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MAXIMUM LIKELIHOOD ESTIMATION OF 

SUM-CONSTRAINED LINEAR MODELS 

WHEN SAMPLES ARE SMALL* 

by 

P.M.C. de Boer and R. Harkema** 

Abstract 

Maximum likelihood procedures for estimating sum-constrained models like 

demand systems, brand choice models and so on, break down or produce very 

unstable estimates when the number of categories is large as compared with the 

number of observations available. In empirical studies this difficulty is 

mostly resolved by postulating the contemporaneous covariance matrix of the 
2 —1 

dependent variables at time t to equal a(I —n ii*). In this paper we 
n n n 

develop a maximum likelihood procedure based on a contemporaneous covariance 

matrix which allows that the variances per category may be different, while 

the number of observations required is substantially less than the number that 

would be required in the case of a completely unrestricted contemporaneous 

covariance matrix. 

* This article is a highly condensed version of de Boer and Harkema (1983). 
For proofs and some special cases the reader is referred to the original 
publication, which may be requested from the authors. 
** Econometric Institute, Erasmus University Rotterdam, P.0. Box 1738, 3000 DR 
Rotterdam, Tel. 010-525511, ext. 3033/3093. 
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1. INTRODUCTION 

Sum-constrained models, i*ea, models in which subsets of the dependent 

variables sum to a fixed number, occur in almost every field of applied 

econometric research. In demand analysis the amounts spent on the categories 

of consumer goods and services that are distinguished add up to total 

expenditure, in production theory the cost shares of the various factors of 

production add up to unity, in marketing analysis the probabilities that a 

specific brand will be chosen add up to unity, in international trade the 

flows of exports from a specific country to different destinations add up to 

total exports, and so on. Sum-constrained linear models may generally be 

represented by means of the following system of seemingly unrelated regression 

equations 

i = 1 n (1.1) 

where y- denotes a Txl vector of observations on the i-th dependent variable, 

denotes a Txk^ matrix of observations on a set of kj_ explanatory variables 

which are specific for the i-th dependent variable, is a k^l vector of 

unknown parameters to be estimated, uL is a Txl vector of zero-mean 

disturbances and n, the number of categories that are distinguished, is 

supposed to be larger than 2. The adding-up restrictions imply that the 

vectors of dependent variables y^ add up to a vector of fixed numbers m. Hence 

n 

(1.2) 
i 

m 
i=l 

Summing (1.1) over i and taking expectations it follows that 

n 

(1.3) £ u. = 0 

and 

n 

(1.4) £ 
i=l 

m 

Evidently, (1.3) reflects the wellknown fact that the vectors of disturbances 

in sum—constrained linear models are linearly dependent. The restrictions 

(1.4) are usually accomodated by imposing linear constraints on the vectors of 
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parameters g^. To give but a few examples, in the Kotterdam model (see e.g. 

Theil (1975)) and in the simplified version of the Almost Ideal Demand System 

of Deaton and Muellbauer (1980), the vectors of parameters g^ add up to the 

unit vector, while in the Multiplicative Competitive Interaction Model of 

Nakanishi and Cooper (1974) the vectors of parameters g^^ are supposed to be 

the same for all brands. 

A major difficulty in estimating sum-constrained linear models is caused 

by the fact that the method of maximum likelihood is very demanding with 

respect to the number of observations that is required. Maximum likelihood 

procedures frequently break down or produce very unstable estimates because of 

lack of data even when only a moderate number of categories is considered. 

Laitinen (1978), for example, has shown that the minimum number of 

observations required for maximum likelihood estimation of the Rotterdam model 

equals 2n. In applied research this problem is usually resolved by imposing 

far-reaching restrictions on the contemporaneous covariance matrix of the 

disturbances. Denoting this matrix by fi, McGuire et al. (1968), Solari (1971), 

Deaton (1975), and Deaton and Muellbauer (1980), for example, impose 
2 —1 

^ = 0 (In ~ a developing his theory of rational random behavior 

Theil (1971, 1974, 1980) proposes to impose S2 = —o^S, where S denotes the 

matrix of Slutsky—coefficients. Both approaches have in common that, apart 

from a constant of proportionality, the structure of the contemporaneous 

covariance matrix is completely specified beforehand. 

The purpose of the present paper is to introduce a more flexible 

specification of the contemporaneous covariance matrix which allows for n 

parameters to be estimated freely and possesses the attractive property that 

the number of observations that is required need not be larger than 

maxjk^ + l}. For the case considered by Laitinen this means that the minimum 

number of observations required is only iM-2 instead of 2n. 

The plan of the paper is as follows. In Section 2 we introduce the 

specification of the contemporaneous covariance matrix and derive the 

corresponding maximum likelihood estimators and their asymptotic distribution. 

In Section 3 we present an outline of the estimation procedure for the 

covariance matrix and in Section 4 we summarize our findings and discuss some 

extensions. 
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2. MAXIMUM LIKELIHOOD ANALYSIS 

We start by rewriting (1.1) according to 

(2.1) y^ = Xie + 1^ i = 1, .... n 

where and are as before, denotes a Txk matrix containing the columns 

of Z- and k-k^ zero columns and 6 is the kxl vector of parameters that is 

obtained by writing the vectors in stacked form. From (1.2)—(1.4) it 

follows that (2.1) is subject to the following constraints 

n n n 
(2.2) I y. = m S X-B = m E u. = 0 

i=l 1 i=l 1 i=l 1 

As said before, the constraints E?_^X^B = m are usually accomodated by 

imposing linear constraints on the vector of parameters B. Therefore we 

impose^ 

(2.3) RB = r 

where R denotes a qxk matrix of full row rank and r represents a qxl vector. 

Of course, (2.3) may also represent other linear constraints like those 

resulting from homogeneity and symmetry conditions in linear demand systems. 

As regards the vectors of disturbances u^, we assume that the 

vector u' = [u1^ ... u^] is distributed according to a nT-variate normal 

distribution with zero mean and variance-covariance matrix [S2n fi 1^], Sln being 

a positive semi-definite symmetric matrix of rank (n-1). More specifically, in 

the present paper S2n will be specified as follows 

(2.4) SI = D - d-16 S' n n n n 

with 

1. For expository reasons all restrictions that may exist with respect to the 
vector of parameters 3 have been collected in (2.3). From a computational 
viewpoint, however, it may be advantageous to eliminate all restrictions right 
away from the start. 



0 

101 

D 
n 0 

d 
n 

6' 
n 

[d, ...d„ 
n 

d = Z 
i=l 

d. 

In scalar notation we may write (2.4) as 

id . . 
n 

var(u^t) = d^ 

d2 

i = 1, n 

d. d. 

“ij = cov(uit. ujt)-V = 1."I i ^ J 

The specification (2,4) originally arose from a straightforward generalization 
2 — I 

of the specification «=a(l -n ii*). Recently, however, Don (1984) has 
n n nn 

shown that the specification (2.4) corresponds to the least informative error 

distribution in the sense of having maximum entropy within the class of all 

error distributions with finite variances. 

From (2.4) one easily verifies that =0. As a consequence the 

density function of the vector u will be degenerate as it should be. Barten 

(1969), however, has shown that this problem may be handled by simply deleting 

one category. Choosing without any loss of generality the last one, we delete 

the last row and column of S2n. Denoting the resulting matrix by S2n_^, 

straightforward matrix calculation shows that 

(2.5) 
n— 1 

u n 

In addition, it can be shown that 

n 

(2.6) IVll 
-1 

n 
n 

i=l 
d. 
i 

and that will be positive-definite in the following two mutually 

exclusive and exhaustive cases: (i) all d^*s are positive and (ii) at most one 

d^ is negative with d being negative as well. 

From our assumptions about the distribution of the vector u and the 

restrictions (2.2) one easily verifies that the loglikelihood function may be 
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written as 

(2.7) 

log Ky1 •yn-l> 
= - T(n~1). log 2it - y log[d 1 n d.] + 

z i=l 

-i 2 - XiB)'(yi - X^)] 
i=l 

From (2.7) it is clear that the loglikelihood function and hence the resulting 

maximum-likelihood estimators are invariant with respect to the category that 

is deleted as it should be. The restricted maximum-likelihood estimators may 

be obtained from the following system of equations 

(2.8) 3=6- CR'(RCR1)"1(R3 - r) 

j2 *,* d. u'u. 
(2.9) d. - i = 1, .... n 

d 

2 
where 

n ^ i ^ 
3 = [ 2 d~xrx.]_ [ Z d" X!y.1 = [ X X’X.]“ [ Z X!y.] 

L. t 1 1 1J L. . 1 l^l-1 L. . 1 1J L. . iyiJ 
1=1 1=1 1=1 1=1 

r ^ 1 i-l 
C = [ Z d/xpc.] 

i=l 

and 

Evidently, (2.8)—(2.9) constitutes a system of highly nonlinear equations. It 

can be shown, however, that, conditional upon u[u^> solving (2.9) can be 

accomplished by means of a numerical search procedure for the unique real root 

of an equation in only one variable. The full system (2.8)-(2.9) may therefore 

be solved by applying the following iterative procedure: 

(i) Choose initial values d|? for d^, for example d^ = 1 (i = l,...,n); 

(ii) Calculate 3^ according to (2.8) and u^ according to = ^ 

(iii) Obtain first-round estimates d| by solving (2.9) conditional upon 

2. Note that 3 is the estimator that is obtained by writing the ordinary 
least—squares estimators for each separate equation in stacked form. 
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/*0NI*0 u!u. = (u.)'u.: 
i. 1 i i 

(iv) Calculate the first—round estimates B according to (2.8) and u^ 

according to u£ = and so forth, until convergence. 

Under very mild conditions, Sargan (1964) and Oberhofer and Kmenta (1974) have 

proved that the above procedure actually converges to a solution of the system 

(2.8)-(2.9). Under suitable regularity conditions, it follows from standard 

arguments that B and d^ are consistent estimators for 8 and d^ and that 

/T(8 - B) is asymptotically distributed according to a k-variate normal 

distribution with zero mean and variance-covariance matrix PQP where 

(2.10) 

P = plim T[C - CR'(RCR')-1RC] 
T->°° 

—1 —1 '“—1 n n 
Q = plim T [C - d E E X!X.] 

T>°° i=l j=l 1 2 

Finally, it should be noted that the assumption of normal disturbances is 

not crucial for establishing the above asymptotic results. Under appropriate 

conditions $ and d^ may also be interpreted as quasi-maximum likelihood 

estimators without affecting these results. 

3. ESTIMATING THE COVARIANCE MATRIX: AN OUTLINE 

In this section we summarize how to obtain the estimates d^ for the 

covariance parameters in stage (iii) of the iterative procedure as described 

in Section 2. Without any loss of generality we assume that 

,^ „ def * ~ def ^ 
T iu,u = a > T u!u. = a. i = 1, ..., n-1 

n n n — i i i 

Apart from border-cases, which will not be treated here, it appears that three 

cases must be distinguished. Below, we summarize all three cases. First, we 

define 

n 4a. i 
(3.2) f.(d) = I (l - —ji)* - (n-2) for d > 4a 

1=1 

n-1 4a. , 4 

(3.3) f2(d) =1(1- - (l - - (n—2) for d > 4an or d < 0 
i=l 

and 
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n-1 
(3.4) 

Then, we have 

Case 1: 

r = f^Ac^) = f2(Aan) = Z (l - (n-2). 
i=l a 

. n-1 . 
a < E a. and y < 0 

n i=l 1 

We have to solve on [4a , 00) 

f^d) = 0 

It can be shown that the graph of f^(d) looks as follows 

Figure 1 

The solution d has to be substituted into 

j _ d d 

di " 2 2 

4a. , 

d 
1, • • •, n 

in order to obtain the solution in terms of the covariance parameters d. 
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which are all positive, 

« n-1 , 
Case 2: a < Z a. and y > 0 

n i=l 1 

We have to solve on (^an> “) 

f2(d) - 0 

Graphically, the shape of the function f2(d) looks as follows 

Figure 2 

The solution d should be substituted into 

ai=l-!^-—^ 
d 

i = 1, ..., n-1 

in order to find the solution in terms of the parameters d., which are all 
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positive again. 

n-1 ^ ~ n-1 ^i 2 

^Case 3: Z a. < < ( S ot^- ) 
i=l i=l 

We have to solve on (-00, 0) 

f2(d) = 0 

In this case the graph of the function f2(d) looks as follows 

The solution d should be substituted into 

4a. , 
-x^r i = 1. .... n-1 

d 

4o , 

d 

in order to obtain the solution in terms of the parameters d^ Obviously, di 

(i = 1, .... n-1) is positive, dn is negative, with d being negative as well 

4. CONCLUSION 

In the present paper a new specification is introduced for the 

3. Because of the adding—up restriction on the vectors u^ (i - 1, 
can be shown that an cannot become larger than 

.... n), i 
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contemporaneous covariance matrix of the error structure of sum-constrained 

linear models. In applied research one usually specifies this covariance 

matrix either to be restricted only by logical constraints or to be equal to 
2—1 

a (ln ” n lnln^» n denoting the number of categories. The former 

specification is the most flexible one but suffers from the drawback, that it 

is very demanding with respect to the number of observations when the number 

of categories is large. The latter specification is the most rigid one that 

can be thought of but requires only a small number of observations even when 

the number of categories is large. The specification that we propose is 

intermediate in the sense that it allows for n covariance parameters to be 

estimated freely, while it possesses the attractive property of not requiring 

too many observations. The estimates involved may be obtained by a simple 

iterative scheme. In each stage of this scheme one numerical search procedure 

has to be carried out in order to determine the unique real root of an 

equation in only one variable. Therefore, it may be expected that the costs 

associated with the newly proposed estimation procedure will not be much 

higher than those associated with the estimation procedure under the most 

rigid specification. 

In this paper we have restricted ourselves to linear models. However, the 

estimation procedure can easily be extended so as to include nonlinear models 

like the linear expenditure system or the Almost Ideal Demand System in its 

extensive form. Actually, nonlinearities will not affect the estimation 

procedure for the covariance parameters, but only the estimation procedure for 

the parameters of the deterministic part of the model. In a similar way, the 

present approach can easily be extended so as to apply to sum-constrained 

simultaneous equations models as well. Finally, it would be useful to 

generalize the estimation procedure to models with serially correlated errors 

in order to be able to test for dynamic misspecifications. We hope to address 

this question as well as the problem of testing the present specification 

against alternative ones in the near future. 
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