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ANOTA: ANALYSIS OF TABLES 

by 
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Abstract 

This paper discusses a quick-and-easy method for the analysis of contin¬ 

gency tables with one categorical variable, Y, to be explained or predicted, 

and the others, explaining or predicting. The method seeks to 

optimize ease of interpretation and ease of computation rather than compre¬ 

hensiveness and mathematical sophistication. The results of ANOTA are as 

easy to interpret as the results of multiple regression. ANOTA directly 

translates the bivariate tables YxXj,, into tables of the same size of 

regression coefficients, where the effect of category j of Xm on category i 

of Y is standardized for the effects of the other X*, ( l t m). Standard 

errors are also provided, allowing to judge the accuracy of the regression 

coefficients. The computational requirements are so limited that ANOTA may 

be run on a small micro-computer. 
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1. Introduction 

ANOTA deals with the contingency table analogue of multiple regression 

analysis. There is a categorical Y-variable to be explained and one or more 

explaining variables Xj,X2,..., which are also categorical. Existing 

models such as logit- and probit-models are not quite satisfactory for 

Y-variables with more than two categories, the logit- or probit-transform 

hampers the interpretation of the linear parameters, and the computational 

requirements are substantial. In these respects ANOTA is far superior. Of 

course this superiority has its price. The ANOTA-model may exhibit lack-of- 

fit (but which model may not?), the estimated proportions may be out of the 

0-1-range, and we have also sacrified some statistical efficiency (variance 

of the estimators) to a gain in ease of use. 

This paper is composed as follows. Section 2 gives an example. Section 3 

will introduce the notation and set the stage. In section A the formal 

ANOTA-model is introduced, while section 5 presents the estimation method 

and algorithm, and proposes an estimator for the variance-covariance matrix 

of the regression coefficients. Section 6 concludes with some discussion. 

For the ease of interpretation of ANOTA we refer to section 2. The com¬ 

putational requirements are so limited that ANOTA may be run on small micro¬ 

computers. An APL-prototype is currently used for experimenting and a 

compact BASIC program is being planned. 

2. An example 

To provide the reader with some feeling of what ANOTA does, this section 

treats a very simple example. In a CBS household survey, called the Life 

Situation Survey 1977 (see CBS, 1978), questions were asked, among others, 

about Satisfaction (S), Income (C) and Education (E). The three relevant 

bivariate frequency tables are displayed in tables 1, 2, and 3, where also 

the categories are described. The relevant sample size is 4108 (all figures 

are unweighted sample frequencies; we will assume that the sample design is 

simple random sampling). 
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Table 1. Satisfaction (S) by Income (C) 

Satisfaction Income3) Total 

<21 21-40 >40 unknown 

not too satisfied 132 
rather satisfied 208 
satisfied 631 
very satisfied 282 
extremely satisfied 103 

78 13 
198 46 
773 192 
485 152 
155 51 

41 264 
87 539 

261 1 857 
169 1 088 
51 360 

Total 1 356 1 689 454 609 4 108 

a) Dfl. 1 000 per annum, 1977 

Table 2. Satisfaction (S) by Education (E) 

Satisfaction Education Total 

low medium high unknown 

not too satisfied 175 
rather satisfied 304 
satisfied 1 159 
very satisfied 632 
extremely satisfied 222 

54 22 
140 59 
452 169 
291 115 
90 36 

13 264 
36 539 
77 1 857 
50 1 088 
12 360 

Total 2 492 1 027 401 188 4 108 

Table 3. Income (C) by Education (E) 

Income3) Education Total 

low medium high unknown 

<21 
21-40 

>40 
unknown 

1 037 196 59 
912 546 154 
146 152 133 
397 133 55 

64 1 356 
77 1 689 
23 454 
24 609 

Total 2 492 1 027 401 188 4 108 

a) Dfl. 1 000 per annum, 1977 



Tabel 4. Satisfaction (S) by Income (C) and Education (E) as deviations from average, in % 
(standard errors in parentheses) 

Satisfaction Average Income 
a) Education 

<21 21-40 >40 unknown low medium high unknown 

not too satisfied 6.4 
(0.4) 

rather satisfied 13.1 
(0.5) 

satisfied 45.2 
(0.8) 

very satisfied 26.5 
(0.7) 

extremely satisfied 8.8 
(0.4) 

Total 100.0 

3.3 -1.8 
(0.6) (0.4) 

2.2 -1.4 
(0.8) (0.6) 

1.3 0.6 
(1.1) (0.9) 

-5.7 2.2 
(0.9) (0.8) 

-1.2 0.4 
(0.6) (0.5) 

-3.6 0.3 
(0.8) (0.9) 

-3.0 1.2 
(1.4) (1.3) 

-2.9 -2.3 
(2.2) (1.9) 

7.0 1.3 
(2.1) (1.7) 

2.5 -0.4 
(1.4) (1.0) 

0.6 -1.2 
(0.3) (0.6) 

-0.9 0.5 
(0.4) (0.9) 

1.3 -1.2 
(0.6) (1.3) 

-1.1 1.9 
(0.6) (1.2) 

0.1 0.0 
(0.4) (0.8) 

-0.9 0.5 
(1.1) (1.8) 

1.6 6.0 
(1.7) (2.8) 

-3.1 -4.2 
(2.3) (3.5) 

2.2 0.1 
(2.1) (3.1) 

0.2 -2.4 
(1.4) (1.8) 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

a) Dfl. 1 000 per annum, 1977 
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Let us consider Satisfaction as dependent and Income and Education as 

predictor (independent) variables. A good way to represent the sample in¬ 

formation with respect to this view is displayed in table 4, where for each 

category of a predictor variable (0 or E) the distribution over the cate¬ 

gories of the dependent variable (S) are given as deviations of the average 

proportions of the categories of S in the sample. From this table we con¬ 

cluded that more Income or more Education will in general increase the 

chances on a positive Satisfaction score and decrease the chances on a 

negative score. Besides the average proportions and the deviations of 

proportions, also their standard errors, based on a multinomial sampling 

process, are shown. 

However, if we look at the distribution of the predictor variables C and 

E, as displayed in table 5, it will be clear that these two variables are 

not independent: more Education in general means more Income and vice 

versa. So, now we are in doubt if the higher Satisfaction scores for higher 

Education is caused by Education itself or by Income, in view of the rela¬ 

tively higher Income in the categories of higher Education. This question 

is completely analogous to the problem behind multiple regression models. 

ANOTA supplies us with a simple answer: see table 6. In this table, the 

effects of the predictor variables on the dependent variable are displayed 

in the same way as in table 5, but now corrected for the interdependencies 

between the predictor variables. To be more precise, the effect of, say, 

Education on Satisfaction is computed as if the Income distribution per 

Education category is the same as the average distribution in the sample. 

In other words, it is the net effect of Education on Satisfaction under 

constancy of Income; or it is the effect of Education after removal of the 

Income-effect. The interpretation is exactly the same as the interpretation 

of regression coefficients in multiple regression analysis (with dummy 

variables) or as the interpretation of effects in analysis of variance. 

Looking at table 6, we see that, after correcting for the interdepen¬ 

dencies between Income and Education, the effect of Education on Satisfac¬ 

tion is changed in sign with respect to table 4: now more Education means 

less Satisfaction. The positive effect of Income on Satisfaction is ac¬ 

centuated in the ANOTA result. Note that we may read the ANOTA table two 

ways: in one column the 'standardized' distribution, expressed as a devia- 



tion from the average, can be read, while one row gives the regression 

coefficients explaining the proportion in that row as a function of the 

predictor variables. 
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Table 5. Income (C) by Education (E) as deviations 

from average, in % 

Income3^ Average Education 

low medium high unknown 

<21 
21-40 

>40 

unknown 

33.0 8.6 

41.1 -4.5 

11.1 -5.2 

14.8 1.1 

-13.9 -18.3 1.0 

12.0 - 2.7 -0.2 

3.7 22.1 1.2 

-1.9 - 1.1 -2.1 

Total 100.0 0.0 0.0 0.0 0.0 

a) Dfl. 1 000 per annum, 1977 

3. Notation 

Since matrix algebra eases the notation and derivation of the regression 

coefficients considerably, we will mainly use matrix algebra when dealing 

with theory, but also use scalar notation when it helps the interpretation. 

We first need some notation which draws heavily on the theory of the 

linear model. The Nxl-indicator matrix Y contains the scores of the N indi¬ 

viduals (cases) in the sample on the I categories of the dependent varia¬ 

ble: entry yn^ equals '1’ if individual n scores in category i of the depen¬ 

dent variable, and 'O' else. We assume each individual to score in exactly 

one category (so Yi=i, with i=(1,1,...,1)1). The sample frequency distribu- 

Y Y Y 
tion of Y is given by the vector f^=( f ^ , f ^ ,..., f-j.) ' of length I. So we have 

fY=Y'i. (Subsequently, we will use the terms 'frequency* and 'frequency 

distribution' for counts, and 'proportions' for fractions.) 

The scores of the N observations on the m-th predictor variable are col¬ 

lected in an indicator matrix 5^, with the ra-th variable having Km 

categories (m=l,...,M), and element (n,k) of Xm (i.e. xJJ^) equal to '!' if 

individual n scores on category k of the m-th predictor variable and 'O' 
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Tabel 6. ANOTA: regression coefficients of Satisfaction (S) by Income (C) and Education (E), 

in % (standard errors in parentheses) 

Satisfaction Average Income Education 

<21 21-40 >40 unknown low medium high unknown 

not too satisfied 

rather satisfied 

satisfied 

very satisfied 

extremely satisfied 

6.4 3.3 -1.8 

(0.4) (0.6) (0.4) 

13.1 2.7 -1.6 

(0.5) (0.8) (0.6) 

45.2 0.9 0.7 

(0.8) (1.1) (0.9) 

26.5 -5.6 2.2 

(0.7) (1.0) (0.8) 

8.8 -1.3 0.5 

(0.4) (0.6) (0.5) 

-3.6 0.3 0.0 

(0.8) (0.9) (0.3) 

-4.1 1.3 -1.5 

(1.4) (1.3) (0.4) 

-2.0 -2.5 1.2 

(2.3) (1.9) (0.7) 

6.9 1.3 -0.2 

(2.1) (1.7) (0.6) 

2.8 -0.4 0.4 

(1.4) (1.0) (0.4) 

-0.4 0.4 0.5 

(0.6) (1.1) (1.8) 

1.3 3.0 6.1 

(0.9) (1.7) (2.8) 

-1.1 -2.5 -4.3 

(1.4) (2.4) (3.5) 

0.6 -0.3 0.1 

(1.2) (2.2) (3.1) 

-0.3 -0.6 -2.4 

(0.8) (1.4) (1.8) 

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total 
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else. Each individual scores exactly on one category of each predictor 

variable (so Xmi = 0» Besides M true predictor variables, an additional pre¬ 

dictor variable (called 'the constant') with index m=0 is introduced, which 

has only one category (so Ko=l) on which everyone scores: Xq=i (or 

for all n). 

The scores on all M+l predictor variables are collected in one N*K 

matrix X=(X^ ,X^ ,... ,X^) with K=^_oKm* The sample frequency distribution of 

the m-th predictor variable X is given by the vector f =(ff™,...,f™ )' 
m ° ' m 12 K 

m 
of length K . So we have f =X'i. Concatenating these distribution vectors 

m mm 
for all M+l predictor variables, we get f=(f',f'_,f')'=X'i. 

U 1 M 

With these indicator matrices Y and X spelled out, we are ready to 

translate tables into matrices. The IxKm-table of frequencies (= number of 

individuals) of the dependent variable against the m-th predictor variable 

can now be written as Y'Xm as can easily be confirmed. Analogously, the 

K *K -table X xX simply becomes X'X . The total scores on the dependent 
x-m x-m 2,m 

variable equal Y'Xq=Y'i=fy, while the IxK-matrix Y'X contains all the 

relevant scores on the Y variable in the categories of all the X variables 

(subsequently, we will use Y, Xm and X to denote either the indicator 

matrices or the variables themselves). The KxK-matrix X'X contains all the 

crossings of (Xq,...,X^) by (Xq,...,X^). The diagonal matrix X^X^ with the 

vector of frequencies fm on the diagonal is located as subraatrix around the 

diagonal of X'X. 

Finally, we arrive at the proportion of scores on Y for each category in 

X (see e.g. table 4) by computing the table Y'XW, where W equals the KxK 

diagonal matrix with the reciprocals of the frequencies in f (=X'i) on the 

diagonal. Each column of Y'XW contains I proportions, adding up to one, and 

corresponds to the conditional distribution of Y. Analogously, X'XW repre¬ 

sents the supermatrix with outside the diagonal blocks the tables XlX W , 
2. m m 

which represent the proportions of scores on X^ for each category of Xm. 

Instead of matrix notation we will sometimes use scalar notation for 

frequencies and proportions. Frequencies will be denoted by f. Subscripts 
y 

refer to categories, superscripts to variables. E.g., f is the frequency 

YX1 Y1 
in category i of the dependent variable Y, f„ ^=fij for short) equals the 
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12 12 
frequency in cell (i,j) of the table Y by X. , f= f , the frequency in 

A JK JK 

cell (j,k) in table etc. Note that by the special nature of Xn (i.e. 
., v , _ YO Y , _0m m , 
the constant), we have and * Proportions, denoted by p, are 

always with respect to the total score on all but the first variable 
YX x 

1 2 Yl? 1? Yl? 1? 1? 2 
simultaneously. So =f “jVffor short)> while Pjk=fjk/fk‘ If 

only one variable is indicated, the proportion is with respect to the total 
Y Y 0 YO Y Y 0 

sample size, i.e. p^f^/N (one might notice that f^=N, so -j/f ^• 

This completes our notation. 

4. The model 

The model is a direct derivate from the well-known linear model for regres¬ 

sion analysis or analysis of variance: 

Ey = Xb , 

where y is an N-vector of dependent scores, X an N*K-matrix of predictor 

scores, b a K-vector of regression coefficients and Ey the expectation of 

y. We make two amendments. First, we generalize to the multivariate linear 

model 

EY = XB (4.1) 

with Y an Nxl-matrix, X as above and B correspondingly a Kxl-matrix. 

Second, Y is now a matrix of (dependent) scores (0 or 1) satisfying Yi=i 

(each row contains exactly one 1); hence each row of EY is a vector of 

probabilities, adding to 1. 

In order to interpret equation (4.1), we consider the scalar represen¬ 

tation of an arbitrary element in the i-th column of (4.1). We have 

YX M YX 
V K “ P, . . = b. + 2 b. . 

ij.-Ow i . i J 1 M m= 1 n 

(4.2) 

YXm Ym 
with b . =b* equal to the (i,j)-th element of Bf with j the column 

1Jm 1Jm Y 
corresponding to the jm-th category of the predictor variable Xm, and b^ 

YO 
standing for the ’constant’ bj^. So, our model says that the cell probabil- 
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ities are equal to the sura of regression coefficients which depend only on 

the bivariate Indices. For our simple example of section 2, we have in an 

obvious notation 

SCE 
Pijk 

SE 
ik 

saying that the probability Pijk °f a score on category i of Satisfaction, 

given the predictor scores j of Income and k of Education, equals a con- 
s sc 

stant depending only on i, , plus a regression coefficient bjj reflecting 

the effect of the j-th category of Income on the i-th score of Satisfac- 
SE 

tion, plus a regression coefficient bik for the effect of keE on ieS. 

5. The ANOTA estimator for B 

To estimate B, we consider the equation XfY=XfXB, which is equivalent to 

Y'XW = B’X'XW (5.1) 

because the diagonal matrix W is invertible (assuming that all categories 

of all Xm do have observations). It is well-known from OLS theory that 

X,Y=XfXB is consistent, i.e. B can be solved from it or from (5.1). This 

will be the ANOTA estimator. Formally this is just the OLS estimator of 

model (4.1), but that is merely coincidental. Much more important is the 

following, very simple and interesting interpretation of (5.1): the left 

hand side corresponds to the set of tables YxXm in column percentages (as 

table 4); X'XW can be seen as a normalising constant, eliminating the inter¬ 

actions between the predictor variables Xm; and B’ has exactly the same 

size as Y'XW. In fact, each element of B', say ^i^> can be interpreted as a 

normalized version of the corresponding element p^j of Y'XW, eliminating 

the effects of X^, Mm. This can be seen as follows: Take one row Y'XW of 

the left hand side of equation (5.1); this corresponds with a row in table 

4. For this row, say the i-th, the scalar representation of y'XW=b'X’XW 

(see (5.1)) equals 

Ym 

pij 1=0 k=l 

Yfc 
ikPkj (5.2) 

.. . nun £mm, .m . , . 0m _0m , ^m , 
Now since P j j“f j j/f j=l > an<^ also Pi j=f 1 j/f j=l» we might write 
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Ym 
= b? + bYm + 

i ij 

M 

Z 

1=1 k. 

,Yl Im 
\ bikPkj 

(5.3) 

Y YO 
with bi=b^j. From this equation we see that our model implies that the 

true proportion p^j equals the regression constant b^ (which is independent 

of the choice of the category j of the predictor variable m), plus the 

regression coefficient b^j corresponding to the 'cell' on the left hand 
Y j, 

side, plus a weighted sum of the remaining regression coefficients b^-; with 
Jtm 

weights, Picj> equal to the sample proportions of Xj, conditional on the cate- 

Ym 
gory j of Xm. In other words, the observed proportion p-^j equals a weighted 

average of the corresponding regression coefficients, with weights reflec¬ 

ting the bivariate distributions between Xm and Xg, for £=1,...,M. For our 

example of section 2, equation (5.3) becomes with Xm=E, in an obvious 

notation, 

SE 

pij 
+ bfE + 

i ij k= 1 

b 
SC CE 

ikPkj 

showing the effect of the bivariate distribution between the predictor 

CE SC 
variables, p^^, as weight for the regression coefficients b^ in the decom- 

SE 
position of P^j. 

As with ANOVA, some restrictions on the b's are necessary, in order to 

allow for unique identification of them. Since Xmi=i, there are at least M 

different linear combinations, c, of the columns of X such that Xc=0. So 

for each i we need at least M additional restrictions on b. We propose 

o VO 0 
z b\p = 0 for «.= 1.M; , (5.4) 

k=l 

with pk=fk/f^f^/N, for k=l,...,K£, the sample proportions of Xa. The 

interpretation of (5.4) is simple: The average regression coefficient 

corresponding to a predictor variable X^ (excluding 4=0, the constant) is 

zero when weighted with the sample proportions of X^. As a consequence, we 

have for the constant 
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b? 
i 

Y 
(5.5) 

as can easily be verified by multiplication of (5.3) by pj and summing over 

j, using (5.A). In matrix notation we may formulate (5.A) as 

RB = 0 , (5.6) 

with R an MxK-matrix with R=(Rr.,R1 ) and the m-th row of R equal to 
0 1 M m 

fm (for m=l,...,M) and zero elsewhere. The restrictions just identify the 
i, J. 

b's if all vectors (p ,...,p ) are non-zero and rank X=K-M, cf. Verbeek 

and Denteneer (198A). 

Using the normalization (5.A) we could provide an alternative character¬ 

ization of b^j: if all predictor variables Xm and Xj, (H=1,...,M) are 

mutually independent, so p£j=p£, then we have, using (5.A) and (5.5). 

P 
Ym 

ij 

Y 
P, + b 

Ym 

ij ‘ 

Then, the regression coefficient b^j simply equals the deviation (Pi^-?^) 

of the conditional proportion p^j with respect to the mean proportions p^ 

(see table A). In other words, the b^j represent the effect of Xm on the 

sample proportions of Y as deviations from the mean proportions if the 

distributions of Xj, (Mm) given Xm are equal to the unconditional sample 
SF. 

distributions of Xg,. This is also clear from the decomposition of p-^j in 
CE C CE 

our example above: if P\cj=Pic (the distribution p^j equals the marginal one, 
C SE SE S 

p^), we have j=p-jL j-p-L anc* table 6 would become identical to table A. 

Therefore, the regression coefficients b|j might also be interpreted as 

'standardized deviations' (on standardization, see also Israels and De Ree, 

1983). 

The computation of regression coefficients B can be organized as 

follows. Provided that the rank of X is K-M (i.e., no zero frequencies in 

f£, k=l,...,Km; ra=0,...,M and no collinearity between X^,...,X^, 

obtain B as unique solution of (see (5.1) and (5.6)) 

we can 
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WX'y'1 fwx'x'l 0 
.0 J = U J B 

So 

■ - (Tf [“'I • 

where A denotes any g-inverse of A (i.e. AA A=A), cf. Rao & Mitra, 1971. 

The variance-covariance matrix of the i-th column of B equals 

Var(b) = [Var(^ °] (X’XW.R-)- , (5. 

where, as before, y denotes a column of Y (the i-th, say) corresponding 

to b. 

To obtain the variance-covariance matrix of WX'y we will assume that the 

sample was drawn from a finite population with equal probabilities and with 

replacement. Without loss of generality, we will concentrate on the vari¬ 

ance with respect to the distribution of Y conditional on X x...xX... After 

all, the ANOTA estimator B is unbiased, so 

Var B = E Var(B|X1x...xX^) + Var E(B|Xj *...xX^) 

= E Var(B|xix...xXM) (5.9) 

which is naturally estimated by Var(B|X.*...xX). So writing f . = 

yx1..Xm 
f.. . for the frequencies in the Mfl dimensional table, the I-vector 

1^1"" 

(f. . . . ) has a multinomial distribution and for different 
i;)r0M 1Jr-;iM 

vectors (j^,...,j^) these distributions are independent. 

To compute the variance-covariance matrix of the i-th row of the 

original table, i.e. Var(WX'y), we need to examine the components of WX’y, 

i.e. f^j/fj^. The covariances of two components, say f^j and fall into 

three classes: H=ra and j^k, i=m and j=k, and J.^m. 
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The first case, covCf^j, f^), is the easiest: ff- and are sums of 

binominally distributed terms, ^ ^ ^ ^ and f^I11 =2f J , , , with 
ij ijp-j JM 

ik ij^.k.. j 
M 

all terms f and f 

iJr-k”jM 
mutually independent. Note that terras 

are independent within each sum but also between sums. So and are 

independent and have covariance zero. 

The next case is var fjj. Again is a sum of independent binomially 

distributed terms. Note though that itself is generally not binomially 

distributed, since the success probabilities are not equal. So 

„Ym . _m Ym,. 
f, . = f .p . 1 
ij J 1J 

YmN 

pij) 
(5.10) 

where the right hand side is a systematic (but slight) overestimate of the 

left hand side. (One may note that the assumption that the f . . are 

i]l ‘ ■ ■'m 
independently Poisson distributed would circumvent these problems.) 

Finally cov(f 

.Yfcm . 
^ijk in common> 

Yl fYm 
ij *1ik 

while 

) with S.^m. Here the expansions for 

all other terms are independent. So 

and f • 
Ym 
ik have 

cov( f 
YU 

ij* 
var 

Y4m 

tijk ’ 

and by the same approximation as above we may write 

(5.11) 

,Ym. . Yl 

COv(fij> = fjkPijk(1 
Y1 . 

Pijk5 • 
(5.12) 

Since Pij™ i® unknown (we assume that only bivariate information is avail¬ 

able), we use the ANOTA-model to estimate it: 

Yim 

Pijk 
m 4- hYm 

bi + bij + bik 
(i^m) (5.13) 

This completes our discussion of the computation of Var(b). 
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6. Discussion 

Obvious competitive estimators for the OLS estimator studied here are GLS 

(see e.g. Grizzle e.a., 1969), and ML (see e.g. Fienberg, 1980). In statis¬ 

tical asymptotic efficiency these two are equivalent, optimal and superior 

to OLS. But al three are consistent; OLS and GLS even being unbiased. The 

loss of efficiency of OLS is discussed e.g. in Rao and Mitra (1971). More¬ 

over, ML estimates always lead to estimated probabilities that are positive 

and add to 1, while probabilities estimated by OLS and GLS can be negative 

or larger than one. But if the model is correct, and all true probabilities 

are positive, the probability of negative estimates vanishes asymptotic¬ 

ally. Computationally OLS estimates have the advantage that they are much 

easier to obtain than the two competitors, and that they only depend on the 

bivariate tables. The latter point reduces the data entry and allows ANOTA 

on data from which only bivariate (or higher dimensional) tables are given, 

but not the entire matrix. 

We have mentioned above that ANOTA may lead to negative estimates for 

probabilities. Small negative estimates might be acceptable, interpreting 

them as minor anomalies resulting from sampling errors and imperfect fit of 

the model. But large negative values will in general be unacceptable. The 

classical method to avoid these is to transform the observed proportions 

from the [0,l]-range to the (-0°,®)-range, e.g. via the logit or probit 

transformation. Note, however, that this leads to a different class of 

models (appropriately called generalized linear models, cf. McCullagh and 

Nelder, 1983, or the original paper: Nelder and Wedderburn, 1972). In 

general there is no prior reason to believe that the ANOTA-model is more or 

less close to the true model than, say, a logit model. These transforma¬ 

tions are introduced for convenience only, not because their models are 

’more likely'. The advantage of logit and probit models that all estimated 

probabilities are positive is paid for dearly by much more difficulty in 

the interpretation of the coefficients. Our personal point of view is that 

sometimes this is acceptable, and sometimes it is not. If the ANOTA-model 

fits well and all estimated probabilities are positive, ANOTA will be 

easier to explain to a broad public than logit or probit analysis. 
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Table 7 crudely summarizes the advantages and disadvantages of ANOTA as 

compared to logit-analysis. 

Tabel 7. ANOTA compared with logit-analysis 

ANOTA Logit-analysis 

interpretation of parameters very simple 

(no. of categories of Y) > 2 

data requirements 

computational requirements 

trivial 

bivariate tables 
only 

solving linear 
system (5.7) 

statistical efficiency 

estimated proportions in 0-1-range 

there exists a saturated model 

not fully efficient 

not guaranteed 

no 

hampered by the 
transformation 

non-trivial 

full table (or 
almost) 

iterative solu¬ 
tion of a more 
complex system 

efficient 

guaranteed 

yes 
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