
132 KM 15(1984)
pag 132-151

TOWARDS MORE FLEXIBILITY IN SOFTWARE TOOLS FOR ECONOMETRICIANS:

AN IMPLEMENTATION

Drs. V.J. de Jong, University of Groningen

Abstract

In this paper it is investigated, whether the gap between theory

and practice in econometrics can be decreased by using more flexible

software. Nowadays two categories of software tools for econometricians

can be distinguished: software packages and programming languages.

Neither of these tools allow econometricians to make and investigate

changes in the implemented econometrical techniques.

An approach to improve the flexibility of econometrical software

products is suggested. The approach is based on a principle used in

computer science to make the actual applications (e.g. problem oriented

programming languages) as independent as possible of the hardware by

introducing intermediate levels (languages) . For econometrical software

I distinguish three levels. First an application level for users

who only want to apply standard econometrical techniques. Second a

mathematical level for people with knowledge of the mathematical speci¬

fication of econometrical techniques. Third a software level for com¬

puter scientists. Each level is made fully independent of the other

levels. A user on a particular level does not need knowledge required

on the other levels to implement changes on his own level.

An implementation of a threelevel system is developed at our Uni¬

versity. This system is compared with systems based on related ap¬

proaches, like GENSTAT with its macro-definitions and the MATRIX

facility in SAS.

^Econometrics Institute, University of Groningen, P.0. Box 800,
9700 AV Groningen, tel. 050-118004.

133

1. Introduction

There has been a lot of criticism on econometrics recently.

Econometricians were accused of only being interested in theoreti¬

cal subjects. This criticism is well-founded, indeed the gap be¬

tween theory and practice in econometrics is growing wider. One

of the most important problems causing this discrepancy is the

huge effort needed to collect data and to implement software for

new developed econometrical techniques and models. A large organi¬

zation Is needed to set up something worthwhile. Most small insti¬

tutes do not have the required man-power and their employees re¬

main theoretical scientists in an empirical science.

What can change this situation? I think more flexible soft¬

ware can. In this paper I will indicate how to create flexible

software, which is better suited for use by econometricians than

the existing tools. Most existing software tools are developed for

users working in the basic disciplines of econometrics: statis¬

tics, economics and mathematics. A short evaluation of these tools

is given in section 2. In section 3 I will describe why these

software tools are less suitable for econometric research and show

what is a better approach. The enormous increase in the amount of

memory and speed of nowadays computers makes it possible to imple¬

ment the concepts described in section 3. An example of such an

implementation is given in section A. In section 5 our approach is

compared with related approaches: the macro facilities in GENSTAT

and the MATRIX language in SAS.

2. Existing software tools in econometrics

Like in other applications areas, the use of the computer in

econometrics started in the early sixties. In these days running a

problem on a computer was a time-consuming affair. Debugging

errors in a program took hours or even days and made that *the new

tool of science' was only used by hobbyists. An important feature

of the use of computers at that time was that programs were only

134

written to solve one particular problem of one particular user.

With the introduction of more friendly operating systems this

situation began to change. More and more computerprograras were

written in such a way that many people could use them. At present

lots of these programs exist and econometricians use them fre¬

quently.

The introduction of these so-called application programs made

that users could solve their problems with a minimal amount of

effort. It appeared that there really was a market for this kind

of software products. Universities in cooperation with software

industry started to produce application programs containing what

they believed to be the most important techniques in a certain

science. An interesting software package for econometricians is

for example Time Series Processor (TSP) originally developed at

M.I.T. [ill in 1966. It contains statistical techniques frequently

used by econometricians like full information maximum likelihood,

instrumental variables, etc. An other good example is a standard

package developed by Statistical Analysis System (SAS) Institute

[p] and [9], containing a really impressive amount of statistical

and time-series analysis techniques.

Besides the software tools mentioned above, the econometri¬

cian can use a programming language, in combination with a library

of mathematical and statistical routines like IMSL f4], to solve

his problems. This still happens a lot, especially in scientific

environments, where one wants to investigate new instead of old

techniques. Mostly programming languages like FORTRAN, PL/I, APL

and PASCAL are used for this purpose. Within SAS it is also pos¬

sible to use a language called MATRIX, which is a bit like APL.

This language contains standard matrix operations like inversion,

transposing, etc.

The two groups of software tools, software packages and pro¬

gramming languages, proved to be valuable in econometrics. But by

no means they are, or ever will be, perfect. I will now describe

some of the criteria which have to be considered in order to eva¬

luate the usefulness of the software tools. A more detailed enume¬

ration of criteria is given by Francis [2] who evaluated existing

software packages in statistics. I will only concentrate on crite¬

ria important within the scope of this paper. These criteria are:

135

accuracy, flexibility and maintainability.

2.1. Accuracy

Every software tool should provide the user correct answers

to his problem. In practice this goal is difficult to achieve. To

prove that a large piece of software is correct is almost always

impossible. Therefore it takes extensive testing to get confidence

in the correctness of a computerprogram. In particular users of

software packages are hardly aware of this problem. An overview of

software reliability problems and testing is given by Raraaraoorthly

[?]. Besides the problem of correctness, the accuracy of a pro¬

gram is depending on the algorithms used to implement a certain

technique or model. The fact that a computer can only represent

numbers in finite precision, makes that seemingly correct algo¬

rithms may provide totally wrong answers on a computer. For a

discussion of this subject see for example Forsythe, et.al.fl].

Regarding our two categories of software tools we may state

that none of them can guarantee correctness or accuracy. In gene¬

ral however there is a tendency that larger organizations can

produce more reliable software simply because they can do more

testing. Also on other aspects like documentation and maintenance

the larger organizations have a coraparetive advantage.

2.2. Flexibility

In econoraetrical research applications one does not know

beforehand which models or techniques must be used. Software

therefore should provide the possibility to make changes in the

implemented techniques and models if required. Though software

packages contain quite a few techniques, they do not offer the

possibilities to modify these techniques. For a user the imple¬

mented techniques are a ’black box'. The user specifies a data set

and the software package returns the answers (the output). This

approach, visualised in figure 2.1, offers a minimum of flexibili¬

ty to the user.

136

Fig. 2.1. Black box approach in standard packages

data input-technique]--—^output

In some of the software packages the situation is slightly

different. Besides data input the user can specify control input

for the 'black box'. This offers the possibility to choose between

different options of the software, containing variants of the

implemented technique. Though more flexible than the 'black box'

approach, the control approach

Fig. 2.2. Control approach in standard packages

control input_»_
J technique |-> output

data input *

still offers moderate flexibility. Only those variants that the

developers of the package can think of are implemented. It is

without doubt that the user will come up with a lot more. And it

would be a great improvement if they could make the required

modifications themselves.

If flexibility is so much needed, why not use a problem

oriented programming language? Of course these languages offer

enough possibilities to solve every econometric problem you can

imagine. But the resulting software however has low flexibility

due to for econometricians totally irrelevant information in the

source text. An econometrician most of the time is not interested

in problems like the exact implementation of matrix inversion or

input-output routines written to make the software easily trans¬

portable from one machine to another. Due to the complexity of the

source program, he can not easily adapt his software to new needs.

We will return to this subject in section 3.

2.3. Maintainability and economic costs

The purchase costs of a software package are a small part of

the total costs of most research projects. The costs of man-power

form the bulk of the total costs. Most software products can not

137

be maintained by the user. Therefore the user is depending on the

producer to get his software adapted to new needs. This process is

very time-consuming and the costs involved in the delay will in

fact be larger than the purchase costs of the software. Increasing

the possibility for the user to maintain his own software will

therefore be very profitable for the users.

3. The econometrician as a user of software

Whenever one develops software one must have a clear picture

of the potential user. In this section I therefore briefly examine

some definitions of econometrics and try to indicate the conse¬

quences of these definitions for the software. Malinvaud [5] gives

the following definition of econometrics: 'Econometrics may be

broadly interpreted to include every application of mathematics or

statistical methods to the study of economic phenomena'. This

definition encompasses a wide range of scientific activities. A

usefull subdivision of these activities is for example given by

Goldberger [3], who distinguishes the following main area's in

econometrics:

a. mathematical economics: the mathematical formulation of

economic theories.

b. technical econometrics: the development of appropriate

techniques for econometric research.

c. empirical econometrics: the actual statistical inference

from economic data.

It is clear from the enumeration above that changes in techniques

(technical econometrics) and changes in the model specification

(mathematical economics) itself are the subject of study in econo¬

metrics. Therefore all software developed for econometricians

should be developed in such a way that changes in techniques and

models can be implemented as easily as possible. The black box

approach in most software packages of course does not offer this

possibility and is less suitable for econometrical research.

In section 2 we defined flexibility as the possibility for

the user to adapt the software to new needs. With regard to the

138

econoraetrical software It Is useful to distinguish three levels

on which changes can be made.

The application level : On this level changes can be made in a

fixed set of parameters of a statistical

technique or an economic model. For

example:

a. changing the number of observations

b. changing the number of variables in¬

cluded in the analysis

c. changing the number of years for which

a model has to produce forecasts.

The mathematical level : At this level changes can be made in the

mathematical specification of statistical

techniques or economic models. The mathe¬

matical specification must be as close as

possible to the textbook notations of the

implemented techniques or models.

For example:

a. modifying a procedure for ordinary

least squares into a procedure for

generalized least squares, by modi¬

fying the matrix notation of the OLS-

procedure

b. modifying the specifications of one

or more equations in an economic

model.

The ’source' level : On this level changes in implementation

of the software, the source, can be made.

For example:

a. changes in the memory organisation

within a program (hashingtables, sym-

boltables, etc.)

b. changes in the algorithms used for

basic mathematical operations such as

inversion and the calculation of

eigenvalues

139

c. changes in the communication of a

program with external files.

Of course the user must possess the required knowledge to make

changes on a certain level.

No matter how well designed a software product is, it is only

flexible if the user possesses the required knowledge to make the

changes. For economic reasons most software produced until now,

focussed on flexibility on the application level. If econometri¬

cians want to be able to implement new developed techniques, they

need software which is flexible on the mathematical level as well.

In the next section we show how to improve the flexibility for

econometricians, making software changeable on application level

and mathematical level.

4. Multi-level software for applications

The boundaries between software and hardware are no longer rigid.

A lot of the functions performed by the software can be done by

the hardware and vice versa. From this extreme point of view it is

for example possible to create a FORTRAN computer. This computer

would be able to perform FORTRAN-stateraents directly in his elec¬

tric circuits. This approach, however, is not very flexible. One

has to buy a new computer for every new programming language. A

solution for this ’problem' is the introduction of one machine

language and a set of compilers to compile other languages into

the machine language. For the machine language a computer can be

build. Thus different programming languages can run on the same

computer. This situation is shown in figure 4.1.

Fig. 4.1. A 'multi-language' computer.

FORTRAN APL

FORTRAN—
compiler

APL -
compiler

PASCAL

-PASCAL
compiler

machine language

computer

140

In modern computers many intermediate languages, between the soft¬

ware packages and the actual hardware, exist (see Tanenbaum

[lO]). The application programs like TSP and SAS are thus just the

top of an iceberg. Underneath the surface are a lot of other

languages. Using compilation- or interpretation-techniques, the

languages at the higher level are transformed to languages on a

lower level, which can be executed through the electric circuits

of the computer. The introduction of seperate levels makes it

possible to locate certain decisions in one particular level of

the software/hardware. The resulting flexibility of this approach

is impressive. People can, for example, use TSP or SAS without

concern for problems like optimality of an algorithm or the com¬

puter-architecture .

Now let us return to the problem of improving the flexibility

of econoraetrical software. Can we use the multilevel approach for

the construction of application software for econometricians? The

answer is yes. The program languages in the above example can

easily be replaced by mathematical techniques, the machine

language by econoraetrical language and the computer by program

source as shown in figure 4.2.

Fig. 4.2. A multi-technique application program

OLSQ TSLS FIML GLS

--(Mathematical language]-

[Program Source]

What is the difference with ordinary application programs you will

ask. The difference is the introduction of an intermediate level

between techniques and application program: the mathematical

language. Like the machine language in the computer software/hard¬

ware example, the mathematical language greatly improves the pos¬

sibility to modify or add entities on a higher level. The imple¬

mented techniques are made independent of the program source just

as the program languages are to a great extend independent of the

computer they are running on.

141

On each of the three levels In figure 4.2 there exists a

language. On the highest level we have the application language.

This language enables the user to make the required application

level changes described in section 3. On this level the user can

perform the techniques described in the mathematical language on

the mathematical level. In the econometrical language the mathe¬

matical level changes of section 3 can be made. On the bottom

level there is the programming language in which the program

source is written. Here the source level changes of section 3 can

be made. For the implementation of these languages translation and

interpretation techniques can be used.

The application language and the programming language do not

need much further explanation. The application language should

resemble the languages used in most standard statistical software

packages, the programming language is one of the languages like

FORTRAN, PASCAL, APL, PL/I, etc. The mathematical language, how¬

ever, needs to be developed with care. It must contain the mathe¬

matical operations and functions used to describe econometrical

techniques. Examples are matrix inversion, eigenvalues, eigen¬

vectors, kronecker products, etc. The language will somewhat re¬

semble MATRIX in SAS. All level 3 facilities, however, should be

removed.

At our university we have implemented a system with the

features described above. We have build an interpreter that can

handle the mathematical language and the application language. This

interactive interpreter is called Standard Interactive Multilevel

System (SIMS). At the application level SIMS can be used in the

following manner. The user can select econometrical techniques or

models from a file TECFILE.

Fig. 4.3. SIMS at the application level

E

S .. ^ecfile! D

I

M

I

T

s j_?| datfile jj: t o

R

_^application oriented^.

user

142

The techniques or models can be used to analyse data, which the

user can select from a datafile DATFILE or which can be typed in

on his terminal. An example of the application language in SIMS is

given below:

SELECT USING OLSQ ON TECFILE

SELECT USING DATA1 ON DATFILE

SHOW BETAHEAD,RSQUARED

RUN (during the run the variables in the SHOW-command are

displayed)

SELECT USING DATA2 ON DATFILE

RUN (now the results of the calculations on the second

dataset are displayed)

In this example a user selects a statistical technique and ana¬

lyses two data-sets applying this technique. The technique, in

this case ordinary least squares, is written in the mathematical

language. An econometrician can create or modify these techniques

with the use of an editor or in an interactive dialogue with SIMS.

This situation is shown in figure 4.4.

Fig. 4.4. SIMS at the mathematical level

The content of the TECFILE, written in the mathematical language

of SIMS, for this example of ordinary least squares is:

OLSQ

VAR [10 by l] Y,E

VAR [10 by 3] X

VAR [3 by 1] BETAHEAD

143

VAR RSQUARED,N

DEFINE BETAHEAD = INV(X’*X)*X’*Y

DEFINE E = Y - X*BETAHEAD

DEFINE RSQUARED = 1 - E'*E/((Y* *Y)-sigrna(y)a2)/N)

All variables used in the description of ordinary least squares

are declared by VARIABLE (or abbreviated VAR) statements. For some

of the variables the necessary equations are described in the

DEFINE (or abbreviated DEF) statements.

New statistics and modifications of the existing equations can

easily be made by an econometrician. For example the adjusted

correlation coefficient can be added simply by appending the

following lines to the TECFILE.

VAR K,RSQUAREDADJUSTED

DEFINE RSQUAREDADJUSTED = 1 - ((N-l)/(N-K))*(1-RSQUARED)

Appendix A gives an overview of the mathematical operations and

functions currently present in SIMS. The econometrician can use

the mathematical language described by these operations and

functions with practically no knowledge of the implementation on

the lower level.

On the lowest level in our implementation we have the pro¬

gramming language in which the program SIMS is written: PASCAL; at

this level the source level changes of section 3 can be made. A

short enumeration of the problems which had to be solved to imple¬

ment SIMS is listed below.

A. Memory Organisation

(i) SIMS must be able to store and retrieve all information

concerning variables and formulas in an econoraetrical

technique or model as efficient as possible. The number

of variables and formulas that a specific technique or

model contains can vary. Therefore a symbol table is

constructed with dynamic memory allocation.

(ii) The formulas may contain matrices. These matrices must be

stored according to their shape. Trlangulalr-, sparse-,

symetrlc-, Identity or normal matrices all should be

144

treated differently.

(iii) Formulas can best be stored using polish notation. SIMS

must be able to convert the infix notation used in the

econometric language into the prefix notation in the

polish notation.

(iv) If the user specifies a variable or keyword SIMS must be

able to allocate the information concerning this item as

quick as possible. A hashing function is used to find the

required information in the symbol table.

B. Communication with the user

(i) The user can communicate with SIMS using a command

language. If the user types in a command, then SIMS must

perform a lexical scan. It reads the command line token

(a string of characters representing a variable name,

function name, operator, etc) by token. After each token

SIMS knows what to do next or what input is expected. If

errors are made (the system does not understand a certain

token in the input line) SIMS gives a diagnose and offers

the possibility to correct the error. An example of the

error handling in SIMS is given in Appendix B.

(ii) If the user does not know what to do next, then he is

able to ask SIMS for information. Help facilities make

SIMS more easy to use.

C. Implementation of algorithms

(i) To get accurate results, sophisticated algorithms for the

mathematical functions and operators must be used. For

example the inverse of a matrix can be calculated using

Cholesky decomposition.

(ii) Once the model is defined within SIMS the user can use it

to calculate results for specific data sets. SIMS must

locate the specified formulas and the values of the

variables in his memory. After the run the results must

be stored in the symbol table.

Changes at the source level can only be made by people with fair

knowledge of PASCAL and insight in the architecture of SIMS. Be-

145

cause SIMS is developed in a modular fashion it is relatively easy

to add new functions and procedures to SIMS.

The resulting software package is a package that can be used

by application oriented users, econometricians and computer scien¬

tists independently. Using their own language they can modify the

system to their own needs. The complete system is visualized in

figure 4.5.

Fig. 4.5. The SIMS system

designer/corap.

scientist 4

-^econometrician^—

StF=d(TECFILE|F:

z^fDATFILK Ip

-4 application

oriented user

r

5. A short comparison with other software tools

In this section we compare SIMS with other software products,

that show some resemblance with SIMS: the macro-facility of GEN-

STAT [6] and the MATRIX language in SAS [9]. Of course SAS and

GENSTAT are developed with other objectives than discussed in this

paper. Both packages focus on the efficient implementation of a

set of standard statistical techniques.

The macro facility in GENSTAT and MATRIX in SAS are added to allow

the user to write his own routines. We will indicate the main

differences with SIMS.

5.1. GENSTAT

It is possible to regard the macro facility in GENSTAT as a

three level system. A user can write and modify macros (themathe-

146

matical level) and the macros can be used by other users through a

macro call (the application level). The main difference between

SIMS's and GENSTAT's macro facility lies in the implementation of

the mathematical language and the independency between the three

levels. The language on the mathematical level does not resemble

the mathematical language used in the mathematical text book. All

operations are performed through procedure calls. The formula of

for example OLS must be written as

’CALCULATE XACX = TPDT(X,X)

XXINV = INV(XACX)

XACY = TPDT(X,Y)

BETAHEAD = PDT(XXINV,XACY)

which is far from resembling original textbook notations. Further¬

more lots of level 3 decisions are made on the mathematical level.

For example the output of the macro and memory organization com¬

mands like 'devalue' (return occupied space) and 'pointers' are

controlled on the mathematical level.

5.2. MATRIX in SAS

The MATRIX language in SAS is a good example of how the

mathematical language should be implemented. All formulas can be

written in readable form and thus can be used and modified easily

by econometricians. Unfortunately MATRIX can not be used as a

'black box' on the application level. It is not possible to call a

'MATRIX-procedure' from a library and assign values to certain

parameters. Values are assigned to variables on the same level as

the definition of the formulas. As a result the distinction be¬

tween application level and mathematical level can not be made in

SAS. There remain lots of other differences between the software

products not discussed in this section. A full enumeration, how¬

ever, is outside the scope of this paper, where we only focus on

flexibility of the software.

147

6. Conclusions

On nowadays computers it is possible to implement systems,

that are far more flexible than the 'black-box' approaches in most

standard packages. With these systems it must be possible to de¬

crease the gap between theory and practice in econometrics. Of

course there remains always a trade-off between flexibility on the

one hand and computing efficiency on the other. Nevertheless I be¬

lieve that flexible systems will become more and more important,

especially in scientific environment. With SIMS I hope to make a

small contribution in this direction.

148

Appendix A. Operators and functions available In SIMS

Operators

• TRANSPOSE.

RAISE TO A POWER.

* MULTIPLY.

/ DIVIDE.

+ ADD.

SUBSTRACT.

< LESS THAN.

<= LESS THAN OR EQUAL TO.

> GREATER THAN.

>= GREATER THAN OR EQUAL TO.

= EQUALS.

The operators <=, <, >=, > and = can perform operations on scalars

only. The operator ' only operates on matrices. The operators +,

and * operate both on scalars and matrices. If two operands are

of a different type (e.g. a scalar and a matrix) the result of the

operation will be a matrix and the operation Is performed on the

scalar and each matrix element.

For example:

VAR[2 BY 2]A

DEFINE A = A + 1

In each run the variable A Is increased by one.

The operators ~ and / can be used either for operations on two

scalars or for operations on a scalar and a matrix.

Functions

Boolean functions

REAL(EXPR) if the boolean expression EXPR is true this

151

Literature

fl] Forsythe, G.E., M.A. Malcolm and C.B. Holer, ’Computer

Methods for Mathematical Computations', Prentice Hall, New

Jersey, 1977.

[2| Francis, I., 'Statistical Software: A Comparative Review',

Elsevier North-Holland, New York, 1981.

[3] Goldberger, A.S., 'Econometric Theory', John Wiley fit Sons,

Inc., New York, 1964.

[4] IMSL Corporation, IMSL Reference Manual, Houston, 1977.

[5] Malinvaud, E., 'Statistical Methods of Econometrics', North

Holland, New York, 1980.

[6] Nelder, J.A., 'GENSTAT manual', Rothamsted Experimental

Station, Harpenden, Herts, U.K., 1977.

[7] Ramamoorthly, C.V. and F.B. Bartari, 'Software Reliability-

Status and Perspectives', IEEE Transactions on Software

Engineering, Vol. SE-8, No. 4, July 1982.

[8] SAS, 'User's Guide: Basics', SAS Institute Inc., Cary, NC,

1982.

[9] SAS, 'User's Guide: Statistics', SAS Institute Inc., Cary,

NC, 1982.

[10] Tanenbaum, A.S., 'Structural Computer Organization', Prentice

Hall, New Jersey, 1976.

[11] TSP, 'Time Series Processor', User's Manual, Computing Centre

of Western Ontario, Canada, 1980.

Ontvangen: 30-5-84

