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The estimation of examiner effects in designs with 

overlapping examiner teams 

Da to N.M. de Gruijter 

Summa rv 

Examiners may differ in level and scale if they have to 

ty of papers. This fact is particularly troublesome 

different examinees are judged by different examiner 

paper the estimation of examiner effects is discussed 

designs in which teams have examiners in common. An i 

empirical data is provided. 

judge the quali- 

when papers of 

teams. In this 

for judgemental 

llustration with 

Introduction 

Sometimes papers of different examinees are judged by different teams of 

examiners. When in such a case examiners differ - they may, for example, 

differ in leniency - it matters to the examinees which team has judged 

their work. For that reason it seems useful to estimate examiner ef¬ 

fects. When some of the effects are large, one can 

- correct for them 

- have some of the answers rejudged 

- discuss and improve the instructions for examiners. 

Here the estimation of examiner effects will be discussed when the teams 

consist of two independently judging examiners. It is assumed that the 

teams overlap in a special way: the teams should be composed in such a 

way that they cannot be divided into subgroups of teams having no exami¬ 

ner in common. So, each examiner is directly or indirectly linked to 

each of the other examiners. An example of such an overlapping design 
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a ha lanced incomplete block design with four examiners and four 

teams - is given in Figure 1. 

examinees 

_Group 1 Group 2 Group 3 

1 xxx 

examiner 2 

3 

_4_xxx 

Figure 1. An overlapping design with four pairs 

pool of four examiners. 

xxx 

xxx xxx 

xxx 

Group 4 

xxx 

xxx_ 

of examiners f rom a 

In the general case there are n examiners, who are assigned to K differ¬ 

ent teams. In each team one of the examiners is arbitrarly chosen as the 

first team member. The judgemental design can be laid down in a matrix 

R(2xk) with typical element fhe number of the examiner to whom 

position i(i=l,2) in team k(k=l,... tK) has been assigned. For the design 

of Figure 1 this matrix could read 

R 

Two models are discussed, the additive model (model A) and the linear 

model under the assumption of random assignment of examinees to teams 

(model B). So, it is assumed that the observed judgments are not so 

extreme as to cause disturbing ceiling and floor effects. A nonlinear 

model will be discussed elsewhere. 

Model A 

Model A can be written as 

Xpi(k) ~ Tp(k) + °i(k) + epi(k)’ 

where is fhe judgment given by 

examinee p in group k (assigned to team 

examiner rto the script of 

k) t t^1e true score of the 
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script, 0./, . = 0. the effect of examiner 7-r., and e , a random 1 ' i(k) ] J ik pi(k) 
error. In order to obtain a unique solution for the 0’s in the additive 

ANOVA decomposition, the restriction that the sum of all effects equals 

zero, i.e. 

n 
2) 1 0 . = 0, 

j = l J 

is introduced. 

From Equation (1) one obtains 

3) dk X.Hfe) *-2(k) ~ ei(t) 02(k) + e.1(t)"e.2(k) 

where the dot indicates averaging over the examinees within group k. 

Least squares estimates of the 0's can be obtained from the minimization 

of 

4) 
= l=lNk(dk'eUk)*62(.k)) 

where is the number of examinees in group ky w.r.t. the 0's under 

restriction (2). 

Model B 

In this section it is assumed that the groups of examinees can be consi¬ 

dered as random samples from a population of examinees. In this popula¬ 

tion the examiners are characterized bv their means, u., true score va- 
2 ' J 

riances, j, and error variances, 0.. It is assumed that the joint 

population distribution of judgements for examiners \(k) and 2(k) of 

team k (k=\ y...,K) is a bivariate normal distribution, with variance-co¬ 

variance matrix 

ck = 
f0ll(k) 2(k) 

{a\2(k) a22(k) 

I^Uk^Uk) ^l(k)^2(k) 

P2(k)+<|,2(k)/ ' Pl(k)P2(k) 
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This model can he regarded as a submodel of L1SREL with structured means 

(Sdrbom, 1982). 

Using an iterative estimation procedure, one can obtain maximum likeli¬ 

hood estimates of the p's, p's and (J>'s by the maximization w.r.t. the 

parameters of the log likelihood 

6) log i=-!ijpfci|ofc|ckl+l022(jt)s1)(t)-2o12(t)s12lt)+an(k) s22 (*.)) / lCfcC 

where 

sij (k)~ s ij (k)* ix.i(kr'Ji(k)nx.j(kf'1j<k)) {i‘j =1’2) 

with observed variances and S22(k)' an^ observed covariances 

S\2(k) Joreskog, 1970, p. 240). This can be achieved by maximizing 

log L w.r.t. all , P-j(A:) an<^ ^i(k) un^er t^ie constraint that p's, 

P's and (J)'s corresponding to the same examiner are equal. The model may, 

however, not be identified without further restrictions on the para¬ 

meters; this is, for example, the case in the design of Figure 2. 

Using further equality constraints, one can define various submodels 

P for all j 

P 
(J) for all j 

p 
0 for all j. 

P 

without restrictions is the model of congeneric measurements, 

model I is the model of essentially T-equivalent measurements and model 

111 is the model of parallel measurements. 

Instead of maximizing log L, one can minimize the function 

7) F 2log L-JlNk{lo&(sU(k)s22(k)~S\2(k)^+2}' 

where the second part comes from the minimum of the likelihood without 

any constraints within and between groups (cf. Joreskog, 1970, equation 

9). The minimum of F is asymptotically chi-squared distributed under the 

model assumptions, with degrees of freedom 5/C-m, m being the number of 

like: 

1 e2 = 
n. Pj. = 

Ill. B . = 
J 

= 

The model 
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free model parameters. So, it is possible to obtain an indication of the 

adequacy of a model. 

An empirical example 

The estimation procedure can be illustrated with the help of data from 

an examination for a freshmen course in Internal Medicine. Part of this 

examination was open-ended and judged by a group of ten examiners accor¬ 

ding to the design in Tabel 1. Examinees were randomly assigned to 

groups. It was decided to analyze the data from a subset of questions 

with a total score range from 0 to 30 and a subgroup of 153 examinees 

who answered at least five of the six questions. 

Table 1. Team composition and numbers of examinees 

group 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

examiners 

1,2 

2.3 

3.4 

4.5 

5.6 

6.7 

7.8 

8.9 

9.10 

10,1 

number of examinees 

17 

12 

14 

16 

16 

16 

15 

17 

16 

14 

The means, variances and covariances are given in Table 2. 

The author wishes to thank the staff of Internal Medicine of Leyden 

University, especially Dr. H.J.M. van Rossum, for making the data 

available and E.A. Bakker for his assistance with the data analysis. 
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Tahir 2. Statistics for the subgroups or teams 

group x j x 
Sn S22 S12 

1 10.500 10.559 

2 11.107 9.417 

3 7.393 10.143 

4 11.250 10.750 

5 9.375 10.375 

6 9.437 9.063 

7 10.200. 11.133 

8 11.029 10.176 

9 8.831 9.187 

H)_9.750_9.964 

Index 1 relates to the first 

to the second examiner 

8.735 5.879 6.441 

8.681 9.785 7.618 

10.006 8.980 8.194 

8.312 13.812 9.156 

19.703 8.484 11.766 

9.246 11.809 8.973 

12.293 12.216 11.140 

8.896 7.322 7.715 

10.371 13.246 11.207 

3.312 3.767 1.991 

examiner according to Table 1, index 2 

First, a model A analysis was performed. The resulting 0's are given in 

Table 3. 

Table 3. Estimates of 0 for two models 

examiner 0(A) 0(B;with 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.1 

0.0 

-2.0 

0.5 

-0.2 

0.7 

0.1 

0.9 

-0. 1 

0.1 

0.2 

0.2 

-1.8 

0.6 

-0.1 

0.5 

-0.1 

0.8 

-0.3 

0.0 

prior) 

Next, several model B analyses were done. An analysis with equal P’s and 
2 

(J)’s resulted in a significant chi-square (x =62.64, df=38). An analysis 
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in which only the 0’s were allowed to vary, resulted in a satisfactory 

fit (\ =28.12, df=29). The results were unsatisfactory tor another 

reason, however: some of the (jj's were equal to zero, the lower ho mid 

which the computer program imposed on the error variances. This result 

probably is due to the small sample sizes involved (see also Boomsma 

1983). Therefore the model B analysis was repeated with a common prior 

for the 0's. A normal prior with mean and variance 0^ was introduced 

for the Yj=log 0^. A uniform prior was chosen for and a nearly non¬ 

informat ive x2(A,v) prior for 0^ with A=0.1 and V=0 (Paul, 1981). For 

this specification the 0's strongly regressed to a common value: the 

estimates ranged from 1.06 to 1.31. Estimates 0.=pyp. are given in 

Table 3. 

The results of the analyses, presented in Table 3, are quite similar. 

This is not amazing since both analyses are based on the additive model, 

the second analysis differing from the first in that random sampling of 

examinees is assumed and differences between error variances explicitly 

are dealt with. The results in Table 3 indicate that one of the exami¬ 

ners, examiner 3, is severe in comparison to the other examiners. 

Discussion 

In this paper two approaches to the estimation of examiner effects for 

overlapping designs have been discussed: a quick and dirty approach for 

the additive model and a more sophisticated approach for a more general 

class of models. The latter approach seems not without problems when 

sample sizes are small, unless prior information is used. Here, only a 

common prior for the error variances has been used, but prior informat¬ 

ion on other parameters could be added in a way similar to the approach 

of Paul (1981) for a crossed design. 

The results of analyses like the above could be very useful in a dis¬ 

cussion of examiner instructions. In that case a simple estimate of 

examiner effects for all questions should be available, when more than 

one question is involved. The model A approach seems promising in that 

respect. 
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