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COMPUTING THE SECOND-ORDER DERIVATIVES OF THE 

SYMMETRIC FUNCTIONS IN THE RASCH MODEL 

Paul C.W. Jansen 

Abstract 

When applying conditional maximum likelihood procedures to estimate 

the item parameters of the Rasch model, computation of the so-called basic 

symmetric functions is necessary. This paper demonstrates that the second- 

order derivatives of the symmetric functions, computation of which is re¬ 

quired for various purposes, can be rewritten as a simple function of the 

basic symmetric functions, of the first-order derivatives of the basic 

symmetric functions, and of the item parameters. As a consequence, the 

rather tedious explicit computation of the second-order derivatives of 

the symmetric functions may be avoided in practical applications of the 

Rasch model. 

Additionally, the investigation requires the computation of a number of 

formulas which are of relevance for theoretical studies of the Rasch 

model. 

* 
Afdeling Research 

Rijks Fsychologische Dienst 

P.0. Box 20013 

2500 EA The Hague 

The Netherlands 

Tel: 070 - 514001 tst. 111 



132 

1.1. /V.. . rr,cJ.c! 

Suppose N subjects respond to K dichotomous items. The probability of 

subject v responding positively to item i may be represented by the parame¬ 

tric probability function 

P(+|v,i) 
e e 
v 

I P £. 
V 1 

(I) 

which is known as the y?iocL&l . Since (1) monotonically increasing in 

9, 0^ may be conceived as representing the 'ability* of subject v in the 

context of intelligence items e.g., and correspondingly stands for the 

'easiness' of item i. Since may be simply defined as the inverse 1/0W 

of the ability of a subject w for whom p(+|w,i)=£, item response model (1) 

assumes one latent trait underlying the observed responses, viz. the 0- 

dimension. Mostly, the item parameters are subject to the norming restraint 

H e.=l; we will assume this to be the case in the sequel. 
i= 1 1 

For an extensive introduction to latent trait theory the reader is 

referred to Molenaar (1982), who presents an overview of various unidimen¬ 

sional latent trait models, including the Rasch model. 

Denoting the response of subject v to item i by the binary indicator 

variable a . (a .=1,0), the likelihood of a single response a . in the Rasch 

model (1) is 

p(a .If) , e .) = 
vi1 v ’ 1 

1 

1 + exp(£ -o . ) 

exp(-o.*a .) * exp(^ *a .), (2) 
r i vi 1 v vi 

where £ =ln(0 ) and o.=-ln(e.). Formula (2) shows that p(a .10 ,e.) is a 
v v i i vi v i 

member of the one-parameter exponential family when the likelihood is 

considered as a function of either 0 or e. only. Therefore, la .=:a _ is 
v i y * i vi vO 

a sufficient statistic for 0^, and ^av^=:aoi a sufficient statistic for 

c. (Mood, Graybill & Boes, 197A, 326). 

The property of sufficiency makes it possible to use the procedure of 

conditional maximum likelihood estimation (CML) in the Rasch model. Essen¬ 

tially, in the CML the number of parameters is reduced by conditioning the 
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likelihood of the data on the sufficient statistics for the parameters to 

be eliminated. For instance, when the aim is to estimate the item para¬ 

meters the unknown 0 may be 'conditioned away' by replacing it by 

the observable a^^. Since the statistic a^ is sufficient for the parame¬ 

ter 6v, no relevant information is lost in the CML approach to estimation. 

To estimate the e=:(ej,...,e^,...) the unconditional likelihood 

L(ivl0V’O of the data vector av=:(avl.av.,...,avK) of a subject v and 

the conditional likelihood L(a^v| a^^,£) of this data vector are equally use¬ 

ful. 

Conditional estimation has both statistical and measurement-theoret- 

ical advantages. Statistical advantages are consistency of the estimators 

(Andersen, 1973b), and the existence of model tests with known and desirable 

properties (Andersen, 1973a; Van den Wollenberg, 1979, 1982a,b; Gustafsson, 

1980b). The measurement-theoretical advantage of the Rasch model was 

labelled 'specific objectivity' by Rasch (1966, 1977); for a description 

the reader is referred to Molenaar (1982, 17-18) in the present journal. 

In the remainder of this study the focus will be on the estimation of 

the item parameters e., given the sufficient statistics a _ for the subiect 
i vO 

parameters 0v. To simplify notation, a^ will be written as rv in the sequel 

rv represents the number of items responded to positively by subject v. In 

this case the estimation equation for the is obtained by equating the 

sufficient statistics for to their conditional expectations: 

a0i ® E(A0i|rv’l) (i=1.K)> (3) 

which is a general property of exponential distributions (Fischer, 1974, 

236; Andersen, 1980a,b). 

Equation (3) can be rewritten as 

N N 

an. = ^E(A.|r,e) = Ytt 
Oi ^ vi1 v — r i 

v=l v= 1 
(i=1,.. . ,K) . (4) 

Because of sufficiency, the conditional probability tt . only depends on 
. rv1 

the subject v through the raw score r^. The probability is the same for all 

subjects having this marginal total. Therefore, the index v may be dropped 

and the conditional probability may be v/ritten as in the sequel. The 

unconditional probability (i.e. (1)) will be written as ^ . below. Thus 
vi 
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r 
v 

i r i 
Prob(+|av0=r,i), (5) 

=: Prob(+jv,i). (6) 

Although this notation may become ambiguous when numbers are substituted 

for letters, it seems to be standard in the literature on the Rasch model 

since Fischer (1974, 236, 238) (cf. e.g. Van den Wollenberg, 1979, 34, 73). 

Of course, in theoretical studies such as these, it is unambiguous. 

1.2. The symmetric functions 

The conditional probability is defined as the ratio of 

p(A^1,rI 0^,£) to p(r|6v,£) as (5) shows. Performing this division, even¬ 

tually the following expression is found (cf. Fischer, 1974, 221-232) 

7T 
r i 

(i) 

(7) 

so that the estimation equations (4) become 

a 
Oi 

K 

l 
r= 1 

£ 

(i 
r- 

(i=1,...,K). (8) 

Eq. (7) formulates the regression of item score A . on test score r, 
vi 

i.e. the item-test regression. The factor in (7) is the elementary sym¬ 

metric function of order r in the parameters e^,...,^. The function y^ is 

defined as 

Yr= 1. ne.* 
(r) i 1 

(9) 

K 
in which £ means that summation is over all (^) possible ways of obtain¬ 

ing the raw^score r in a K-item test. From definition (9) 
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0 0 0 10 0 
I ■ t|e2,"tK + L 1 e2C3 * ’ ’ lK 

0 
e. 

0 

Vl 
e 

1 

K 

€ 
1 e2 ((^) terms), 

110 10 10 
:l£2e:3C4- 

,0 0 
L1 £2 * 

1 

£K-1 
E 

1 

K 

12 13 K-l K ((^l terms). 

((kK) terms). 

Finally, Yq is defined to be equal to 1. 

The symmetric function of order r-1 , is defined analogously to 

the r-th order symmetric function (9), except that y^j does not contain 

the item parameter 

Estimation of the occurs by solving (8) iteratively. The greatest 

problem in solving these equations lies in the computation of the symmetric 

functions in every iteration. Fischer (1974) presents some recursive 

formulas that lighten the burden of computing all the symmetric functions 

in every iteration: 

Y_ = e.y (i) (i) 
i r-1 (10) 

ry 
r 

K 

l 
(i) 
r-1 

From (10) it is easily obtained that 

(11) 

(i) 
r-1 

(i) ) Y 
(i) 
r-1 ’ (12) 
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which reveals that is the first-order derivative of with respect 

to e^. In this study, the focus will be on the second-order derivative of 

■r with respect to and . 

Still, the computational problems are heavy. Recently, Gustafsson 

(1980a) devised an algorithm that seems to be both fast and accurate for 

rather large K. However, in addition to the computation of and » 

application of the test statistics of Van den Wollenberg (1979, 1982a,b) 

and of Martin-Lof (described by Gustafsson, 1980b) requires the computa¬ 

tion of the binary conditional probability , which represents the 

probability that a subject with raw score r will respond positively to 

both items i and j (i^j; this will be assumed throughout this study: i 

and j are different items). Since tt .=Prob(A . = 1 I r) >Prob (A . = lia . = l,r) 

it follows that 

71 . . < TT . 71 . . 
nj - n rj (13) 

In the Rasch model, is given by (cf. Fischer, 1974, 237) 

/i.j) 
r-2 

it . . - e.c 
riJ 1 J Y, 

(14) 

The function ^e^inec^ analogously to • Applying (12) recurs¬ 

ively, i.e. on ^r-i» it follows that 

,(i> = JiJ) 
dc. r-1 'r-2 

which reveals to be the second-order derivative of y to e:. and c.. 
r-2 r i j 

As these second derivatives are contained in the Fisher -information matrix 

(Fischer, 1974, 235f) , computation of Y^^^ is also necessary to determine 

the Fisher -information matrix and subsequently the (co-)variances of the 

conditional estimators. In the same way, determination of y^^^ is 

necessary if the Hessian is to be computed, e.g. if Newton-Raphson algo¬ 

rithms are to be employed in solving (8). 

Again, computing ^^2^ from estimates of the K item parameters is 

not easily done, as may be illustrated by the following quotations from 

Gustafsson (1980b): 

"The greatest problem in solving the equations, which must 
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be done iteratively, lies in efficiently and accurately 
computing the v and their first derivatives with respect 
to each of the items (>£±1) and sometimes also their second 
ordeT-.derivatives with respect to the items two at a time 

(o.c., 211), and 

"When K is large, the test is quite tedious to compute 
since it requires the computation of K-l matrix inversions 
as well as the second derivatives of the symmetric functions", 

(o.c., 213). 

In the next section, assuming c.^c., tt .. will be rewritten as a 
i J rij 

simple function of and tt^ . using an analogue of the recursive relation 

(10). To my knowledge, this simplified formula, which may, in circumstances, 

save the explicit computation of the ^-2^’ n0t 6enera^^y ^nowni Gus- 

tafsson (1982) has confirmed this. In section 3 a method is studied for 

computing when e^:=Gj • 

2. A simple formula for the case e . z j 

2.1. Derzvatzon 

Applying (10) to and Y^-i ’ it follows that 

Y(0 = (i,j) + (i.j) 
'r-1 yr-2 'r-1 ’ 

(15) 

and 

(j) _ E (i.j) + Y(i.j). 
Yr-1 i'r-2 'r-1 

(16) 

Subtracting (16) from (15): 

E.-e )Y(i-j) = Y(i) - Y(i) 
j i;Yr-2 'r-1 Yr-1’ 

(17) 

which if e./e. can be rewritten as 
i J 

y(i.j) 
Yr-2 

f(i) _ Y(J) 
'r-1 'r-1 

e . - e . 
J i 

(18) 

Formula (18) shows that the second-order derivatives of the symmetric func¬ 

tions can be written as a simple function of the first-order derivatives 
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and the respective parameters if 

Substituting (18) for 

.*• .. 
i J 
in (14), it is found that 

n . . 
nj 

e . c . 
i J 

y 
(j) 
r-1 

( j 'i1' r 

(apply (7)) 

e . 
J 

7T . 
r i 

e. 
J 

E . 71 . 
i rj 

(19) 

Equation (19) shows that 

as a simple function of 

order probabilities 

the second-order probability _ may be obtained 

the item parameters e. and e. and of the first 
1 J 

and 7Tr j • As in the conditional approach 

\_ 

N I 
r= 1 

n tt . 
r n 

(20) 

(n^: number of subjects in score group r), equation (19) 

zed to th 

approach: 

zed to the item probabilities and tt_ as expected 

may be generali- 

in the conditional 

71 . . 
1J 

e. tt . 
J 1 

E . 
J 

E . TT . 

■ -1. 1 . 

£ . 
(21) 

Equations (19) and (20) also hold for the unconditional case, as is 

easily shown. Since in the latter approach tt . .=7r .tt . because of the 
vij vi vj 

assumption of local stochastic independence (which is basic to latent 

trait models, cf. Molenaar, 1982, 7-8), it can be derived that 

TT . . = TT . TT . 
VIJ VI VJ 

(apply (1)) 
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L* c . t . 
V 1 V j 

1 +•■ c . 1 +0 e . 
vi v j 

6 £ .£ . 
V 

(t.-E.)(i+e i.) 
J 1 VI 

V ^ J 
(e.-e.)(1+6 e.) 

j i v j 

£ . TT . - £ . TI . 
J VI_1 V j 

£ . - £ . 
J 1 

(22) 

However, since the CIIL estimation procedure has a number of important 

advantages as explained in section 1.1, concentration will almost in¬ 

variably be on the formulas (18)-(21) in the sequel. 

2.2. Discussion 

As was indicated in section 1.2, formulas (18)-(21) could not be 

found in the literature on the Rasch model. A formula that resembles (21) 

is the following equivalent of Fischer's equation (13.3.6) (Fischer, 1974, 

217) 

i . 
J 

IT . “TT 
1 

TT . -TT 
J 

ii 

ij 
(23) 

which, in fact, motivated the present study. It seems that Fischer did not 

realize the implications of (23), which is equivalent to (21), with respect 

to a drastic simplification of the symmetric functions. 

In the remainder of this section, it is discussed whether and how (19) 

and (21) may be used for actually computing TIr£j • 

Because of the conditional estimation equation (3), tL will always 

be equal to the observed a^^/N=:p^ when estimating the item parameters of 

the Rasch model. To apply (21) therefore, tt^ and tt^ may be replaced by their 

respective observed counterparts and £^ and by their estimated values. 

Computation of (19) is a bit more tedious since tt . and tt . will have 
ri rj 

to be estimated from the parameters estimates (i=l,...,K) by means of 

(7). In general, tt^ will be unequal to the observed Pr^; in fact, the 

Qj test statistic of Van den Wollenberg (1979, 1982b) is based on the com¬ 

parison of observed p^ to expected 

However, in the case of the test statistic of Van den Wollenberg 

(o.c.) computation becomes relatively simple. Since in this procedure the 

item parameters are reestimated for every subject group r (i.e. £^ is 
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estimated instead of cj, the analogue of (3) applies with pri instead 

of p. and c . instead of e.. In such a case, n . is of necessity equal 
ri n i ri 

to Pr • > and (19) can be computed from the observed Pr^» Prj anc^ esti¬ 

mated c e .. Thus, application of (19) is pre-eminently feasible in the 
n rj 

computation of the test statistic. 

To illustrate the discussion, two examples of applying (19) are pres¬ 

ented. Below, n^ denotes the number of subjects in score group r and n^ 

the number of positive responses to item i in score group r; i=l,2,3 in 

the examples. Note that it does not matter whether the 3 items comply with 

the Rasch model, since (18)-(21) only function as computational 'shortcuts 

Furthermore, in the comparisons below the algorithm for explicitly com¬ 

puting >^2^ assumec* to be perfectly accurate (which might not always 

be realistic). 

First example 

Suppose r=5, n =23, n ,=4, n =20, n =22. Then p =4/23= .1739, 
*K ' r r1 r2 r3 r1 

p = .8696, p = .9565. Conditional maximum likelihood estimation in this 
*r2 rr3 
score group yielded erj=: *0342, £r2= *3395, £^=1.0517. Using explicit 

computation of the symmetric functions, i.e. applying (14), the following 

expected probabilities were found: ^rj2= *0961, j3= *1477, ^r23= *8284. 

Application of (19) yields: ^r|2= *0960, ^rj3= *1476, ^r23= *8282. Dif¬ 

ferences between the two kinds of estimates are negligible. 

Second example 

In this example Pr|~Pr2‘ Suppose r=2,3,4 i.e. the combination of the 

score groups 2,3 and 4. Furthermore suppose 0^=590, and Prj= .0814, 

p = .0915, p = .1644. Estimation yielded ? = .5774, e = .6546, 
*r2 Kr3 rl r2 
£r3=1.2473, TTr, 2= .0053, ^rl3= *0098, ^r23= .0110. Applying (19) it is 

found that tt = .0059, ti , = .0099, tt _0= .0110. Although for the item 
rl2 r!3 r23 

pair (1,2) the differences are somewhat larger than in the first example, 

they again appear at the fourth decimal place. 

Thus, in these two examples tt . . can be computed by means of (19). 

However, whether in all cases (c./e.) tt .. can be reliably computed by 
1 J riJ 

means of (19) is a question that only be answered both by empirical and 

theoretical error studies. 

For instance, it may be expected that, as and are measured on 

an exponential scale, even very small differences between and will 

in general, result in a difference (e^-eO that is large enough for the 

quotient (19) to be stably computable. On the other hand, suppose the com¬ 

puted values of tt . and tt . have additive errors of A . and A . respect- 
n rj n rj 
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ively, and especially assume ^r£=“^rj (this situation was suggested by 

Charles Lewis). Substituting these in (19) gives 

t . (n . +A .) - t . (71 ..) e.n . - e.ir . e.+e. 
J ri rl-- rJ rl- = J ri-+ A . ( J ^ . 

r1 c. 
t . - e. E.-e. 11 
J 1 J 1 

l_J 

Even assuming the division can be carried out with unlimited precision, the 

error term E may be many times larger than when and e. are large 

relative to their difference. So in this case as computed by (19) 

from rf . and ti . may be radically different from tt ... 
r1 rj ^ nj 

It should be remarked, however, that it is unclear how the explicit 

’traditional’ computation of ^j performs in this specific situation. In 

general, a study of the computational merits of (19) should in all cases 

be a comparative study of (19) to the traditional, explicit computation 

procedure. 

3. The case e .-e . 
^ J 

When e^=£j, the quotient (18) is not defined. This section is devoted 

to this case. In section 3.1 both for the unconditional and the condit¬ 

ional cases formulas are presented by means of which the binary proba¬ 

bilities tt .. and it .. are rewritten as functions of the corresponding 
vij nj 

probabilities or 7Tr£» and the item parameters. It appears however 

that these formulas are not suited for practical applications. Therefore, 

concentrating on the conditional case exclusively, in the next section 

an algorithm is presented by means of which ^ _ might be computed when 

e.=e.. Note that this extensive treatment of the case e.=e. is of prac- 
1 J 1 J 

tical importance since in applications the estimates e^ and are equal 

when a-^a^., a_. being sufficient for r.. in the Rasch model. 
Oi Oj Oi 0 1 

3.1. Formulas 

3.1.1. The unconditional case 

When e. = e., it . . is given by the limit 
1 j vij b J 

Lim tt 
vij 

(24) 

£ .->-£ . 
1 J 

In the Rasch model, this limit is equal to (substituting (22) in (24)) 
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Lin 
c . n . - t • ’r . 
J VI 1 VJ 

e . - e. 
VEj J 1 

(25) 

Applying I’Hopital's limit rule and assuming to be independent of 

i.e. assuming an unconditional approach, (25) can be rewritten as 

Lira 

e 
i J 

-r—(e.Ti . 
j vi e.Ti .) 

i vj 

e.) 
i 

TT . 
VJ 

e . tt ' . , 
J VI 

(26) 

in which 

9e. vi 
i 

(27) 

Since in the unconditional case tt'.stt'. when c. = e., (26) can be reformu- 
vi vj i j 

lated as 

n . - e . tt 
VJ J VJ 

(28) 

Formula (28) represents a formulation of the binary tt^^ into a function 

of first-order probabilities and of the item parameters. It is not of 

much practical importance, since tt . , = tt . tt . in the unconditional app- 
vij vi vj 

roach. It is easily proved that for the total group of N subjects the 

analogue of (26) holds: 

Lira tt . . = tt . - e . tt ! . (29) 
ij J J J 

£ . . 

1 J 

Since tt^ as defined in (20) is a monotonically increasing function 

of e., (29) implies that tt..<tt. (e.-e.), as it of course should be. We 
i ij i i j 

shall not bother about the computation of (29) in practice, since it is 

only the conditional approach to estimation in the Rasch model that yields 

the advantages discussed in section 1.1. Still, (29) may be of use in 

theoretical studies; for an example we refer to Jansen (1983, ch.3). 

3.1.2. The conditional case 

Since in the conditional approach tt^ depends on tk as (7) shows, it 
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is not possible to transfer the unconditional result (28) to this sit¬ 

uation. The derivative of ^ . to c. is equal to (using (7) and (12)) 
rj i 

2_ 
TT . 
rj 

y (j) r-1 

y r 

€ . 
J 

(i,j) 
r-2 

y 
2 

r 

y 
(j) (i) 
r-lYr-] 

/i.j) 
Yr-2 

(i) (j) 

TT . . - 7T . 7T . 
nj ri rj (30) 

which implies 

TT . . = TT . TT . + e -TT . . 
rij n rj 19c. rj 

(31) 

When e^=Ej, (31) can be rewritten as 

2 9 , . 
tt . . = tt . + e .^r— it . (e. = e.). 
rij rj j3e. rj i j 

(32) 

Note that (31) implies (using (13)) 

3_ 
9e . rj 

< 0. (33) 

Inequality (33) implies that tt^ is a monotonically decreasing function 

of e^, which agrees with intuition: The probability that a subject with 

score r (r fixed) will respond positively to item j will get smaller when 

some other item i in the test gets easier. For, the same raw score indi¬ 

cates a higher ability when i is difficult than when i is easy. 

When —— tt . is small over a whole range of values of e., tt . is 
9e. rj ° i rj 
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relatively flat when considered as a function of :and increases or 
y i 

decreases in will not affect very much. Thus, the actual range 

of values of the derivative of . to over an acceptable range of 

values for may be considered as indicating the dependence of 

on item i. Locally, —tt . indicates to what extent tt . is affected 
3c. rj rj 

by small shifts of e^. thus, generally, the derivative of with 

respect to indicates the dependency of on another item i. 

Also, from (30) 

e. 3c. ri 
-± = _J_ 
c. 3 
J 3F7 "rj 

(34) 

which gives some insight into the interpretation of the 'easiness'-scale 

on which the Rasch model parameters c^ are measured. As was seen above, 

tt ~ tt . indicates the dependency of tt . on the presence of another item 
d e ^ r j r j 
i. Therefore, when c.<e. in (34) item i affects tt . more than item i 

i j rj J 
affects tt .. 

r i 
Eq. (32) is not of much use for the computation of tt . . (e.=e.) in 

riJ 1 J 
practical applications. Therefore in the next section an algorithm will 

be studied for computing (e£=£j) which avoids the computation of 

the second-order derivatives of the symmetric functions and which seems 

practically feasible. 

3.2. An algorithm for the conditional case 

The algorithm to be discussed below presupposes that (19) works 

acceptably well when In such a case, it may be possible to compute 

an estimate tt . . of tt . . when e. = e. by raising £. somewhat and lowering 
rij nj i J 7 6 J 

£■ ^ somewhat, and by subsequently applying (19). Below, an algorithm is 

discussed in which e. is replaced by Ae. and e. by e./A (A>1). It will 
J J i i 

be demonstrated that this procedure yields theoretically exact values 

of tt 
nj • 

Suppose replaced by £%:e./A and e. by e*=:Ae. (A>1). Since 
ii J J J 

* * 
L . £ . 
1 J 

K 
n e 

h= 1 
h^i, j 

K 
= n £ 

h= 1 
1 , 
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the parameters (h=l,...,K; h^i,j) may remain unchanged: renorming 

is not necessary. Now the relation between tt*.. and tt . . is given by 
nj nj b J 

(using (14)) 

n . . = t; . e . 
nj i J 

y(ij) 
Yr-2 

* * 
e . e . 
i J 

/ij) 
r-2 

* 
TT . . . 
nj 

(35) 

All terms at the right side of (35) can be computed without using 

second-order derivatives of symmetric functions. The basic symmetric 

function can be readily computed; in fact, its value will be known 

from the phase of estimating the original item parameters by means 

of (8). The tt* . . follows from e* e*, tt* . , and Tt*. by means of (19). 
rii iiri ri 

. . . J J J 
This implies that tt . and tt . have to be computed, which is possible by 

application of (7). Using (7) to compute tt . and tt . from e. and e. , 
* ri rj i j’ 

and (h=l,...,K; h^i,j) implies that y^ will be computed. Thus, all 

terms at the right side of (35) can be computed from zero-order or 

first-order derivatives of the symmetric functions. 

In the same way y (i,j) 
r-2 

can be computed (using (18)) 

(i,j) = *(i,j) 

'r-2 yr-2 

*(i) _ *(j) 
'r-1 'r-I 

*(i) *(j) 

yr-l ' Vl 

e./A 

*(i) _ *(j) 
'r-1 Yr-1 

A2-. 
(36) 
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*(i) . *(j) 
Vl and Yr-1 

Formulas (35) and (36) can be applied in situations in which 

Use of these formulas requires the computation of y*, and y , 
^ 1 r-1 r-1 r r 

i.e. of y , Y » and of first-order derivatives of y • 
r r r 

When A is chosen in an appropriate way, computation of the quotient 

Y*/Yr in (35) may even not be necessary because the quotient approximates 

1 to a satisfactory degree. In the 1983 version of the computer program 

RADI (Raaijmakers & Van den Wollenberg, 1979) the term Y*/Yr is neglected 

in (35); it appeared that by setting A to 1.01 n*_ was acceptably close 

to tt . . for practical purposes (Van den Wollenberg, 1983). 

Note however that the actual computation of and Yr cannot be 

avoided: of Yr because of the necessity of solving the estimation equat¬ 

ion (8), and of y because of the necessity of computing tt* . and tt * 
r ^ y r ° n rj 

(in order to compute tt . . by means of (19)). That being the case, one 
^ ^ jfc 

may as well compute the quotient Yr/Yr and consequently compute an estim¬ 

ate of TIr£j by means of (35) that is, theoretically, exact. 

4. Conclusion 

The derivations of (18) and (19) in section 2.1 and of (35) and (36) 

in section 3.2 demonstrate that, at least in theory, it may be possible 

to compute tt .. according to the Rasch model, both for the cases e./e. 
nj i j 

and and at the same time avoid the explicit computation of the 

second-order derivatives of the symmetric functions. This is of import¬ 

ance since the computation of these second-order derivatives is tedious 

and time-consuming. Still, the only empirical corroboration of the pract¬ 

ical use of (19) is Van den Wollenberg (1983). Hopefully, this study 

will stimulate other researchers, either to develop other formulas that 

might suggest computational simplifications of the symmetric functions, 

or to test the practical relevance of (19), e.g. by means of simulation 

studies. 

Besides their possible practical use, the various formulas presented 

in this paper may be of relevance to theoretical studies of the Rasch model. 

For instance, as far as the present author knows formulas (18),(19),(21) and 

(30)-(36) have not been derived before in the published literature on con¬ 

ditional estimation in the Rasch model. Still, more work should and may, 

be done in this domain. 



147 
References 

Andersen, E.B. A goodness of fit test for the Rasch model. Fsyehometrika, 

1973, 35, 123-140. (a) 

Andersen, E.B. Conditional inference and models for measuring. Copenhagen: 

Mental-Hygiejnisk Forlag, 1973. (b) 

Andersen, E.B. Discrete statistical models with social science applicat¬ 

ions . Amsterdam: North-Holland, 1980. (a) 

Andersen, E.B. Latent structure analysis. Invited paper to European Meet¬ 

ing of the Psychometric Society, Groningen, June, 1980. (b) 

Fischer, G.H. Einfuhrung in die Thecrie psychologischers Tests. Bern: 

Huber, 1974. 

Gustafsson, J.-E. A solution of the conditional estimation problem for 

long tests in the Rasch model for dichotomous items. Educational and 

Psychological Measurement, 1980, 40, 377-385. (a) 

Gustafsson, J.-E. Testing and obtaining fit of data to the Rasch model. 

British Journal of Mathematical and Statistical Psychology, 1980, 

33, 205-233. (b) 

Gustafsson, J.-E. Personal communication, 1982. 

Jansen, P.G.W. Rasch analysis of attitudinal data (doct. diss.). The Hague: 

Rijks Psychologische Dienst, 1983. 

Molenaar, I.W. Mensen die het beter meten. Een inleiding tot de latente 

trek modellen. Kwantitatieve Methoden, 1982, 5, 3-29. 

Mood, A.M., Graybill, F.A., & Boes, D.C. Introduction to the theory of stat¬ 

istics (3rd ed.). Tokyo: McGraw-Hill, 1974. 

Raaijmakers, M.H., & Wollenberg, A.L., van den. RADI: Program for the 

dichotomous Rasch model. Program Bulletin. Nijmegen: The University 

of Nijmegen, 1979. 

Rasch, G. An informal report on a theory of objectivity in comparisons. 

Proceedings of the NUFFIC international summer session in science 

at "Het Oude Hof", The Hague, 14-28 July, 1966. 

Rasch, G. On specific objectivity: An attempt at formalizing the request 

for generality and validity of scientific statements. Danish Year¬ 

book of Philosophy, 1977, 14, 58-94. 

Wollenberg, A.L., van den. The Rasch model and time limit tests (doct. 

diss.). Nijmegen: Studentenpers, 1979. 

Wollenberg, A.L., van den. On the applicability of the test for the 

Rasch model. Kwantitatieve Methoden, 1982, 3, 30-55. (a) 

Wollenberg, A.L., van den. Two new test statistics for the Rasch model. 

Psychometrika, 1982, 47, 123-140. (b) 

Wollenberg, A.L., van den. Personal communication, 1983. 

Ontvangen: 5-7-1983 


