformation. Aitchison (1983) proposed this 

transformation to overcome the difficulty of the constant-sum constraint 

in principal component analysis of compositional data. He notices that 

'the nonlinearity of the logarithmic function opens up the possibility of 

coping with curvature in datasets ...', but does not refer to the Gaussian 

or unimodal response model. His Fig. 2(b) clearly shows the unimodal 

response of constituent F along the first principal component. Ihm and Van 

Groenewoud (1975) used a different transformation to analyse Gaussian 

response curves by principal component analysis. Their method requires the 

same assumptions as correspondence analysis about the distribution of the 

optima and the sample points. 

Pour conditions (equal tolerances, equal or independent maxima and 

equally spaced or uniformly distributed optima and sample points) are 

needed to show that (detrended) correspondence analysis provides an 

approximate solution to the unimodal models (3.1) and (5.1). How realistic 

are these assumptions in practice and how robust is correspondence 

analysis to violations of the assumptions? Some checks on the assumptions 

are possible, e.g. by regressing each species' responses on the derived 

sample scores, allowing the tolerances and maxima to vary among species, 

and I suggest that this should be done routinely, if only to determine the 

goodness-of-fit of the model for descriptive purposes. Ihm and Van 

Groenewoud (1975) and Kooijman (1977) reported that the optima and sample 

values as estimated by their methods are fairly robust against unequal 

tolerances, as did Hill and Gauch (1980) for detrended correspondence 

analysis. The four conditions are not needed in the maximun likelihood 

approach, taken by Gauch, Chase and Whittaker (1974) for normal data, 

Kooijman (1977) for Poisson data and Goodall and Johnson (1982) for 

presence/absence data. Yet, the maximum likelihood approach is applied 

seldom in ecological research because of its computational complexity and 

the lack of reliable and flexible software (Gauch, 1982). Another reason 

might be that correspondence analysis appears 'non-parametric'. However, 

this paper reveals its close connection with 'Gaussian' response curves 

with equal tolerances. 

Conmonly high values in the data matrix are downweighted in 

correspondence analysis by, for example, a prior square root 
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transformation. However, when the variance is proportional to the mean, 

transformation is not required (Wedderburn, 1974). Overdispersion then 

inflates the mean deviance, not necessarily implying lack of fit. When the 

type of dispersion or lack of fit is allowed to vary between species, all 

problems of ccrmon factor analysis are lurking in the way. 

Principal component analysis and correspondence analysis are rival 

methods for dimensionality reduction for abundance data (Gauch, Whittaker 

and Wentworth, 1977: Greig-Smith, 1983), both allowing 'major features' of 

the data to be visualized in joint plots of species and sample scores. The 

geometrical interpretation of a principal component plot is based on the 

bilinear model, as stressed by Gabriel (1971) who termed the plot a 

biplot. the value of a variable as approximated by the biplot, changes 

linearly across the plot. Correspondence analysis therefore gives a biplot 

of the transformed data values (2.4). However, in terms of the original 

data Y the joint plot of correspondence analysis is not a biplot, because 

the model for the original data is unimodal rather than bilinear. The 

original value of a variable as approximated by a correspondence analysis 

plot, is maximum at this variable's point in the plot and decreases with 

distance from that point, disregarding for a moment the fact that 

(detrended) correspondence analysis only provides an approximate solution 

to the unimodal models (3.1) and (5.1). We may interpret the 

correspondence analysis plot more informally as Benzecri et al. (1973) 

does. His centroid-principle (le principe barycentrique) is simply the 

transition formulae interpreted geometrically. Multidimensional unfolding 

provides the same kind of plot (Carroll, 1972). 

Although principal component analysis and correspondence analysis 

model and display multivariate data in different ways, the resulting plots 

of the sample scores are sometimes similar. This happens when all unimodal 

surfaces are truncated to monotone surfaces over the region actually 

sampled, the monotone surfaces being approximated by planes in principal 

component analysis. In such cases the correspondence analysis solution 

with a = 1 shows some species points close to the centroid of the sample 

points whereas the other species' points fall outside the region where the 

sample points lie. 
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