KM 13(1984) pag 131-147

COMPUTING THE SECOND-ORDER DERIVATIVES OF THE SYMMETRIC FUNCTIONS IN THE RASCH CODEL

Paul G.W. Jansen*

Abstract

When applying conditional maximum likelihood procedures to estimate the item parameters of the Rasch model, computation of the so-called basic symmetric functions is necessary. This paper demonstrates that the secondorder derivatives of the symmetric functions, computation of which is required for various purposes, can be rewritten as a simple function of the basic symmetric functions, of the first-order derivatives of the basic symmetric functions, and of the item parameters. As a consequence, the rather tedious explicit computation of the second-order derivatives of the symmetric functions may be avoided in practical applications of the Rasch model.

Additionally, the investigation requires the computation of a number of formulas which are of relevance for theoretical studies of the Rasch model.

*Afdeling Research Rijks Psychologische Dienst P.O. Box 20013 2500 EA The Hague The Netherlands Tel: 070 - 514001 tst. 111 1. Dermodertick

1.1. The Ero & model

Suppose N subjects respond to K dichotomous items. The probability of subject v responding positively to item i may be represented by the parametric probability function

$$p(+|v,i) = \frac{\theta_{v} \varepsilon_{i}}{1 + \theta_{v} \varepsilon_{i}} , \qquad (1)$$

which is known as the Rasch model. Since (1) is monotonically increasing in θ , θ_v may be conceived as representing the 'ability' of subject v in the context of intelligence items e.g., and correspondingly ε_i stands for the 'easiness' of item i. Since ε_i may be simply defined as the inverse $1/\theta_w$ of the ability of a subject w for whom $p(+|w,i)=\frac{1}{2}$, item response model (1) assumes one latent trait underlying the observed responses, viz. the θ -dimension. Mostly, the item parameters are subject to the norming restraint $\prod_{i=1}^{K} \varepsilon_i = 1$; we will assume this to be the case in the sequel.

For an extensive introduction to latent trait theory the reader is referred to Molenaar (1982), who presents an overview of various unidimensional latent trait models, including the Rasch model.

Denoting the response of subject v to item i by the binary indicator variable $a_{vi} = 1,0$, the likelihood of a single response a_{vi} in the Rasch model (1) is

$$p(a_{vi}|\theta_{v},\varepsilon_{i}) = \frac{1}{1 + \exp(\xi_{v}-\sigma_{i})} * \exp(-\sigma_{i}*a_{vi}) * \exp(\xi_{v}*a_{vi}), \quad (2)$$

where $\xi_{\mathbf{v}} = \ln(\theta_{\mathbf{v}})$ and $\sigma_{\mathbf{i}} = -\ln(\varepsilon_{\mathbf{i}})$. Formula (2) shows that $p(\mathbf{a}_{\mathbf{v}\mathbf{i}} | \theta_{\mathbf{v}}, \varepsilon_{\mathbf{i}})$ is a member of the one-parameter exponential family when the likelihood is considered as a function of either $\theta_{\mathbf{v}}$ or $\varepsilon_{\mathbf{i}}$ only. Therefore, $\sum_{\mathbf{i}} z_{\mathbf{i}} = a_{\mathbf{v}\mathbf{0}}$ is a sufficient statistic for $\theta_{\mathbf{v}}$, and $\sum_{\mathbf{v}} z_{\mathbf{v}\mathbf{i}} = :a_{\mathbf{0}\mathbf{i}}$ is a sufficient statistic for $\varepsilon_{\mathbf{i}}$ (Mood, Graybill & Boes, 1974, 326).

The property of sufficiency makes it possible to use the procedure of *conditional maximum likelihood estimation* (CML) in the Rasch model. Essentially, in the CML the number of parameters is reduced by conditioning the

likelihood of the data on the sufficient statistics for the parameters to be eliminated. For instance, when the aim is to estimate the item parameters ε_i , the unknown θ_v may be 'conditioned away' by replacing it by the observable a_{v0} . Since the statistic a_{v0} is sufficient for the parameter θ_v , no relevant information is lost in the CML approach to estimation. To estimate the $\underline{\varepsilon}=:(\varepsilon_1,\ldots,\varepsilon_i,\ldots,\varepsilon_K)$ the unconditional likelihood $L(\underline{a}_v|\theta_v,\underline{\varepsilon})$ of the data vector $\underline{a}_v=:(a_{v1},\ldots,a_{v1},\ldots,a_{vK})$ of a subject v and the conditional likelihood $L(\underline{a}_v|a_{v0},\underline{\varepsilon})$ of this data vector are equally useful.

Conditional estimation has both statistical and measurement-theoretical advantages. Statistical advantages are consistency of the estimators (Andersen, 1973b), and the existence of model tests with known and desirable properties (Andersen, 1973a; Van den Wollenberg, 1979, 1982a,b; Gustafsson, 1980b). The measurement-theoretical advantage of the Rasch model was labelled 'specific objectivity' by Rasch (1966, 1977); for a description the reader is referred to Molenaar (1982, 17-18) in the present journal.

In the remainder of this study the focus will be on the estimation of the item parameters ε_i , given the sufficient statistics a_{v0} for the subject parameters θ_v . To simplify notation, a_{v0} will be written as r_v in the sequel; r_v represents the number of items responded to positively by subject v. In this case the estimation equation for the ε_i is obtained by equating the sufficient statistics for ε_i to their conditional expectations:

$$a_{0i} \stackrel{\circ}{=} E(A_{0i} | r_{v}, \varepsilon) \qquad (i=1, \dots, K), \tag{3}$$

which is a general property of exponential distributions (Fischer, 1974, 236; Andersen, 1980a,b).

Equation (3) can be rewritten as

$$a_{0i} \stackrel{\circ}{=} \sum_{v=1}^{N} E(A_{vi} | r_{v}, \underline{\varepsilon}) = \sum_{v=1}^{N} \pi_{r_{v}i} \quad (i=1, \dots, K).$$
(4)

Because of sufficiency, the conditional probability π_{r_vi} only depends on the subject v through the raw score r_v . The probability is the same for all subjects having this marginal total. Therefore, the index v may be dropped and the conditional probability may be written as π_{ri} in the sequel. The unconditional probability (i.e. (1)) will be written as π_{vi} below. Thus

$$r_{i} = \pi_{r_{i}} =: Prob(+|a_{v_{0}}=r,i),$$

$$\pi_{i} =: \operatorname{Prob}(+|v,i).$$
 (6)

Although this notation may become ambiguous when numbers are substituted for letters, it seems to be standard in the literature on the Rasch model since Fischer (1974, 236, 238) (cf. e.g. Van den Wollenberg, 1979, 34, 73). Of course, in theoretical studies such as these, it is unambiguous.

1.2. The symmetric functions

The conditional probability "ri is defined as the ratio of $p(A_{vi}=1,r|\theta_{v},\underline{\varepsilon})$ to $p(r|\theta_{v},\underline{\varepsilon})$ as (5) shows. Performing this division, eventually the following expression is found (cf. Fischer, 1974, 221-232)

$$\pi_{ri} = \varepsilon_{i} \frac{\gamma_{r-1}^{(1)}}{\gamma_{r}},$$

so that the estimation equations (4) become

$$a_{0i} = \sum_{r=1}^{K} \hat{\epsilon}_{i} \frac{\hat{\gamma}_{r-1}^{(i)}}{\hat{\gamma}_{r}} \quad (i=1,\ldots,K).$$
(8)

Eq. (7) formulates the regression of item score A_{vi} on test score r, i.e. the item-test regression. The factor γ_r in (7) is the *elementary symmetric function of order* r in the parameters $\varepsilon_1, \ldots, \varepsilon_K$. The function γ_r is defined as

$$\gamma_{\mathbf{r}} = \sum_{\substack{i \in \mathbf{r} \\ (\mathbf{r}) \\ \mathbf{i}}} a_{\mathbf{i}}^{\mathbf{a}} \mathbf{v}^{\mathbf{i}}, \qquad (9)$$

in which $\hat{\Sigma}$ means that summation is over all $\binom{K}{r}$ possible ways of obtaining the raw score r in a K-item test. From definition (9)

$$\begin{split} \mathbf{y}_{1} &= \varepsilon_{1}^{1} \varepsilon_{2}^{0} \dots \varepsilon_{K}^{0} + \varepsilon_{1}^{0} \varepsilon_{2}^{1} \varepsilon_{3}^{0} \dots \varepsilon_{K}^{0} + \dots + \varepsilon_{1}^{0} \dots \varepsilon_{K-1}^{0} \varepsilon_{K}^{1} \\ &= \varepsilon_{1} + \varepsilon_{2} + \dots + \varepsilon_{K} \qquad (\binom{K}{1} \text{ terms}), \\ \mathbf{y}_{2} &= \varepsilon_{1}^{1} \varepsilon_{2}^{1} \varepsilon_{3}^{0} \dots \varepsilon_{K}^{0} + \varepsilon_{1}^{1} \varepsilon_{2}^{0} \varepsilon_{3}^{1} \varepsilon_{4}^{0} \dots \varepsilon_{K}^{0} + \dots + \varepsilon_{1}^{0} \varepsilon_{2}^{0} \dots \varepsilon_{K-1}^{1} \varepsilon_{K}^{1} \\ &= \varepsilon_{1} \varepsilon_{2} + \varepsilon_{1} \varepsilon_{3} + \dots + \varepsilon_{K-1} \varepsilon_{K} \qquad (\binom{K}{2} \text{ terms}), \\ &\vdots \\ &\vdots \\ &\vdots \\ &\vdots \\ &\mathbf{y}_{K} &= \varepsilon_{1} \varepsilon_{2} \dots \varepsilon_{K} \qquad (\binom{K}{k} \text{ terms}). \end{split}$$

Finally, γ_0 is defined to be equal to 1.

The symmetric function of order r-1, $\gamma_{r-1}^{(i)}$ is defined analogously to the r-th order symmetric function (9), except that $\gamma_{r-1}^{(i)}$ does not contain the item parameter ε_i .

Estimation of the ε_i occurs by solving (8) iteratively. The greatest problem in solving these equations lies in the computation of the symmetric functions in every iteration. Fischer (1974) presents some recursive formulas that lighten the burden of computing all the symmetric functions in every iteration:

$$\gamma_{r} = \varepsilon_{i} \gamma_{r-1}^{(i)} + \gamma_{r}^{(i)} , \qquad (10)$$

$$r\gamma_r = \sum_{i=1}^{K} \varepsilon_i \gamma_{r-1}^{(i)}$$

From (10) it is easily obtained that

$$\frac{\partial}{\partial \varepsilon_{i}} \gamma_{r} = \frac{\partial}{\partial \varepsilon_{i}} (\varepsilon_{i} \gamma_{r-1}^{(i)} + \gamma_{r}^{(i)}) = \gamma_{r-1}^{(i)} , \qquad (12)$$

(11)

which reveals that $\gamma_{r-1}^{(i)}$ is the first-order derivative of γ_r with respect to ε_i . In this study, the focus will be on the second-order derivative of γ_r with respect to ε_i and ε_i .

Still, the computational problems are heavy. Recently, Gustafsson (1980a) devised an algorithm that seems to be both fast and accurate for rather large K. However, in addition to the computation of γ_r and $\gamma_{r-1}^{(i)}$, application of the test statistics of Van den Wollenberg (1979, 1982a,b) and of Martin-Löf (described by Gustafsson, 1980b) requires the computation of the binary conditional probability π_{rij} , which represents the probability that a subject with raw score r will respond positively to both items i and j (i≠j; this will be assumed throughout this study: i and j are different items). Since π_{ri} =Prob(Λ_{vi} =1|r)≥Prob(Λ_{vi} =1| α_{vj} =1,r) it follows that

$${}^{\pi}\mathrm{rij} \stackrel{<}{=} {}^{\pi}\mathrm{ri}{}^{\pi}\mathrm{rj}.$$

In the Rasch model, Trij is given by (cf. Fischer, 1974, 237)

$$\pi_{rij} = \varepsilon_i \varepsilon_j \frac{\gamma_{r-2}^{(i,j)}}{\gamma_r}.$$
(14)

The function $\gamma_{r-2}^{(i,j)}$ is defined analogously to $\gamma_{r-1}^{(i)}$. Applying (12) recursively, i.e. on $\gamma_{r-1}^{(i)}$, it follows that

$$\frac{\partial}{\partial \varepsilon_{i}} \gamma_{r-1}^{(i)} = \gamma_{r-2}^{(i,j)}$$

which reveals $\gamma_{r-2}^{(i,j)}$ to be the second-order derivative of γ_r to ε_i and ε_j . As these second derivatives are contained in the Fisher -information matrix (Fischer, 1974, 235f), computation of $\gamma_{r-2}^{(i,j)}$ is also necessary to determine the Fisher -information matrix and subsequently the (co-)variances of the conditional estimators. In the same way, determination of $\gamma_{r-2}^{(i,j)}$ is necessary if the Hessian is to be computed, e.g. if Newton-Raphson algorithms are to be employed in solving (8).

Again, computing $\hat{\gamma}_{r-2}^{(i,j)}$ from estimates of the K item parameters is not easily done, as may be illustrated by the following quotations from Gustafsson (1980b):

"The greatest problem in solving the equations, which must

136

be done iteratively, lies in efficiently and accurately computing the γ and their first derivatives with respect to each of the items $(\gamma \binom{r-1}{r-1})$ and sometimes also their second order derivatives with respect to the items two at a time $(\gamma \binom{r-1}{r-2})''$

(o.c., 211), and

"When K is large, the test is quite tedious to compute since it requires the computation of K-1 matrix inversions as well as the second derivatives of the symmetric functions",

(o.c., 213).

In the next section, assuming $\varepsilon_i \neq \varepsilon_j$, π_{rij} will be rewritten as a simple function of π_{ri} and π_{rj} using an analogue of the recursive relation (10). To my knowledge, this simplified formula, which may, in circumstances, save the explicit computation of the $\gamma_{r-2}^{(i,j)}$, is not generally known; Gustafsson (1982) has confirmed this. In section 3 a method is studied for computing π_{rij} when $\varepsilon_i = \varepsilon_i$.

2. A simple formula for the case $\varepsilon_1 \neq \varepsilon_1$

2.1. Derivation

Applying (10) to $\gamma_{r-1}^{(i)}$ and $\gamma_{r-1}^{(j)}$, it follows that $\gamma_{r-1}^{(i)} = \varepsilon_{j} \gamma_{r-2}^{(i,j)} + \gamma_{r-1}^{(i,j)}, \qquad (15)$

and

Subtracting (16) from (15):

$$(\varepsilon_{j} - \varepsilon_{i})\gamma_{r-2}^{(i,j)} = \gamma_{r-1}^{(i)} - \gamma_{r-1}^{(j)},$$
(17)

which if $\varepsilon_i \neq \varepsilon_i$ can be rewritten as

$$\gamma_{r-2}^{(i,j)} = \frac{\gamma_{r-1}^{(i)} - \gamma_{r-1}^{(j)}}{\varepsilon_{j} - \varepsilon_{i}} \qquad (\varepsilon_{i} \neq \varepsilon_{j}).$$
(18)

Formula (18) shows that the second-order derivatives of the symmetric functions can be written as a simple function of the first-order derivatives and the respective parameters if $i \neq j$. Substituting (18) for $\gamma_{r-2}^{(i,j)}$ in (14), it is found that

$$\pi_{rij} = \varepsilon_{i}\varepsilon_{j} \frac{\gamma_{r-1}^{(i)} - \gamma_{r-1}^{(j)}}{(\varepsilon_{j} - \varepsilon_{i})\gamma_{r}}$$

$$= \frac{\varepsilon_{j}}{\varepsilon_{j} - \varepsilon_{i}} \varepsilon_{i} \frac{\gamma_{r-1}^{(i)}}{\gamma_{r}} - \frac{\varepsilon_{i}}{\varepsilon_{j} - \varepsilon_{i}} \varepsilon_{j} \frac{\gamma_{r-1}^{(j)}}{\gamma_{r}} \quad (apply (7))$$

$$= \frac{\varepsilon_{j}\pi_{ri} - \varepsilon_{i}\pi_{rj}}{\varepsilon_{i} - \varepsilon_{i}} \quad (\varepsilon_{i} \neq \varepsilon_{j}). \quad (19)$$

Equation (19) shows that the second-order probability π_{rij} may be obtained as a simple function of the item parameters ε_i and ε_j and of the first order probabilities π_{ri} and π_{ri} . As in the conditional approach

$$\pi_{i} = \frac{1}{N} \sum_{r=1}^{K} n_{r} \pi_{r}$$
(20)

 $(n_r: number of subjects in score group r)$, equation (19) may be generalized to the item probabilities π_i , π_j and π_{ij} as expected in the conditional approach:

$$\pi_{ij} = \frac{\varepsilon_{j}\pi_{i} - \varepsilon_{i}\pi_{j}}{\varepsilon_{j} - \varepsilon_{i}} .$$
(21)

Equations (19) and (20) also hold for the unconditional case, as is easily shown. Since in the latter approach $\pi_{vij}=\pi_{vi}\pi_{vj}$ because of the assumption of local stochastic independence (which is basic to latent trait models, cf. Molenaar, 1982, 7-8), it can be derived that

 $\pi_{vij} = \pi_{vi}\pi_{vj} \quad (apply (1))$

138

$$= \frac{\theta_{\mathbf{v}}\varepsilon_{\mathbf{i}}}{1+\theta_{\mathbf{v}}\varepsilon_{\mathbf{i}}} * \frac{\theta_{\mathbf{v}}\varepsilon_{\mathbf{j}}}{1+\theta_{\mathbf{v}}\varepsilon_{\mathbf{j}}}$$

$$= \frac{\theta_{\mathbf{v}}\varepsilon_{\mathbf{i}}\varepsilon_{\mathbf{j}}}{(\varepsilon_{\mathbf{j}}-\varepsilon_{\mathbf{i}})(1+\theta_{\mathbf{v}}\varepsilon_{\mathbf{i}})} - \frac{\theta_{\mathbf{v}}\varepsilon_{\mathbf{i}}\varepsilon_{\mathbf{j}}}{(\varepsilon_{\mathbf{j}}-\varepsilon_{\mathbf{i}})(1+\theta_{\mathbf{v}}\varepsilon_{\mathbf{j}})}$$

$$= \frac{\varepsilon_{\mathbf{j}}\pi_{\mathbf{v}\mathbf{i}} - \varepsilon_{\mathbf{i}}\pi_{\mathbf{v}\mathbf{j}}}{\varepsilon_{\mathbf{j}} - \varepsilon_{\mathbf{i}}} (\varepsilon_{\mathbf{i}}\neq\varepsilon_{\mathbf{j}}).$$
(22)

However, since the CML estimation procedure has a number of important advantages as explained in section 1.1, concentration will almost invariably be on the formulas (18)-(21) in the sequel.

2.2. Discussion

As was indicated in section 1.2, formulas (18)-(21) could not be found in the literature on the Rasch model. A formula that resembles (21) is the following equivalent of Fischer's equation (13.3.6) (Fischer, 1974, 217)

$$\frac{\varepsilon_{\mathbf{i}}}{\varepsilon_{\mathbf{j}}} = \frac{\pi_{\mathbf{i}}^{-\pi} \mathbf{i}_{\mathbf{j}}}{\pi_{\mathbf{j}}^{-\pi} \mathbf{i}_{\mathbf{j}}}$$
(23)

which, in fact, motivated the present study. It seems that Fischer did not realize the implications of (23), which is equivalent to (21), with respect to a drastic simplification of the symmetric functions.

In the remainder of this section, it is discussed whether and how (19) and (21) may be used for actually computing π_{rii} .

Because of the conditional estimation equation (3), $\hat{\pi}_i$ will always be equal to the observed $a_{0i}/N=:p_i$ when estimating the item parameters of the Rasch model. To apply (21) therefore, π_i and π_j may be replaced by their respective observed counterparts and ε_i and ε_i by their estimated values.

Computation of (19) is a bit more tedious since π_{ri} and π_{rj} will have to be estimated from the parameters estimates $\hat{\epsilon}_i$ (i=1,...,K) by means of (7). In general, $\hat{\pi}_{ri}$ will be unequal to the observed p_{ri} ; in fact, the Q_1 test statistic of Van den Wollenberg (1979, 1982b) is based on the comparison of observed p_{ri} to expected $\hat{\pi}_{ri}$.

However, in the case of the Q_2 test statistic of Van den Wollenberg (o.c.) computation becomes relatively simple. Since in this procedure the item parameters are reestimated for every subject group r (i.e. ε_{ri} is

estimated instead of ε_i), the analogue of (3) applies with p_{ri} instead of p_i and ε_{ri} instead of ε_i . In such a case, $\hat{\gamma}_{ri}$ is of necessity equal to p_{ri} , and (19) can be computed from the observed p_{ri} , p_{rj} and estimated $\hat{\varepsilon}_{ri}$, $\hat{\varepsilon}_{rj}$. Thus, application of (19) is pre-eminently feasible in the computation of the Q_2 test statistic.

To illustrate the discussion, two examples of applying (19) are presented. Below, n_r denotes the number of subjects in score group r and n_{ri} the number of positive responses to item i in score group r; i=1,2,3 in the examples. Note that it does not matter whether the 3 items comply with the Rasch model, since (18)-(21) only function as computational 'shortcuts'. Furthermore, in the comparisons below the algorithm for explicitly computing $\gamma_{r-2}^{(i,j)}$ is assumed to be perfectly accurate (which might not always be realistic).

First example

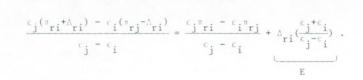
Suppose r=5, $n_r^{=23}$, $n_{r1}^{=4}$, $n_{r2}^{=20}$, $n_{r3}^{=22}$. Then $p_{r1}^{=4/23}$. 1739, $p_{r2}^{=}$.8696, $p_{r3}^{=}$.9565. Conditional maximum likelihood estimation in this score group yielded $\hat{\epsilon}_{r1}^{=}$.0342, $\hat{\epsilon}_{r2}^{=}$.3395, $\hat{\epsilon}_{r3}^{=}$ 1.0517. Using explicit computation of the symmetric functions, i.e. applying (14), the following expected probabilities were found: $\hat{\pi}_{r12}^{=}$.0961, $\hat{\pi}_{r13}^{=}$.1477, $\hat{\pi}_{r23}^{=}$.8284. Application of (19) yields: $\hat{\pi}_{r12}^{=}$.0960, $\hat{\pi}_{r13}^{=}$.1476, $\hat{\pi}_{r23}^{=}$.8282. Differences between the two kinds of estimates are negligible.

Second example

In this example $p_{r1} p_{r2}$. Suppose r=2,3,4 i.e. the combination of the score groups 2,3 and 4. Furthermore suppose $n_r = 590$, and $p_{r1} = .0814$, $p_{r2} = .0915$, $p_{r3} = .1644$. Estimation yielded $\hat{\varepsilon}_{r1} = .5774$, $\hat{\varepsilon}_{r2} = .6546$, $\hat{\varepsilon}_{r3} = 1.2473$, $\hat{\pi}_{r12} = .0053$, $\hat{\pi}_{r13} = .0098$, $\hat{\pi}_{r23} = .0110$. Applying (19) it is found that $\hat{\pi}_{r12} = .0059$, $\hat{\pi}_{r13} = .0099$, $\hat{\pi}_{r23} = .0110$. Although for the item pair (1,2) the differences are somewhat larger than in the first example, they again appear at the fourth decimal place.

Thus, in these two examples π_{rij} can be computed by means of (19). However, whether in all cases $(\epsilon_i \neq \epsilon_j) \pi_{rij}$ can be reliably computed by means of (19) is a question that only be answered both by empirical and theoretical error studies.

For instance, it may be expected that, as ε_i and ε_j are measured on an exponential scale, even very small differences between π_{ri} and π_{rj} will, in general, result in a difference $(\varepsilon_j - \varepsilon_i)$ that is large enough for the quotient (19) to be stably computable. On the other hand, suppose the computed values of π_{ri} and π_{rj} have additive errors of Δ_{ri} and Δ_{ri} respectively, and especially assume $\Lambda_{ri} = \Lambda_{rj}$ (this situation was suggested by Charles Lewis). Substituting these in (19) gives



Even assuming the division can be carried out with unlimited precision, the error term E may be many times larger than \triangle_{ri} when ε_i and ε_j are large relative to their difference. So in this case $\hat{\pi}_{rij}$ as computed by (19) from $\hat{\pi}_{ri}$ and $\hat{\pi}_{ri}$ may be radically different from π_{rij} .

It should be remarked, however, that it is unclear how the explicit 'traditional' computation of π_{rij} performs in this specific situation. In general, a study of the computational merits of (19) should in all cases be a comparative study of (19) to the traditional, explicit computation procedure.

3. The case $\varepsilon_{1} = \varepsilon_{1}$

When $\varepsilon_i = \varepsilon_j$, the quotient (18) is not defined. This section is devoted to this case. In section 3.1 both for the unconditional and the conditional cases formulas are presented by means of which the binary probabilities π_{vij} and π_{rij} are rewritten as functions of the corresponding probabilities π_{vi} or π_{ri} , and the item parameters. It appears however that these formulas are not suited for practical applications. Therefore, concentrating on the conditional case exclusively, in the next section an algorithm is presented by means of which π_{rij} might be computed when $\varepsilon_i = \varepsilon_j$. Note that this extensive treatment of the case $\varepsilon_i = \varepsilon_j$ is of practical importance since in applications the estimates $\hat{\varepsilon}_i$ and $\hat{\varepsilon}_j$ are equal when $a_{0i} = a_{0i}$, a_{0i} being sufficient for ε_i in the Rasch model.

3.1. Formulas

3.1.1. The unconditional case

When $\varepsilon_i = \varepsilon_j$, π_{vij} is given by the limit Lim π_{vij} . $\varepsilon_i \rightarrow \varepsilon_j$

In the Rasch model, this limit is equal to (substituting (22) in (24))

(24)

$$\lim_{\varepsilon_{i} \to \varepsilon_{j}} \frac{\varepsilon_{j}^{\pi} v_{i} - \varepsilon_{i}^{\pi} v_{j}}{\varepsilon_{j} - \varepsilon_{i}}$$
(25)

Applying l'Hopital's limit rule and assuming π_{vj} to be independent of ε_i , i.e. assuming an unconditional approach, (25) can be rewritten as

$$\lim_{\substack{\varepsilon_{i} \neq \varepsilon_{i} \\ \varepsilon_{i} \neq \varepsilon_{i}}} \frac{\frac{\partial}{\partial \varepsilon_{i}} (\varepsilon_{j}^{\pi} v_{i} - \varepsilon_{i}^{\pi} v_{j})}{\frac{\partial}{\partial \varepsilon_{i}} (\varepsilon_{j} - \varepsilon_{i})} = \pi_{vj} - \varepsilon_{j} \pi_{vi}', \qquad (26)$$

in which

$$\pi_{\rm vi}^{\prime} =: \frac{\partial}{\partial \varepsilon_{\rm i}} \pi_{\rm vi} \,. \tag{27}$$

Since in the unconditional case $\pi'_{vi} = \pi'_{vj}$ when $\varepsilon_i = \varepsilon_j$, (26) can be reformulated as

$$\pi_{vj} = \varepsilon_{j} \pi'_{vj} . \tag{28}$$

Formula (28) represents a formulation of the binary π_{vij} into a function of first-order probabilities and of the item parameters. It is not of much practical importance, since $\pi_{vij} = \pi_{vij} \pi_{vj}$ in the unconditional approach. It is easily proved that for the total group of N subjects the analogue of (26) holds:

$$\lim_{\substack{i \\ i \neq \varepsilon \\ j}} \pi_{ij} = \pi_{j} - \varepsilon_{i} \pi_{j}^{!} .$$

$$(29)$$

Since π_i as defined in (20) is a monotonically increasing function of ε_i , (29) implies that $\pi_{ij} < \pi_i$ ($\varepsilon_i = \varepsilon_j$), as it of course should be. We shall not bother about the computation of (29) in practice, since it is only the conditional approach to estimation in the Rasch model that yields the advantages discussed in section 1.1. Still, (29) may be of use in theoretical studies; for an example we refer to Jansen (1983, ch.3).

3.1.2. The conditional case

Since in the conditional approach π_{ri} depends on π_{i} as (7) shows, it

is not possible to transfer the unconditional result (28) to this situation. The derivative of π_{ri} to ε_{i} is equal to (using (7) and (12))

$$\frac{1}{\mathbf{r}} \mathbf{r}_{\mathbf{j}} = \frac{\Im}{\Im \varepsilon_{\mathbf{i}}} \varepsilon_{\mathbf{j}} \frac{\gamma_{\mathbf{r}-1}^{(\mathbf{j})}}{\gamma_{\mathbf{r}}}$$
$$= \varepsilon_{\mathbf{j}} \frac{\gamma_{\mathbf{r}} \gamma_{\mathbf{r}-2}^{(\mathbf{i},\mathbf{j})} - \gamma_{\mathbf{r}-1}^{(\mathbf{j})} \gamma_{\mathbf{r}-1}^{(\mathbf{i})}}{\gamma_{\mathbf{r}}^{2}}$$
$$= \varepsilon_{\mathbf{j}} \frac{\gamma_{\mathbf{r}-2}^{(\mathbf{i},\mathbf{j})}}{\gamma_{\mathbf{r}}} - \varepsilon_{\mathbf{j}} \frac{\gamma_{\mathbf{r}-1}^{(\mathbf{i})} \gamma_{\mathbf{r}-1}^{(\mathbf{j})}}{\gamma_{\mathbf{r}}^{2}}$$
$$= \frac{\pi_{\mathbf{r}\mathbf{i}\mathbf{j}} - \pi_{\mathbf{r}\mathbf{i}}\pi_{\mathbf{r}\mathbf{j}}}{\gamma_{\mathbf{r}}},$$

which implies

$$rij = \pi ri \pi rj + \varepsilon \frac{\partial}{\partial \varepsilon_i} \pi rj.$$
(31)

When $\varepsilon_1 = \varepsilon_1$, (31) can be rewritten as

E i

$$\pi_{rij} = \pi_{rj}^{2} + \varepsilon_{j} \frac{\partial}{\partial \varepsilon_{i}} \pi_{rj} \quad (\varepsilon_{i} = \varepsilon_{j}).$$
(32)

Note that (31) implies (using (13))

$$\frac{\partial}{\partial \varepsilon_{i}} \pi_{rj} < 0.$$
(33)

Inequality (33) implies that π_{rj} is a monotonically decreasing function of ε_i , which agrees with intuition: The probability that a subject with score r (r fixed) will respond positively to item j will get smaller when some other item i in the test gets easier. For, the same raw score indicates a higher ability when i is difficult than when i is easy.

When $\frac{\partial}{\partial \epsilon_i} \pi_{rj}$ is small over a whole range of values of ϵ_i , π_{rj} is

(30)

relatively flat when considered as a function of ε_i , and increases or decreases in ε_i will not affect π_{rj} very much. Thus, the actual range of values of the derivative of π_{rj} to ε_i over an acceptable range of values for ε_i , may be considered as indicating the dependence of π_{rj} on item i. Locally, $\frac{\partial}{\partial \varepsilon_i} \pi_{rj}$ indicates to what extent π_{rj} is affected by small shifts of ε_i . Thus, generally, the derivative of π_{rj} with respect to ε_i indicates the dependency of π_r on another item i. Also, from (30)

 $\frac{\varepsilon_{i}}{\varepsilon_{j}} = \frac{\frac{\partial}{\partial \varepsilon_{j}} \pi_{ri}}{\frac{\partial}{\partial \varepsilon_{j}} \pi_{rj}},$

which gives some insight into the interpretation of the 'easiness'-scale on which the Rasch model parameters ε_i are measured. As was seen above, $\frac{\partial}{\partial \varepsilon_i} \pi_{rj}$ indicates the dependency of π_{rj} on the presence of another item i. Therefore, when $\varepsilon_i < \varepsilon_j$ in (34) item i affects π_{rj} more than item j affects π_{ri} .

Eq. (32) is not of much use for the computation of π_{rij} ($\varepsilon_i = \varepsilon_j$) in practical applications. Therefore in the next section an algorithm will be studied for computing π_{rij} ($\varepsilon_i = \varepsilon_j$) which avoids the computation of the second-order derivatives of the symmetric functions and which seems practically feasible.

3.2. An algorithm for the conditional case

The algorithm to be discussed below presupposes that (19) works acceptably well when $\varepsilon_i \approx \varepsilon_j$. In such a case, it may be possible to compute an estimate π_{rij}^{\star} of π_{rij} when $\varepsilon_i = \varepsilon_j$ by raising ε_j somewhat and lowering ε_i somewhat, and by subsequently applying (19). Below, an algorithm is discussed in which ε_j is replaced by $\Delta \varepsilon_j$ and ε_i by ε_i / Δ ($\Delta > 1$). It will be demonstrated that this procedure yields theoretically *exact* values of π_{rij} :

Suppose ε_i is replaced by $\varepsilon_i^{\star} =: \varepsilon_i / \Delta$ and ε_i by $\varepsilon_j^{\star} =: \Delta \varepsilon_j$ ($\Delta > 1$). Since

$$\varepsilon_{ij}^{\star} \varepsilon_{h=1}^{K} \qquad \begin{array}{c} K & K \\ \kappa_{ij} & \pi \\ h=1 \\ h\neq i, j \end{array}$$

(34)

the parameters ϵ_h (h=1,...,K; h≠i,j) may remain unchanged: renorming is not necessary. Now the relation between π_{rij}^{\bigstar} and π_{rij} is given by (using (14))

$$\pi_{rij} = \varepsilon_i \varepsilon_j \frac{\gamma_{r-2}^{(i,j)}}{\gamma_r}$$
$$= \varepsilon_i^* \varepsilon_j^* \frac{\gamma_{r-2}^{(i,j)}}{\gamma_r^*} \frac{\gamma_r^*}{\gamma_r}$$
$$= \frac{\gamma_r^*}{\gamma_r} \pi_{rij}^*.$$

All terms at the right side of (35) can be computed without using second-order derivatives of symmetric functions. The basic symmetric function γ_r can be readily computed; in fact, its value will be known from the phase of estimating the original item parameters ε_h by means of (8). The π^{\star}_{rij} follows from ε^{\star}_{i} , ε^{\star}_{j} , π^{\star}_{ri} , and π^{\star}_{rj} by means of (19). This implies that π^{\star}_{ri} and π^{\star}_{rj} have to be computed, which is possible by application of (7). Using (7) to compute π^{\star}_{ri} and π^{\star}_{rj} from ε^{\star}_{i} and ε^{\star}_{j} , and ε^{\star}_{h} (h=1,...,K; h≠i,j) implies that γ^{\star}_{r} will be computed. Thus, all terms at the right side of (35) can be computed from zero-order or first-order derivatives of the symmetric functions.

In the same way $\gamma_{r-2}^{(\text{i},\text{j})}$ can be computed (using (18))

(36)

(35)

Of course, $\overset{*}{Y}_{r-1}^{(i)}$ and $\overset{*}{Y}_{r-1}^{(j)}$ can be readily computed.

Formulas (35) and (36) can be applied in situations in which $\epsilon_i = \epsilon_j$. Use of these formulas requires the computation of $\Upsilon_{r-1}^{(i)}$, $\Upsilon_{r-1}^{(j)}$, Υ_r^{\star} , and Υ_r , i.e. of Υ_r , Υ_r^{\star} , and of first-order derivatives of Υ_r^{\star} .

When Δ is chosen in an appropriate way, computation of the quotient $\gamma_r^{\star}/\gamma_r$ in (35) may even not be necessary because the quotient approximates 1 to a satisfactory degree. In the 1983 version of the computer program *RADI* (Raaijmakers & Van den Wollenberg, 1979) the term $\gamma_r^{\star}/\gamma_r$ is neglected in (35); it appeared that by setting Δ to 1.01 π_{rij}^{\star} was acceptably close to π_{rii} for practical purposes (Van den Wollenberg, 1983).

Note however that the actual computation of γ_r and γ_r^{\star} cannot be avoided: of γ_r because of the necessity of solving the estimation equation (8), and of γ_r^{\star} because of the necessity of computing π_{ri}^{\star} and π_{rj}^{\star} (in order to compute π_{rij}^{\star} by means of (19)). That being the case, one may as well compute the quotient $\gamma_r^{\star}/\gamma_r$ and consequently compute an estimate of π_{rij} by means of (35) that is, theoretically, exact.

4. Conclusion

The derivations of (18) and (19) in section 2.1 and of (35) and (36) in section 3.2 demonstrate that, at least in theory, it may be possible to compute π_{rij} according to the Rasch model, both for the cases $\varepsilon_i \neq \varepsilon_j$ and $\varepsilon_i = \varepsilon_j$, and at the same time avoid the explicit computation of the second-order derivatives of the symmetric functions. This is of importance since the computation of these second-order derivatives is tedious and time-consuming. Still, the only empirical corroboration of the practical use of (19) is Van den Wollenberg (1983). Hopefully, this study will stimulate other researchers, either to develop other formulas that might suggest computational simplifications of the symmetric functions, or to test the practical relevance of (19), e.g. by means of simulation studies.

Besides their possible practical use, the various formulas presented in this paper may be of relevance to theoretical studies of the Rasch model. For instance, as far as the present author knows formulas (18),(19),(21) and (30)-(36) have not been derived before in the published literature on conditional estimation in the Rasch model. Still, more work should, and may, be done in this domain.

146

Re;'erences

- Andersen, E.B. A goodness of fit test for the Rasch model. *Psychometrika*, 1973, *38*, 123-140. (a)
- Andersen, E.B. Conditional inference and models for measuring. Copenhagen: Mental-Hygiejnisk Forlag, 1973. (b)
- Andersen, E.B. Discrete statistical models with social science applications. Amsterdam: North-Holland, 1980. (a)
- Andersen, E.B. Latent structure analysis. Invited paper to European Meeting of the Psychometric Society, Groningen, June, 1980. (b)
- Fischer, G.H. Einführung in die Theorie psychologischers Tests. Bern: Huber, 1974.
- Gustafsson, J.-E. A solution of the conditional estimation problem for long tests in the Rasch model for dichotomous items. *Educational and Psychological Measurement*, 1980, 40, 377-385. (a)
- Gustafsson, J.-E. Testing and obtaining fit of data to the Rasch model. British Journal of Mathematical and Statistical Psychology, 1980, 33, 205-233. (b)
- Gustafsson, J.-E. Personal communication, 1982.
- Jansen, P.G.W. Rasch analysis of attitudinal data (doct. diss.). The Hague: Rijks Psychologische Dienst, 1983.
- Molenaar, I.W. Mensen die het beter meten. Een inleiding tot de latente trek modellen. Kwantitatieve Methoden, 1982, 5, 3-29.
- Mood, A.M., Graybill, F.A., & Boes, D.C. Introduction to the theory of statistics (3rd ed.). Tokyo: McGraw-Hill, 1974.
- Raaijmakers, M.H., & Wollenberg, A.L., van den. RADI: Program for the dichotomous Rasch model. *Program Bulletin*. Nijmegen: The University of Nijmegen, 1979.
- Rasch, G. An informal report on a theory of objectivity in comparisons. Proceedings of the NUFFIC international summer session in science at "Het Oude Hof", The Hague, 14-28 July, 1966.
- Rasch, G. On specific objectivity: An attempt at formalizing the request for generality and validity of scientific statements. Danish Yearbook of Philosophy, 1977, 14, 58-94.
- Wollenberg, A.L., van den. The Rasch model and time limit tests (doct. diss.). Nijmegen: Studentenpers, 1979.
- Wollenberg, A.L., van den. On the applicability of the Q₂ test for the Rasch model. *Kwantitatieve Methoden*, 1982, 3, 30-55. (a)
- Wollenberg, A.L., van den. Two new test statistics for the Rasch model. *Psychometrika*, 1982, 47, 123-140. (b)

Wollenberg, A.L., van den. Personal communication, 1983.

Ontvangen: 5-7-1983