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Abstract 

In this study an example of linear hypotheses about correlations 

will be discussed. The statistical distribution of the variables 

may be either normal or non-normal. It will be shown that by 

incorrectly assuming a normal distribution for the variables 

a linear hypothesis test may be highly non-robust. 
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1. Introduction 

Most studies for covariances and correlations assume normality for 

the manifest variables. Hypotheses testing for correlations rely, 

under the assumption of normality, heavily on the result given 

already in 1898 by Pearson S Filon. 

Recently, however, several researchers have been interested in 

correlation studies not based upon this assumption. To mention 

a few very recent papers: Steiger & Hakstian (1982, 1983), De Leeuw 

(1983), Bent 1er (1983), Steiger S Browne (1984). A very detailed 

discussion of studies for covariances, which is related to 

correlational studies, can be found in Browne (1982, 1984). 

The importance of the Steiger & Hakstian paper is that they 

".... demonstrate that the non-robustness of the normal theory 

(NT) procedures occurs because .... the asymptotic variance- 

covariance structure of the correlation coefficients changes 

.... as a complicated function of the moments of the parent 

distribution" (Steiger & Hakstian, 1982, page 208). 

In this paper an example is discussed in which it is shown 

what effect non-normality has upon different tests. It is 

shown that tests, in which normality is assumed, may be very 

sensitive to the skewness of the variables. Tests which do not 

assume normality are less sensitive for the skewness of the 

variables. Moreover, for our example it holds that in cases 

with highly skewed variables the sample size must be (very) large 

for using asymptotic properties. 

Of course, this is just one particular example. However, 

more extensive studies are not known from the literature. 
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2. Testing linear hypotheses 

Let there be m variables, then there are t=m(m-l)/2 

intercorrelations. The vector of population correlations 

will be denoted by p and the corresponding vector of sample 

correlations by r (sample size is N ). Then the linear 

hypothesis to be tested can be written as: 

HQ : p = XB = X1 + X2B2 , 

in which p and X1 are of the order (txl) (where X^ is a 

vector of constants, mostly set equal to zero), X2 of the 

order (txq) (a matrix with elements mostly zero or one) and 

$2 is the vector of unknown parameters of the order (qxl) 

The loss-function we choose for estimating B is: 

(1) X2 = (r - XBj'fVr - XB) , 

in which Z is a consistent estimator of the variance- 

covariance matrix of the sample correlations r. How this 

matrix looks like will be discussed in section 3- It is well- 

known from standard literature that under very mild conditions 

2 
NX is asymptotic chi-square distributed with degrees of 

freedom t-q (See for an overview of many minimum chi-square 

methods Ferguson (1958)). 
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An analogous form of (1) can be written as: 

X2 = (r - X] - X262)' r'(r - X, - X^) 

(2) = (s - x2e2) r’(s - x2e2) , 

where obviously s=r-X^. 

The estimator of 62 from minimizing (2) is given by: 

(3) b2 = (x^ r1x2r1 x- r' s, 

with variance covariance matrix of the estimators equal to: 

(4) AC0V(B2) = N (X^ iT'xp'1 . 

An interesting alternative way for estimating 6^ 's 

solving the following linear set of equations: 

(5) 

in which 6- is a vector of zeros of the order (qx1). 

The proof for this is very simple. From (5) it follows: 

(6a) EX + X2B2 = s 

(6b) X^X = fl- 

and the substitution of X from (6a) in (6b) yields the same 

estimator B2 as in (3). 

2 
Also it is easy to compute X from (5). From (l) and (6a) we 

see that: 
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(7) 

This procedure is interesting because we do not have to invert two 

matrices as is necessary by using (3), but just solving a linear 

set of equations which mostly will save a lot of computation time. 

3- Asymptotic covariances of correlations 

In this section we will give the asymptotic covariances of 

the correlations. For a more detailed discussion of these matters 

we refer to Steiger & Hakstian (1982) and for a historical over¬ 

view to Steiger & Hakstian (1983). From the literature we know: 

(8) 

where o. 

and y. = EX.. A way of computing the covariance matrix efficiently 

is given in Mooijaart (1984). 

If we, in addition, assume the variables to be normally 

distributed then it holds: 

and so we can write for the covariances of the correlations: 

(9) 

which is the Pearson-FiIon result for the normal distribution. 
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4. An example 

In this section we discuss the results of a study in 

which a linear hypothesis is tested several times in 

samples from a well-known population. This population consists 

of variables with all intercorrelations equal to .5 • So in 

each sample the hypothesis is tested that all correlations are 

equal to .5 • Samples are drawn from the population with 

different sample sizes. We choose N=100, 200, 400 and 1000. 

For each sample 300 replications were taken. This makes it 

possible to see how the test statistic is distributed. 

According to the theory this statistic should be chi-square 

distributed with 6 degrees of freedom. The variables are 

chosen to be log-normal distributed. The probability density 

function of X is given by: 

(10) 

This means that X is defined as 

(11) U = (log x - c)/o 

in which U is a unit normal variable. (See for a detailed 

discussion of the log-normal distribution Aitchison £ Brown 

(1957) or Johnson £ Kotz (1970).) From (11) it is clear how 

data can be generated from a log-normal distribution. We 

randomly draw a value from an unit normal distribution and 

then set X equal to: 

(12) X = expjoU+c] 

Some characteristics (mean and standard deviation) of the log- 
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normal distributions are 

(13a) yj = exp[i;+io2J , 

(13b) o(X)= exp[c] /io(uj-1 ) , 

where w = exp [o2J . 

The reason why we choose the log-normal distribution is that 

it is a skewed distribution. In our study we generate data 

from a log-normal distribution with variance equal to 1. This 

means from (13b) that: 

(1*0 c = ”ilog[u)(u)-1 )J . 

So the skewness of the distribution is determined by the 

parameter a only. The skewness of the distribution increases 

rapidly with a. For instance, (see table 2, Johnson S Kotz, 1970, 

page 118) we find for the well-known measure of skewness 

a^: = .3 for 0 = .1; = .61 for a = .2; = .95 for 0 = .3; 

= 1.32 for a = .*4; = 1.75 for a = .5; = 2*2^ ^or 0 = *6; 

= 6.18 for a=1. In our study we vary the skewness of 

the variables by choosing o = .*4, .5 and .6 and we will see 

what the effect of the skewness is on the test statistics (the 

X^-va1ues). 

So our procedure is as follows (fbr different a and 

sample sizes): we generate *4 independent X-values by (12), 

and collect them in a vector x. Then we pre-multiply this vector 

1 

with KA , in which K is a matrix which columns consist of the 

eigenvectors and A a diagonal matrix with the eigenvalues of the 

population correlation matrix. The result is that KA2x can be 
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conceived as a vector with elements coming from the population 

with the known correlation matrix. 

In our study we are interested in two things: first: 

if we choose a = 5 % how often (from the 300 replications) 

is the test of the hypotheses rejected (the expected values 

are, of course, 5 % of 300, is 15 times). Second: according 

2 
to the theory the distribution of the X -values must be chi- 

square distributed with 6 degrees of freedom. To test this 

the chi-square distribution with 6 degrees of freedom is 

divided in 20 intervals of 5 % and it is counted how many 

X -values fall in these intervals. Then it can be tested 

with a chi-square test with 19 degrees of freedom whether 

2 
the X -values are chi-square distributed. 

Resu1ts: 

Table 1 gives for different sample sizes and different a 

values the percentages of rejecting the hypothesis that all 

intercorrelations are equal to .5 . 

Table 1 

Percentages of Rejecting the Hypothesis with a=5% 

Norma 1 Non-normal 

N 100 200 400 1000 

.4 33-0 25.67 27-0 23-33 

o .5 43.0 42.0 46.0 39-0 

.6 52.67 56.33 58.67 55.0 

100 200 400 1000 

23.67 11.33 10.0 7-0 

28.33 14.0 13.67 7-67 

33-33 20.0 17.33 9.33 

The left hand side in Table 1 is based upon the assumption 

that the variables are normal distributed, the right hand side 
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is not based upon the normality assumption. So the left and 

right hand side are based upon formula (9) and (8), 

respective1y. 

From Table 1 we see that the percentages of rejecting the 

hypothesis in the non-normal case are smaller than in the 

normal case. This is what we expected because the variables 

are non-normal. Further we see that the percentages increase 

with a. This means that the hypothesis is rejected too often 

for increasing skewness of the variables. We also see that, 

in particular in the non-normal case, the percentages decrease 

with the sample size. This is what should happen because 

asymptotically the percentages should be 5 %. In particular 

in the non-normal case we see that for N=1000 the percentages 

are quite close to 5 

In Table 2 the results are given for testing the 

2 
hypothesis if the X -values are chi-square distributed with 

6 degrees of freedom. All values in the table are chi- 

square distributed with 19 degrees of freedom. 

Table 2 

Test Statistics for Chi-square Distribution 

(degrees of freedom is 19) 

Norma 1 Non-norma1 

N 100 200 400 1000 

.4 524.8 345.6 361.5 277-3 

a .5 938.7 924.9 1097.1 789.1 

.6 1470.5 1702.5 1846.9 1604.8 

100 200 400 1000 

256.0 54.3 29.3b 13-9a 

380.1 91.7 59-3 27.3b 

541.3 184.5 110.5 34.3° 

a) 10% critical X2-value: 27-2 

b) 5% critical X2 -value: 30.1 

c) 1% critical X2-value: 36.2 
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From Table 2 it is clear that under the assumption of 

2 
normality the X -values are not chi-square distributed. 

in the non-normal case we clearly see that for increasing 

2 
sample size the distribution of the X -values becomes closer 

to the expected chi-square distribution. In particular if 

the variables are moderate skewed (a = .4) a sample size 

between 400 and 1000 is sufficient for getting the asymptotic 

chi-square distribution. 

Cone 1 usions 

- If variables are non-normal distributed, tests based upon 

the normality assumption lead too often to rejecting the 

hypothesis. 

2 
- Obviously, for larger sample size the X -values are chi- 

square distributed. 

- For increasing skewness of the variables the sample size 

2 
must increase also in order to find the X -values chi-square 

d i st ributed. 
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