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WEIGHTED AVERAGING OF SPECIES INDICATOR VALUES: ITS EFFICIENCY IN 

ENVIRONMENTAL CALIBRATION 

by Cajo J.F. ter Braak and Leo G. Barendregt*) 

A common problem in applied ecology is to estimate values of an 

environmental variable fran species incidence or abundance data. An example 

is the problem to reconstruct the acidity (pH) in lakes in the past from 

diatom species found in sedimental layers on the bottom of lakes. The method 

of weighted averaging is based on indicator values, the indicator value of a 

species being, intuitively, the value of the environmental variable most 

preferred by that species. Indicator values of all species present in a site 

are averaged to give an estimate of the value of the environmental variable 

at the site. The average is weighted by species abundances, if known, with 

absent species having zero weight. Using field data, several authors have 

compiled lists of indicator values of species for various environmental 

variables for use in weighted averaging, e.g. pH indicator values of diatom 

species. In this paper the properties of the method of weighted averaging 

are studied, starting from the idea that indicator values are parameters of 

response curves that describe the expected abundance of each species in 

relation to the environmental variable. In practice the response curves must 

be estimated by regression methods but here they are assumed to be known in 

advance. Conditions are derived under which the weighted average is a 

consistent and efficient estimator for the value of an environmental 

variable at a site. Because weighted averaging is central to the ordination 

technique known as reciprocal averaging or correspondence analysis, the 

conditions also define models that are implicitly invoked when reciprocal 

averaging is used in ecological ordination studies. 
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1. INTRODUCTION 

Plant species need particular environmental conditions for 

regeneration, establishment and growth. It should therefore be possible to 

infer the environmental conditions at a site from the species that occur 

there. This idea has become popular (e.g. Sladecek, 1973; Durwen, 1982; 

Gauch, 1982; Bdcker, Kowarik & Bornkamm, 1983) with the publication of lists 

of indicator values of species with respect to various environmental 

variables. Ft>r example, Ellenberg (1974, revised 1979) has published 

indicator values of Central European plants with respect to site variables 

including soil moisture, pH and nitrogen level. Ellenberg based the 

indicator values on his field observations of the conditions under which 

particular species occurred and, to a lesser extent, on laboratory 

experiments. For example a plant species may prefer a particular soil 

moisture content, and not grow at all in places where the soil is either too 

dry or too wet. Intuitively, the indicator value is then the value most 

preferred by a species (cf. Fig. 1). Ellenberg (1974) did not give a precise 

definition of "indicator value". However, Ellenberg (1948, 1974) did 

describe a method to predict the value of an environmental variable; the 

method consists shnply of averaging indicator values for the plant species 

that are present. For quantitative data, the average is weighted by species 

abundance with absent species carrying zero weight. Applications of this 

method include Kovacs (1969), Van Wirdum (1981), Persson (1981) and Wittig & 

Durwen (1982) for vascular plants. Van Dam, Suurmond & Ter Braak (1981) for 

diatoms and Sladecek (1973) for water organisms and the biological 

evaluation of water quality. 

It is, of course, often easier to measure environmental variables at a 

site than to infer their values from the species that grow there. But, total 

values over time are required sometimes and plants often reflect temporally 

integrated environmental conditions. This is one of the ideas behind 

biological evaluation of water quality and bicmonitoring in general. There 

are also situations when it is impossible to measure environmental variables 

by direct means, whereas a biological record does exist. An example is the 

reconstruction of the acidity (pH) in lakes in the past from diatom species 

found in the sedimental layers on the bottom of the lakes, an important 

research tool in discussions about acid rain, ftost researchers in this area 

use the indicator values for acidity of diatcm species as compiled by 

Hustedt in the 1930's (see Batterbee, 1984). A more sophisticated method. 
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as yet to be implemented, is to build firstly a (non-linear) regression 

model from data on species occurrences and present pH in lakes, which yields 

for each species an estimated response curve for the probability of 

occurrence versus pH and, secondly, to use these response curves for the 

calibration of pH from species data, for example by maximum likelihood 

estimation. In such an approach the indicator value of a species is just a 

parameter of the response curve of that species, the mode of the curve being 

one possible definition of the indicator value. 

In this paper we study the properties of weighted averaging of 

indicator values to estimate the value of a continuous environmental 

variable at a site. We do this by seeking conditions under which weighted 

averaging compares favorably with methods based on explicit response 

curves. We use assumptions (§3) that idealize the real world, among others 

that a single environmental variable determines the species composition at a 

site and that the response curves of the species with respect to this 

variable are already known. Certainly, weighted averaging is of little value 

if it has bad properties under ideal assumptions. On the other hand, there 

is no advantage in using an elaborate technique where a much simpler one 

would be equally good. We answer two questions: 

(1) How should indicator values of species be defined in 

terms of response curves to ensure that the weighted 

average is a consistent estimator? The weighted average 

is called consistent if it converges in probability to 

the true value of the environmental variable as the 

nunber of species available increases. 

(2) What should the response curves look like to ensure 

that the weighted average is an efficient estimator? An 

estimator is called efficient if its mean squared error 

is minimum. 

2. WEIGHTED AVERAGING AND RESPONSE CURVES: DEFINITIONS 

let x denote a quantitative environmental variable and x0 the value 

of this variable at a particular site. We want to estimate this value x0 by 

checking which species (out of a large number) are present at that site or, 

more generally, the abundance of each species. Let be the abundance 

(Y^ > 0) of the k-th species (k = 1, 2, 3, ...) and let u^ be its indicator 

value, usually taken from a published list of indicator values. Tb estimate 

x0, ecologists commonly use the weighted average (Ellenberg, 1948; Gauch, 

1982) 
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^ = £W£Yk (2-1) 

where summations are over all species. Td make sense, and, 

hence, the values for must have the same dimension as x. The 

indicator values are therefore location parameters on x. 

Tto be a potential indicator, a species must show a distinct relation to 

the indicated environmental variable x. We define the relations between 

species and the environmental variable by a statistical response model with 

a response curve nkl x), a known function of x, for each species k. 

|i^(xq) specifies the expectation of the value Yj^ observed at the site 

with value xq for x. The observational data will be assumed to be 

independent random variables with variances depending on the expectations 

only. The variance of is therefore a known function 

v^(x) = v* ((i^fx)). For presence/absence data Y^ is Bernoulli and uk(x0) 

is the probability that the k-th species is present at a site with x = x0. 

Then, v*(ji) = n(1-n). For counts, the data may be assumed to have a 

Poisson distribution so that v*(p.) = \i, whereas for continuous 

quantitative data with constant coefficient of variation (v*(n) = cp2) the 

data could have a Gamma distribution. 

We consider response curves that form a location family, i.e. have 

identical (but arbitrary) shape and different positions along the real 

line. Formally Pk(x) = plx-u^.) for some function p(.) that is almost 

everywhere continuous, and with location parameters for which we take the 

indicator values {1^}. It follows that vk(x) = v(x-uk) where v(.) is 

the variance function corresponding to p(.). We use asymptotics in which the 

number of species available for the estimation of xg increases 

indefinitely, such that the indicator values become increasingly densely 

spaced on every finite interval. 

3. CONSISTENCY AND THE DEFINITION OF INDICATOR VALUE 

Whether the weighted average is a 'good' estimator, depends on (1) the 

shape of the response curves, (2) the definition of indicator value and (3) 

the distribution of the indicator values along the environmental variable. 

In this section we reverse the reasoning: we require that the weighted 

average is a consistent estimator of x0, and we derive from that requirement 

conditions on the response curves, a definition of indicator value and 

conditions on the distribution of the indicator values. 
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We express the number of indicator values at the point x by 

x(h^(x) - H^(x-O)), where X is the average number of indicator values per 

unit length, H^(x-O) = 1^ H^(y) and H^(.) is a non-decreasireg right- 

continuous stepfunction (in the terminology of measure theory, H^(.) is the 

distribution function of a discrete measure). We suppose that for 

X + » H^(.) converges to a distribution function with bounded and 

continuous derivative h(,). h(.) is the limiting density function of the 

indicator values. Then, x^ = T/R where T = X-1 I and R = X-1 z Y^. 

It follows that T has expectation X-1 E ukJi(x0-uk) = / u (i(x0-u) dH^fu), 

which for large X approaches 

/ u p(x0-u) h(u)du = x0 / n(u) h(x0-u)du - / u ^(u) h(x0-u)du (3.1) 

Moreover, var(T) >0 (X -»■ »), if and only if / x2 v(x)dx exists; then T 

converges in probability to (3.1). Similarly, R = X-1 £Y, 
k k 

converges in probability to / n(u) h(x0-u)du > 0. Therefore T/R converges to 

x0 if and only if J a n(u) h(Xg-u)du = 0. The latter condition should hold 

for every value of x0; this condition can be fulfilled if the function h(x) 

is constant, i.e. that the indicator values are evenly distributed. Bor 

particular |i(.), certain almost periodic functions h(.) might do as well, 

but we believe these functions to be of no practical importance. Et>r some 

(i(.), e.g. the Gaussian curve (Section 5; Gauch, 1982), constant h(.) is a 

necessary condition. If h(x) = c, we get / u|±(u)du = 0: the centroid of n(.) 

must be equal to zero. Consequently, the centroid of |ik(x) = n(x-uk) must 

be equal to or, rephrasing, the indicator values must be the centroid 

of their response curves 

\ = / x^UJdx// iik(x)dx (3.2) 

This definition of indicator value is necessary for the weighted average to 

be consistent. Note that defined in this way, the indicator value of a 

unimodal response curve is only equal to the most preferred value (mode or 

optimum) if the curve is symmetric. Note also that we had to assume in the 

derivation that both integrals in (3.2), and / x2v(x)dx, exist. The weighted 

average is inconsistent for response curves that do not satisfy these 

conditions, e.g. monotone increasing or decreasing functions. The weighted 

average is also inconsistent for data with a constant variance function. 
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In conclusion, the weighted average is a consistent estimator of x0 

(for \ provided (1) the three aforanentioned conditions on integrals of 

the response and variance curve hold, (2) the indicator values are centroids 

of the response curves and (3) the indicator values are evenly distributed 

along the real line. Using central limit theorans and laws of large numbers 

valid for independent but nonidentically distributed randan quantities (see 

Cramer, 1946), it follows that the weighted average is then asymptotically 

normal with variance (Kendall & Stuart, 1977, Eq. (10.17), p. 247) 

VWA = £<VX°)2 VX0)/[^k(X'>)]2 <3-3) 

4. THE MAXIMUM LIKELIHOOD APPROACH 

When response curves can be expressed in parametric form, x0 can be 

estimated by the method of maximum likelihood (e.g. see Cbx & Hinkley, 

1974). Maximum likelihood estimators are often good estimators in large 

samples: under mild conditions they are consistent and asymptotically normal 

with minimal variance (see Cramer 1946; Cox & Hinkley, 1974). These 

assertions hold for our applications: the proof thereof goes along similar 

lines as in the standard case of independent and identically distributed 

randan variables. Maximum likelihood is more widely applicable than weighted 

averaging. 

For Bernoulli, Poisson or Gamma random variables the maximum likelihood 

estimator is the solution for xg of the maximum likelihood equation 

(McCullagh & Nelder, 1983) 

6 log L 
-= ^(x0)[yk-Pk(x0)]/vk(x0) = 0 (4.1) 

where p£(x0) denotes the derivative of nk<x) with respect to x, evaluated 

at xo. Often the solution of (4.1) can only be obtained by numerical 

methods. The asymptotic variance of the maximum likelihood estimator is, as 

usual, the inverse of the information (Cox & Hinkley, 1974) and equals 

VML = [j^ollVVxo)]-1. <4-2> 

When the distribution of Y* is not fully specified, equation (4.1) is a 

quasi-likelihood equation, which often gives estimators with good asymptotic 
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properties (McCullagh & Nelder, 1983). This extension of (4.1) and (4.2) is 

important when count data are overdispersed with variance proportional to 

the mean. 

5. EFFICIENCY AND SHAPE 

For large numbers of species maximum likelihood will in general be more 

efficient than weighted averaging, but the latter method is much easier to 

use. It is therefore of interest to investigate whether there exists a shape 

of the response curves for which weighted averaging achieves, in terms of 

mean squared error, asymptotically unit efficiency with respect to maximum 

likelihood. With the species packing model (MacArthur & Levins, 1967) in 

view, we adopt the location family of Section 2 with equispaced indicator 

values. In this situation both methods are consistent. It is therefore 

sufficient to compare the variances (3.3) and (4.2) for spacing d ->• 0. It is 

proved in the Appendix that, asymptotically, v,„ < v with equality if and 

only if 

M£(x) = -(x-uk)vk(x)/t2 (5.1) 

for t a non-zero constant. The differential equation (5.1) has a solution of 

the form: 

f(nk(x)) = a - V2 (x-uk)2/t2 (5.2) 

where the function f(•) depends on the variance function. The curves in 

(5.2) form a generalized linear model (Nelder & Wedderburn, 1972) and the 

function f(.) is precisely the 'natural' link function of such a model : the 

logistic function f(n) = log [n/(1-(i)] for Bernoulli variables, the 

logarithmic function f(ii) = log (n) for Poisson variables and the inverse 

function f(n) = -1/n (and a < 0) for Gamma variables. In (5.2) the parameter 

a is the maximum of f(*) attained at the indicator value, mode or optimum 

uk, a11^ t is termed the tolerance, a measure of curve width. For Poisson 

variables (5.2) is precisely the Gaussian response curve that is frequently 

invoked in plant ecological studies (see Austin (1976) and Gauch (1982) for 

reviews). 

For presence/absence data we propose to term (5.2) the Gaussian 

logistic response curve (Fig. 1). Its formula is 
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exp{a-1/2(x-u^)2/t2} 

1 + expfa-1/2 (x-uk)2/t2} 

(5.3) 

Instead of a we may use the parameter pmax = 1/{1 + exp(-a)}, the maximum 

probability of occurrence. If pmax -»■ 0, n.k(x) approaches the Gaussian curve. 

Thus for many rare species, the two models are effectively the same. Using 

(3.3) and (4.2) we found numerically that for Bernoulli variables and 

Gaussian rather than Gaussian logistic curves the efficiency (VMI/VWA) of 

weighted averaging decreased from 1.0 to .8 when Pmax was increased from 

near zero to .9. 

The maximum likelihood variance (4.2) can be simplified by substitution 

of (5.1), which gives 

v,^ = t4[S(uk-x0)2 vk(x0)] ^ (5.4) 

Because of the equal spacing of the indicator values 

Fig. 1 Gaussian logistic response curves of the probability P = PjJx) that 

a species (k) occurs at a site, against environmental variable x. 

Two sets of species are displayed, each with t = 1 and optima with 

spacing d = 1, having maximum probabilities of .5 and .9, 

respectively. x0 is the value of x at a particular site. 
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For integrals the approximation (5.5) is an equality as follows from (5.1) 

and integration by parts. Numerical calculations showed that the 

approximation in (5.5) is quite good, provided the indicator values are 

equispaced on a 'large' interval I around x0 with spacing less than t, where 

I = (u|h(xq-u)>6, u e R} for small 6. With (5.5) we obtain 

VML ” t2/l <5-6> 

Substitution of (5.5) in (3.3) gives the same result for v^. A sample- 

based version of (5.6) is t2/I Y . 
k k 

We carried out a simulation study in which presence/absence data were 

generated according to model (5.3) with t = 1, equispaced optima (d < 1: 

d = 1, .5, .25, .12, .6 or .03) on the interval (-5, 5) and maximum 

probability either .1 or .5 or .9. The minimum number of species was 

therefore 10. x0 was always chosen close to the centre of the interval, 

between 0 and d/2. The simulations were constrained to give at least two 

species occurrences per sample. In each case 1000 samples were generated. 

For each sample x0 was estimated by weighted averaging and by maximum 

likelihood. All cases showed an efficiency in terms of mean squared error of 

1.00, even when only 10 species were positioned on the interval. In most 

cases the mean squared error of both x^ and x^ exceeded the theoretical 

variance (5.6), but the excess was less than 12% when the average number of 

species occurrences per sample was larger than 5. 

6. VARYING SPACING, MAXIMA AND TOLERANCES 

For the 'optimal' response curves (5.2) the weighted average still has 

asymptotically unit efficiency when the species can be divided into sets 

such that within each set the species have equal maxima and equispaced 

optima with spacing less than t (Fig. 1). An important example arises when 

the species are divided into sets on the basis of their response to another 

environmental variable. The result follows from (5.5): for each set of 

species (5.5) holds and can be substituted for each set in (3.3) and (5.4), 

which leads to (5.6) in both cases. Hawever, this trick does not carry 

through when the tolerance varies between species, because substitution of 

(5.5) now involves different tolerances for different sets. As a result the 

efficiency can drop considerably when the tolerance varies. For example. 
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with two tolerances differing by a factor of two, the efficiency drops to 

ca. .6 in the logistic model with maximum probability of occurrence .5. Full 

efficiency can then be retained by using a tolerance-weighted version of the 

weighted average 

(6.1) 

In (6.1) good indicator species get more weight than bad indicators, an 

intuitively reasonable idea used already by Zelinka & Marvan (1961). The 

results of this section suggest that equality of tolerances is a more 

critical assumption in the weighted average (2.1) than equality of maxima 

and equal spacing. 

7. RANDOM INDICATOR VALUES AND RANDOM RESPONSE CURVES 

Ihe shapes of response curves may vary between species. In this section 

we mimic this variability by assuming that response curves arise frcm a 

"super population" model consisting of three parts: 

(1) a Poisson point process P that generates indicator values {u^} on the 

real line with intensity function \h(x) (\ > 0 and h(x) > 0 for every 

x), 

(2) a stochastic process S that generates shapes M(x) for response curves, 

independently for any indicator value u^ generated by P. Any 

realization of M(x) is a bounded, nonnegative continuous function on 

the real line such that x2M(x) and x2V(x) c lM-", "), where V(») is 

the variance function corresponding to M(*), and / xM(x)dx = 0. 

Expectation and variance with respect to S are denoted by Es and 

vars, 

(3) a translation of M(x) over u^: M^(x) = M(x-u^). 

The model will be termed the translation model. It is proved in the 

Appendix that the weighted average is consistent (X ■» »), if h(x) = c. Then, 

P is a homogeneous Poisson process and the indicator values are said to be 

randomly spaced. The asymptotic variances are then 

/ (u-x0)2 Es(V(u) + M2(u)}du 
V 
WA \ [ / Eg M(u)du]2 

(7.1) 
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and 

= [\ / Es{[M'(u)]2/V(u)}du]"1 (7.2) 

respectively, v^a is always strictly greater than vML. Bar the response 

carves (5.2) (process S degenerate) and random spacing, the efficiency of 

weighted averaging increases to unity when the maximum of |i(.) decreases to 

0, as shown in Fig. 2 for logistic f(.). lb obtain the variances in the case 

of equal instead of random spacing between the indicator values, M2(u) in 

(7.1) must be replaced by vargWu)}, whereas (7.2) ranains the same. In 

this case v^l < v^ja with equality if and only if the response curve are 

nonrandom and satisfy (5.2). 

lb simplify (7.1) for Bernoulli variables we define the 'commonness' a 

and the 'standard deviation' r of the expected response curve 

li(x) = Es{M(x)} by 

a = J (i(x)dx and t2 = f x2(i(x)dx/a (7.3) 

From (7.1) we obtain (cf.(5.6)) 

vm = x2/(Xa) (7,4) 
eff. 

Fig. 2 The efficiency of weighted averaging with respect to maximum 

likelihood against the maximum probability of occurrence (pmax) 

for Gaussian logistic curves with randomly spaced optima and equal 

maxima and tolerances (eff = v^j/v^a = (t/r)2). 
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An unbiased estimator for (7.4) is the usual sample-variance of the mean of 

the indicator values of the species present at the site. It is only in this 

special case that the indicator values might be considered as independent 

'samples' from a probability distribution. 

Simulations, as in Section 5, with Gaussian logistic curves (5.3), but 

with random, instead of equispaced, optima showed calculated efficiencies 

that agreed with the asymptotic efficiencies shown in Fig. 2. The mean 

squared errors exceeded the theoretical variances (5.6) and (7.4), the 

convergence to the theoretical variances being slower than in Section 5. For 

randan optima the excess was less than about 15% when the average number of 

species occurrences per sample was larger than 10. 

8. DISCUSSION 

This paper shows that a method proposed and used by conmunity 

ecologists, namely weighted averaging, performs well under a model advocated 

by evolutionary ecologists, namely the species packing model (MacArthur 

&Levins, 1967). This model is based on the idea that conpeting species 

evolve to occupy maximally separated niches with respect to a limiting 

resource. This idea applies as well to the occurrence of conpeting species 

along habitat variables (Whittaker, Levin & Hoot, 1973). Response curves 

should therefore have minimal overlap; hence, equally spaced indicator 

values. It should be noted that our asymptotic theory ignores another 

consequence of this model, namely that there exists a limiting similarity 

beyond which competing species cannot coexist. The minimal spacing derived 

by MacArthur & Levins (1967) is about equal to the standard deviation of the 

response curves. But direct gradient analyses often show much closer 

spacings than that (see e.g. Whittaker et al., 1973; Gauch, 1982). Moreover, 

in lists of indicator values such as Ellenberg (1979), the values coincide 

for many species. Of course, many species are coexisting without seriously 

competing. 

Our results suggest that the distribution of the indicator values along 

the indicated variable should be even. But for Ellenberg's (1979) list with 

about 2000 plant species the indicator values show uneven and markedly skew 

distributions (Durwen, 1982: Fig. 11). A change of scale of the 

environmental variables could alleviate this problem. However, such a change 

modifies the response curves as well as their centroids. If the indicator 

values are centroids on the present scale, a nonlinear change of scale would 

destroy this desirable property. An alternative estimator is obtained by 
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replacing by Y^/h(uj,) in (2.1). This estimator can be shown to tie 

consistent under the model of Section 7. However, when the species packing 

model does hold in a part, say, A of a multi-dimensional habitat space, the 

marginal distributions of indicator values may be uneven without destroying 

the attractive properties of the usual weighted average (2.1). More 

specifically, when the indicator values are regularly spaced and the value 

x0 of the site lies well within A (i.e., there is a subset B of A such that 

B - Xqs IRn, ue !Rrl} for small 6), then for decreasing 

spacing along all n environmental variables 

(1) the weighted average is consistent if each indicator value is the 

centroid of the response curve that is obtained after integration of 

the corresponding response surface over the remaining n-1 dimensions, 

and the integrals, defined in Section 3, of the 'marginal1 response 

curve exist. 

(2) the weighted average has unit efficiency with respect to maximum 

likelihood if the response surfaces are the multivariate extension of 

(5.2), namely 

f(W X2.xn) ^ = a - V2 {(x1-uk1)2/t2 + (x2-uk2)2/t| + ... + 

(VV2/tn} (8-1) 

where x^ x2, ..., xn are the variables of a n-dimensional habitat space, 

u^j and tj are the optimum and tolerance of the k-th species with respect to 

Xj and f(.) is as in Section 5. (With maximum likelihood based on (8.1) the 

values of x1( x2, ..., xn at the site are estimated jointly.) The first 

assertion can easily be verified. The second assertion follows from 

Section 6: for fixed, but unknown values of x^ x2, ..., x^ the species have 

different maxima with respect to x-], but can be divided into sets of 

species with equal maxima because of the regular spacing in multi¬ 

dimensional habitat space. 

Weighted averaging ignores species that are absent, whereas the maximum 

likelihood method uses the response curves of all species. In maximum 

likelihood, absent species do potentially provide information on the 

environment. This paper shows that this information is negligible under the 
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(multi-dimensional) species packing model. Another, more informal model 

under which absent species do not add much information arises when the 

maximum probability of occurrence is close to zero. Then, the probability of 

absence is close to unity - irrespective of the value of the environmental 

variable - and hence cannot strongly influence the likelihood (see also 

Fig. 2). The probability of occurrence of a species, given the value of a 

factor, will be small in practice for most species, just because in most 

sites with that value the species will be absent due to other, unfavourable 

factors (cf. the effect of neglecting other variables in a multi-dimensional 

species packing model). Absences therefore often indicate little. 

Weighted averaging is central to the algorithm of the ordination 

technique known as reciprocal averaging or correspondence analysis. 

Reciprocal averaging is commonly used in ecological ordination studies to 

analyse data on the incidence or abundance of species in samples (Gauch, 

1982). The first few ordination axes are often interpreted as latent 

variables and are presumed to relate to underlying habitat variables. The 

results of this paper can be extended to provide a theoretical basis of the 

model that is implicitly invoked when reciprocal averaging is used. Under 

the conditions of the species packing model it can be shown that reciprocal 

averaging approximates the maximum likelihood solution of Gaussian-like 

response models in one latent variable. The stochastic model of Section 7 is 

an explicit formulation of the model that is used by Hill & Gauch (1980) to 

scale the axes of (detrended) correspondence analysis. 
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APPENDIX 

Proof of (5.1) 

We prove that 

[/ (i(x)dx]2 

7-5-—-75-— <1 (A1) 
/ x2v(x)dx. / {[ji'(x)]2/v(x)}dx 

with equality iff ^'(x) = -xv(x)/t2. The left hand side in (A1) is the 

asymptotic (d-K)) efficiency vm/vWA, because summations in (3.3) and 
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(4.2) approach integrals for d->0 and, after translation, x0 = 0. We use the 

Cauchy-Schwartz inequality 

[/ p(x) q(x) dx]2 < / p2(x)dx / q2(x) dx (A2) 

for arbitrary functions p(x) and q(x) e L2 (-“, =>). Equality in (A2) holds 

iff p(x) = c q(x) with c a constant. By setting 

p(x) = x/v(x) and q(x) = vi'(x)//v(x) (A3) 

and assuming that xn(x) -»• 0 for x •> ± so that 

/ X|i'(}c)clx = - / n(x)dx, (A4) 

we obtain (A1) with equality iff xv(x) = c n'(x), frcm which (5.1) follows 

with c = -t2. The condition c < 0 arises frcm the assumption above (A4). 

Outline proof of (7.1) 

Expectations and (co-) variances are required of R = I and T = I Y^u^.. 

These are calculated by dividing the real line in small intervalskwith 

midpoints u^j [i = ..., -2, -1, 0, 1, 2, ...] and width A. The expectations 

correspond to the formulae in Section 3 with |i(u) replaced by EgMfu), hence 

x^ is consistent if h(x) is constant. We show the derivation of the 

variances for x0 = 0 and h(x) = 1. Repeated use is made of the decomposition 

of the variance as the sum of twa components: (a) the average conditional 

variance, and (b) the variance of the conditional average (Rao, 1973, Eq. 

(2b.3.6), p. 97). Species with indicator values that lie in the i-th 

interval contribute to var(R) 

c. = \A [EgWu )} + vars{M(u(i))} + E|{M(u(i))}] (A5) 

and, to var(T), u2.,c.. The last two terms in (A5) can be canbined to give 

E {M2(u, 
(i) i 

)}. The total variance can be obtained by summing over all 

intervals, because the data from different intervals are independent, due to 

the properties of the Poisson process. Replacing sums by integrals gives, 

with g(u) = Es(V(u) + M2(u)}, 
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var(R) = X / g(u)du (A6) 

var(T) = \ / u2 g(u)du 

cov(R,T) = \ / u g(u)du 

Because u2M(u) and u2V(u) e L1»), var(T/X), var(lVX) and cov{R/\, 

T/X) -*• 0 for X •* <■>; this and Taylor expansion ofT/R. (Kendall & Stuart, 

1977, Eq. (10.17), p. 247) yields (7.1). 

Outline proof of (7.2) 

Let x denote the maximum likelihood estimator, D the first derivative to x 
y 

of the log likelihood (4.1) evaluated at y, and I the total information 

evaluated at x0. Without confusion, the symbol x will now be used for x0. 

A first order Taylor expansion of D~ in x0 gives (Cox & Binkley, 1974, 

ch. 9.2, eq. (19)). 

Dx = Dx " " X)I (A7) 

Equating (A7) to zero, as in (4.1), and solving for x - x shows that, 

asymptotically (X -*• =>), 

var(x) = var(Dx)/I2 (A8) 

Conditionally on S and P the expectation of D is equal to zero and its 

variance is the inverse of (4.2). Unconditionally, the variance of D is 

therefore equal to the term between square brackets in (7.2). The total 

information is the expectation over S and P of the conditional information. 

This expectation is equal to the variance of Dxr hence, from (A8) we 

obtain (7.2). 


