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Abstract 

The present paper concerns the characterization of observed individual 

learning curves obtained in a small sample of first grade pupils. 

These data were analysed with the well known logistic regression model 

and it is shown how hypotheses concerning these data can be tested. 

1. INTRODUCTION 

In the present paper we discuss an application of bio-assay methods to 

data obtained in a social science context. The study we are referring to was 

concerned with the acquisition of early reading skills. Because individual 

development patterns were considered as to be among the main points of 

interest, a longitudinal design was adopted. 

Relatively few individuals were observed regularly over a relatively 

long period of time, in order to get an accurate picture of the individual 

growth patterns. At each occasion the individuals were tested with several 

short tests especially designed to measure different aspects of reading 

performance. One of the crucial features of the study was that the tests 

consisted of items on which the answer could be "condensed" to two forms: 

correct or incorrect. Thus, each response could be represented by a binary 

random variable taking values of one or zero only, where a one corresponded 

to a correct answer (a "success" ) and a zero to an incorrect one. The basic 

problem is to find good methods of analysis for the dependence of the 

probabilities of a correct answer on the time variable and also for 

dependencies on other explanatory variables, such as groupings of the 

individuals. 
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2. DESIGN OF THE STUDY 

The study mentioned in the introduction was set up as follows. A group 

of seven first grade children was tested at regular intervals (once a week) 

during the school-year. A total of forty-seven testing sessions was planned, 

but due to holidays, illness, etc., data were missing on several occasions. 

We excluded here one of the seven children because of an excessive amount 

of missing data. The remaining six could be subdivided into two groups 

according to two different reading programs which were used in their schools. 

The major purpose of the study was to assess individual growth patterns. 

Secondly, we were interested to see if these individual patterns showed 

consistent differences which could be related to characteristics of the 

reading programs, though the small sample sizes and the essentially quasi- 

experimental nature of the study made this difficult. 

During each testing session the children were tested with four 

different short tests (two of 10 items and two of 15 items respectively) 

designed to measure different aspects of reading performance. For each of 

the four different types of tests, several (4 for the 15-item tests and 8 

for the 10-item tests) nominally parallel versions were available. Although 

no formal scheme was used for assigning test versions to testing sessions, 

it is unlikely that pupils were tested twice with the same version in close 

succession. 

We will refer to the four types of tests as P, Q, R and S. The tests 

differ in such variables as length, orthografic regularity and presence of 

a context. We will not go into the theoretical background and the detailed 

research questions of the study which are fully treated elsewhere (Bus, 

1982). Instead we restrict ourselves to the analysis of the data without a 

substantive interpretation of the results. 

As may be inferred from the information given above, the data material 

consisted of item responses collected at a relatively large number of time 

points for six individuals who could be grouped a priori in two subgroups. 

Furthermore, the item responses which were recorded could be coded as either 

incorrect or correct. In the research project itself other codings were also 

used, but these do not concern us here. Our analysis tries to fit curves 

describing the relation of the attainment of reading skills, as measured by 

the tests, with the time variable, assuming the model we will describe in the 

next section. 
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3. THE MODEL 

The task of finding a suitable model for characterizing growth in 

attainment within individuals is not an easy one. Possible solutions could 

be sought in the application of item response theory, where a probabilistic 

relation between observed item response and an underlying so-called latent 

trait is assumed (Lord & Novick, 1968). An extra assumption, that is not 

included in item response theory but is needed here, would be that the latent 

trait value of a given individual increases over time. Estimated trait values 

at several time points could be used to display the information concerning 

the individual's growth in attainment over time. 

For a similar situation, Bock proposes the use of an adaption of the 

so-called normal ogive model (Bock, 1976; Lord & Novick, 1968). 

Even more attractive are the logistic latent trait models with linear 

constraints on the parameters (LLTM) proposed by Fischer (Fischer, 1974, 

1977, 1982, 1983). The linear logistic model with relaxed assumptions, which 

can be viewed as a special case of an LLTM is especially suited for measuring 

change. This model allows the characterization of individuals in a multi¬ 

dimensional latent space and the testing of hypotheses regarding the effects 

of different treatments (groups). 

Given the very small number of individuals and the large number of 

time-points the LLTM approach was not feasable in our study. 

The model we finally chose was a so-called bio-assay model. Though 

developed in the context of biological and psychological experiments, there 

is a close connection between bio-assay models and item response theory 

(Lord & Novick, 1968, p. 420). A fairly typical example of the kind of 

experiment for which bio-assay models are used is the following. There is an 

independent variable, the "stimulus level", which is controlled by the 

experimenter. Each experimental subject is assigned to a certain level of 

the variable and a binary response is observed. In bio-assay experiments the 

independent variable is usually the log-dose of some poison and methods to 

fit these models to the data have long been available. See, for example, 

Finney (1952,1978). Other references are the monograph by Ashton (1972) 

on (binary) logistic regression analysis applied to bio-assay data and 

a book by Cox (1970) which is entirely devoted to the analysis of binary 

data. Several (more advanced) text books on mathematical statistics devote 

some pages to the topic of binary regression (Cox and Hinkley, 1974; 

Andersen, 1980, chapter 8). 
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Although situations formally similar to bio-assay experiments may arise 

in many other fields, for example psychophysics (Bock and Jones, 1968), the 

bio-assay methods are seldom applied outside the bio-assay field. An 

example is the study by Micko (1969), also described by Andersen (1980), 

where the independent variable is the intensity of an acoustic stimulus and 

the response the action/non-action of one subject on a number of trials. 

To keep the notation as simple as possible we will at present ignore 

the fact that we have to formulate the model for a series of attainment 

curves, e.g. for several individuals and tests. 

For a certain non-specified individual and a certain non-specified test, 

the statistical model can be formulated as follows (Cox, 1970, chapter 2; 

Andersen, 1980, chapter 8). Assume we have a single regressor variable X, in 

our case the time, which takes m distinct values. At each level of X 

observations are obtained. And we denote by Y . the g-th observation at 
9D 

level i, where Y . denote the response on item g. Y . is a binary variable 
J gj 93 

taking values of one and zero only. 

E(Y .|X.) = P(Y . = llx.) 
g]1 d gn j 

Now 

variable 

, let n^ responses be observed at level j of the independent 

X, and let the number of correct answers be 

Y. 
3 

Y . 
i g:i 

Then, assuming that the Ygj's are independent given X_., it is easily seen 

that Y_. has a compound binomial distribution. This compound binomial 

distribution can be considered binomial with parameters (n^, Pj) > if one of 

the following sets of assumptions concerning the individual items of the 

test holds. First, it is obvious that the total number correct is binomially 

distributed if all items are of equal difficulty for the individual being 

tested. This is a rather stringent assumption, which is fortunately not 

necessary. 

Alternately, we may assume that we have well-defined domain of items 

from which the items given at time point X^ are sampled. At time X. the true 

proportion correct is equal to P_.. Then the observed number correct has a 

distribution which is binomial with parameter P. (Lord & Novick, 1968; 



101 

addition we assume that randomly parallel versions of the test are given at 

the different time points. 

For the actual form of the function, we have a number of commonly used 

options. One of the possibilities is the cumulative normal distribution 

Pj = O(a+0XJ (2) 

Analysis based on (2) is known in the literature as probit-analysis and 

has been thoroughly treated by Finney (1952, 1978). Another model 

originally suggested by Berkson in a series of papers, is the logistic 

model 

Pj = exp(a+Bx_.) / (l+exp (a+gx^) ) (3) 

Analysis based on (3) is called logit-analysis, based on the fact that 

we can, by applying the logit transformation, write model (3) as follows 

(4) 

monotonic increasing curve, provided that B is positive. The curve is 
symmetric around the value of X_. at which the probability of a success is 

*2, namely -a/B* The slope of the curve at this point is B/4 / so the numerical 

value of B measures the steepness. 
Although numerically models (2) and (3) agree closely, the logistic model has 

theoretical advantages which the normal model lacks. This is primarily 

due to the fact that model (3) belongs to the exponential family and thus 

sufficient statistics are available for the model parameters (Andersen, 1980; 

Cox, 1970). in general, maximum likelihood estimates for the logistic model 

parameters a and B may be obtained by solutions of 

(5) 

and 

(6) 
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As (5) and (6) do not have explicit solutions, numerical methods have to be 

employed. 

To indicate that we have a series of response curves instead of only one 

we introduce an extra index i, referring to the individuals. For a given 

test the probability of a correct answer to a randomly chosen item g at time 

point Xj for individual i is aiven by 

p = p(y = llx.) = exp(a.+B.x.) / (i+exp(a +8,x.)) . (7) 
i] iga 1 j ttl it] 

The total number of correct answers at time X. is denoted by Y^ . - 2y. . 

Using the estimation methods mentioned leads to estimates of the a's and B's 

and their asymptotic standard errors (Cox, 1970). 

To check the fit of the model, the simplest procedure is to find the 

fitted probabilities, , and from them the fitted number of correct items 

n P , and compare the fitted number of correct items with the observed 
j ij 

number correct, possibly by calculating standardised residuals. Another 

informative procedure is to compare likelihood ratio statistics achieved 

under different models obtained by imposing various restrictions on the 

parameters. A goodness of fit test for model (7) against the general model 

in which all P .'s are left free and are estimated by the observed 
tl 

proportions Y.,/n. is given by the following test statistic 

f m Z. = 21 T. Y. . 

1 lj=l ij 
(in Y. in n.P^) 

m 
E 

j = l 

(n .-Y. .) (In (n .-Y . .) 
D ID D ID 

In n. (1-P. .)) 1, O) 
D 1D J 

which is, if model (7) holds, asymptotically distributed as a chi-square 

with m-2 degrees of freedom (Anderson, 1980). An overall measure of fit is 

given by 

Z = J Z., where i = 1, , N , (9) 

i 

which is also asymptotically chi-square with degrees of freedom N(m-2) if 

model (7) holds for each individual. Various other hypotheses concerning 

the ai's and 6^'s can be tested with appropriate LR-tests. 



Table 1: Parameter estimates based on the model where all a's and B's 
are allowed to be different: test P, test Q, test R and test S. 

param. est. 

-7.4 

a2 -4.7 

a3 -5.1 

a, -1.0 
4 

a5 -3.2 

“6 "2-4 

Test P_ _ 

95% 

st.err, conf.int. est. 

1.07 (-9.5,-5.3) -6.6 

0.55 (-5.8,-3.6) -4.7 

0.59 (-6.3,-4.3) -5.6 

0.51 (-3.4,-1.4) -0.3 

0.53 (-5.6,-0.8) -2.7 

0.38 (-4.7,-0.1) -3.0 

Test Q_ 

95% 

st.err. conf.int. 

0.77 (-8.1,-5.1) 

0.92 (-6.5,-2.9) 

0.97 (-7.5,-3.7) 

0.84 (-2.0,+1.4) 

0.85 (-4.4,-1.0) 

0.85 (-4.3,-1.3) 

est ■ 

-4.1 

-5.1 

-4.6 

-1.4 

-4.3 

-3.6 

Test R_ 

95% 

st.err. conf.int. 

0.35 (-4.8,-3.4) 

0.48 (-6.0,-4.2) 

0.41 (-5.4,-3.8) 

0.22 (-1.8,-1.0) 

0.37 (-5.0,-3.6) 

0.32 (-4.2,-3.0) 

est. 

-3.1 

-1.6 

-2.5 

-1.8 

-2.1 

-2.2 

Test S_ 

95% 

st.err. conf.int. 

0.33 (-3.8,-2.5) 

0.23 (-2.1,-1.2) 

0.28 (-3.1,-2.0) 

0.70 (-3.2,-0.4) 

0.35 (-2.8,-1.4) 

0.30 (-2.8,-1.6) 

8. 0.50 0.071 

e2 0.29 0.032 

e3 0.30 0.033 

e4 0.26 0.052 

85 0.31 0.043 

B6 0.20 0.025 

(.36,.64) 0.35 

(.23,.35) 0.20 

(.24,.36) 0.23 

(.16,.36) 0.13 

(.22,.40) 0.19 

(.15,.25) 0.16 

0.040 (.27,.43) 

0.021 (.16,.24) 

0.024 (.18,.28) 

0.023 (.08,.18) 

0.022 (.15,.23) 

0.017 (.13,.20) 

0.15 0.013 

0.15 0.016 

0.14 0.014 

0.10 0.010 

0.18 0.014 

0.13 0.012 

(.12,.18) 

(.12,.18) 

(.11,.17) 

(.08,.12) 

(.15,.21) 

(.11,.15) 

0.23 0.02 

0.12 0.01 

0.18 0.02 

0.48 0.10 

0.24 0.03 

0.19 0.02 

(.14,.27) 

(.10,.14) 

(.14,.22) 

(.18,.68) 

(.18,.30) 

(.15,.23) 

LR-test z = 184.7 df = 188 z = 306.7 df =188 z = 257.6 df =188 z = 182.2 df = 188 

o 
CO 
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4. RESULTS 

Based on (7), we can define several "submodels" by systematically 

placing restrictions on the c^'s and f^'s. The first model we tried to fit 

is the case where all individual a^'s and B^'s are allowed to be different. 

Maximum likelihood estimates of the parameters, assymptotic standard errors 

and the value of the overall test statistic Z per test are given in Table 1. 

(The computer program GLIM (Baker and Nelder, 1978) was used for all 

computations.) As can be seen from Table 1 the model fits reasonable well 

for test P en test S. The fit is markedly less good in the cage of test Q 

(especially for the individuals 5 and 6). It is also clear that, although 

per test the parameter estimates differ across the individuals, the 

confidence intervals overlap considerably. 

To study the extent of the difference between the person parameters, 

several more restricted models were fitted. A summary of the various models 

is given in Table 2, and the results of the estimation procedures in terms 

of fit measures can be found in Table 3. The second model assumed different 

individual intercepts and equal slopes within groups. Individuals 1, 2 and 3 

are in the first, individuals 4, 5 and 6 in the second group. The grouping 

is based on teaching method. 

Table 2: A summary of the tested models. 

model _comment 

model I : Y. .. = a. + 8.X. 
ijk i i j 

model II : Y.= a. + 6, X. 
ijk i k j 

model III : Y. .. = a. + BX. 
ijk i J 

model IV : Yi;jk = “k + BkXj 

model V : Y.= a + BX. 
ijk j 

all parameters different. 

8 different for the groups, a's 
different across individuals. 

8 the same for all individuals, 
a different. 

a, 8 different across groups, 

all a’s and 8*s the same. 

i = 1, .., n j=l,..,m k = 1, 2 
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Table 3: Measures of fit for the models of table 2. 

test P 

model df 

test Q test R test S 

I 188n 

II 192 

III 193 

IV 196 

V 198 

184.7 

201.4: 

210.3 J 

264.4 

431.1 

16.7 

8.9 

306.7 

324.1^ 

342.8 

460.6 

654.1 

17.4 

18.7 

257.6 

280.8: 

282.4- 

400.4 

574.5 

23.2 

1.6 

182.2 

219.6, 

223.4 

343.7 

475.4 

37.4 

3.8 

* . 
significant difference (a=0.05) 

Model II as well as model III (which assumed all slopes to be equal) 

show a statistically significant decrease in fit compared to model I, but 

the decrease is relatively small. The models with equal intercepts within 

groups (model IV) or even over all individuals (model V) however, show a 

pronounced decrease of fit. This phenomenon holds for all four tests. We 

are inclined to accept model III as the "best" descriptive model. 

Note that we are reluctant to attach "exact" P-values to the observed 

likelihood-ratio statistics. This statistic is known to be distributed as 

chi-square only asymptotically and little is known about how good the 

approximation is for small sets of data. The interpretation of differences 

however, expressing the effect of adding terms to the model, seems less 

risky (Baker and Nelder, 1978). Another problem is that the null-hypotheses 

may be false, as in our study seems to be the case with test Q and test R. 

Also in that case, comparisons between the "best fitting logistic curves" 

for different models may still have some value. 

The results in Table 1 also indicate that the tests differ from each 

other in a consistent way. 

Another useful way to summarize the differences between the attainment 

curves is to estimate the so-called 50-percent pointy the time-point at 

which 50 percent of the items are answered correctly, for each individual 

and test. This point is a function of both the intercept and the slope of the 

curve (-a/6). The results are given in Table 4. 
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Table 4: The estimated points on the time-axis at which a performance 
level of 50 percent correct responses is reached. 

_tests_ 

individuals_P_g_R_§_ 

1 15 19 28 14 

group 12 17 23 34 13 

3 17 24 33 14 

4 4 2 15 4 

group 2 5 11 12 24 9 

6 12 19 27 12 

Treating the estimated 50-percent points as observations on a derived 

dependent variable, an analysis of variance may be carried out, with 'group' 

as a between-subjects and 'test' as a within-subjects factor. Table 5 

summarizes the results. Only the test effect was significant (alpha = 0.05). 

The group effect and the interaction between grouping and tests were not 

significant. 

Table 5: A summary of an Analysis of Variance performed on the data in 
table 4. 

Source SS df MS F P 

Between-subjects 
group 
subjects w groups 

Within-subjects 
test 
group by test 
test by subjects w group 

416.7 1 416.7 5.8 .07 
287.3 4 71.8 

908.8 
28.3 
45.3 

3 302.9 80.2 .00 
3 9.4 2.5 .11 

12 3.8 
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5. CONCLUSIONS 

As can be inferred from the tables in the foregoing sections, the 

logistic model fits the observations reasonably well. In other words, the 

regression of reading performance, measured in logits, on time is nearly 

linear. Measured on the original scale, the regression of test performance 

on time can be approximated by a symmetric S-shaped curve. This holds in 

varying degrees for all four different tests and all individuals. We may 

also conclude that the individual curves differ, but that is hardly 

surprising. Furthermore, the differences between individual curves seem to 

be more a question of intercept than of slope. Comparing the tests, we note 

that slopes and intercepts differ. Test R, for example, seems consistently 

harder than the others. This is manifested in the 50-percent points, which 

are reached relatively late in the observation period. The relatively small 

slope parameters imply a slower growth rate. 

A major advantage of the analysis chosen is that the individual curves 

can be characterized in a very simple manner by a limited number of parameters 

which are also easy to understand for persons without an extensive training 

in statistics. 

The interpretation of the foregoing is hampered, however by a number of 

theoretical and statistical/methodological problems. Worth mentioning at this 

stage is the difficulty concerning the meaning of the time variable. In fact 

this independent variable, which is of course not controlled by the 

investigator, incorporates all kinds of variables influencing reading 

performance in addition to teaching, such as parental influence and 

maturation. It seems likely that the reading program has influenced the 

shape of the attainment curves, but with extremely small groups such as those 

employed in the study, and the absence of random assingment of individuals to 

groups, interpretations in this direction cannot be based on the statistical 

analysis alone. 

Another problem is that it is difficult to infer anything about the 

extent of individual differences in a larger group. Having a reasonably large 

number of observations per individual one can assume that the individual 

curves are estimated rather precisely, but, because of the fact that the 

subjects were not chosen with a random selection procedure, it is virtually 

impossible to judge wether these pupils are typical for the group(s) they 

are chosen from or not. 
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Background information provided by their teachers indicated that the 

individuals were "ordinary" pupils with the exception of one who seemed 

brighter than this fellows. 

Last but not least, in the derivation of the estimatss and of the 

statistical tests, it was assumed that the item responses of an individual 

were conditionally independent. Although violations of this assumption do 

not affect the estimates of the parameters in a serious way, the estimated 

standard errors may be suspect. 

Although it is possible to deal with correlated errors, these methods 

are more complicated and demand a relatively large number of observations 

for reasonable results (Visser, 1982). Moreover the results are more 

difficult to understand. 
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