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APPLICATIONS OF A BAYESIAN POISSON MODEL FOR MISREADINGS* 

Margo G.H. Jansen** 

University of Groningen 

Abstract 

Apart from the widely known model for binary scored items, Rasch has 

developed several other models for the analysis of achievement test data. 

The model we consider here is the so-called multiplicative Poisson model 

for misreadings. This model assumes that the total number of misreadings 

on a text for a certain individual is approximately Poisson distributed with 

an intensity parameter which depends on the ratio of two other parameters, 

one partaining to the ability of the individual and one to the difficulty 

of the text. 

A Bayesian version of this model was developed by Owen (1969). In this 

paper we adopt a slightly different formulation in the tradition of the 

general approach by Lindley (Lindley, 1970; Lindley and Smith, 1972). The 

method is illustrated by two examples, one based on empirical and the other 

on artificial data. 

1. Introduction. 

Apart from the so-called one-parameter logistic model for binary scored 

items, Rasch has developed several other latent trait models for the 

analysis of achievement test data. Among these are the models for oral 

reading speed and for misreadings in a text. These models are described in 

the monograph "Probabilistic models for some intelligence and attainment 

tests" (Rasch, 1960) and summarized by Lord and Novick (1968). 
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Compared to the logistic model these models have attracted much less 

attention. As a result these models are much less developed and practical 

applications apart from those of Rasch himself are not known to the author. 

This seems unfortunate because tests that would lend themselves to analyses 

based on Poisson process models are widely used in educational practice. 

Bayesian versions of the Poisson model for misreadings were already 

developed in 1969 by Owen. Related models were developed by Van der Ven 

(1969). 

2. The Poisson model for misreadings. 

In contrast to the one-parameter logistic model, the Poisson model for 

misreadings is a latent trait model for tests rather than items. Rasch 

however begins his development of the latter with the assumption that a text 

to be read can be considered as a succession of mutually independent 

Bernouilli trials, corresponding with the words in the text, where the 

chances of an error are relatively small. A second, but extremely important 

assumption is that the probability of a misreading is a product of two 

factors, one pertaining to the ability of the pupil and one pertaining to 

the difficulty of the word. Then, given that the error probabilities are 

indeed small and the number of words in the text (= number of items) is 

large, the distribution of the total number of errors in the text (= test 

score) may be approximated by a Poisson distribution with intensity parameter 

equal to the sum of the Bernouilli parameters. The intensity parameter has 

the same multiplicative structure as the parameters on item-level. 

Rasch assumes in his derivations that the error probabilities per item 

are constant given a certain test. However, because of the kinds of data we 

would like to describe, it seems more useful to base the derivation of the 

Poisson model on the equally standard but more general case in which the 

Bernouilli parameters are variable (Lord & Novick, 1968, p. 485 ff). 

Looking at the examples given by Rasch, it is also clear that it is the 

model at test-level for which we have expirical evidence. So in fact, we 

could take the Poisson model for the total test scores as our starting point, 

with the item-level model as used by Rasch as one among other possible 

underlying structures. 

The model on test-level is completed by the assumption that we have two 

or more tests for which a Poisson model holds. 
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Formally, consider a sample of N persons taking k 

expected number of errors made by person i on test 

tests, where the 

j is given by 

(Y..=y..|A. . ) = 
. ij ij iJ 

exp(-A. .) A. . -Vy. .! 
ij ij iJ 

(I) 

We suppose that the intensity parameter is a ratio of two other 

the difficulty of the test and the ability of the person 

parameters, 

X. . 
ij 

= 6. 
J / S. 

(2) 

The expected number of errors will be higher if the test is more difficult 

or the person less able and lower if the test is less difficult and/or the 

person more able. 

Obviously neither the 6 nor the £ are uniquely determined. This state 

of affairs can be remedied by imposing an arbitrary restriction on the set 

of parameters. Rasch proposes taking the most difficult test as a point of 

reference by choosing a value of one for the corresponding difficulty 

parameter. Notice that, because all Poisson parameters have to be 

nonnegative, setting one difficulty to be positive implies that all 

difficulty parameters 6 and all ability parameters £ are also nonnegative. 

In the Bayesian frame work identifiability problems are solved differently, 

by choosing suitable prior distributions which tell us how to identify the 

parameters, as we will show in the next section. 

From a theoretical point of view, one very desirable characteristic of 

the Poisson model, which it shares with the "ordinary" Rasch model, is the 

separability of the parameters. Test parameters can be estimated 

independently of the person parameters and vice versa. For a discussion of 

what in this context is also known as "specific objectivity", see Rasch 

(1960), Wright & Stone (1979) and Jansen (1983). 

Maximum Likelyhood estimates for the relative difficulty parameters are 

given by equation (3). 

y+j 

j y. 

where Pj = ^ ^4 6 - £6 • 

+ J J 

y+j “ ziyij 
y = £ y.. 
J++ . . ij 

i.J 

(3) 

and 
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for j = 1, .. , k and i = 1, .. , N. 

Estimates for the difficulties 6^ are obtained by rescaling the Pj's* 

Estimates for the ability parameters can be obtained by solving equation (A) 

for the C's. 

6 
5s=ir ’ = = '.2.3. (4) 

Where s is the total score summed over all k tests. Note that we do not 

have a finite ability estimate for persons with a total score equal to zero. 

3. Bayesian version of the multiplicative Poisson model. 

A full Bayesian model for the multiplicative Poisson model has been 

developed by Owen (1969). He took the formulation in Eqns 1 and 2 as a 

starting point but adopted another definition of the parameters. The person 

parameter he used is inversily proportional to its counterpart in Rasch?s 

formulation. This change was brought about to provide a complete symmetry 

in the interpretation of the parameter values of both test and person 

parameters. Prior information was specified by choosing mutually independent 

gamma distributions for all test and person parameters and several posterior 

densities, including conditional and marginal posterior densities for the 

individual parameters were derived. A somewhat related approach was used by 

Van der Ven (1969), in order to find suitable strong true-score models for 

the analysis of time-limit tests. 

The formulation which we will use here is based on the method developed 

by Lindley for Bayesian estimation in the linear model, which uses the 

exchangeability theorem in order to specify prior knowledge concerning the 

parameters of the model. This approach has been succesfully used by various 

other authors in such different contexts as multiple regression (Lindley, 

1970), the one-parameter logistic model (Swaminathan & Gifford, 1982; Jansen 

1981, Jansen & Lewis, 1983), multinomial data and contingency tables (Leonard 

1971; Lindley, 1964). 

We adopt the following transformation of the original ability and 

difficulty parameters. 

e = -ln£. b. - -ln6. 
J J 

and InA.. = 0.-b. 
iJ i J 

(5) 
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Rewriting equation (1) in terms of the new transformed parameters gives 

P (Y..=y..|e. , b.) 
ij ij1 i J 

V . . 

sxp(~exp(0 bj)) exp(^.-b^) 

The likelihood function is given by 

(6) 

L (ft.Jfelp = 

exp {r y.. (6^-b.) - Z exp(0.-b.)}/n (y..!). (7) 
i,j LJ 1 J i,j J i,j 1J 

Treating the 0|S ©N and b^, b^, respectively as exchangeable, 

we assume the following mutually independent marginal prior distributions 

6i ^ N^0,<V ’ i=l ’ N , (8) 
and 

bj ^ N(0,(}>b) , j=I , .. , k f (9) 

where (p^ and are supposed to be known constants. By choosing the 

prior mean of the difficulty parameters equal to zero, we incorporate the 

restriction necessary for identifiability as part of the model. 

A more convenient and adaptable formulation is based on the following. 

Let 

Then the prior distributions can be formulated as follows 

* 
0. % N(0 ,(J) ) 
i U do 

and 

bj N(0,())b) . (12) 

The prior variances are assumed to be known, as in the previous formulation. 

The prior can also be assumed known or be retained as an explicit 
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parameter. In the latter case we assume that is distributed uniformly 

* 
over the real line. Then, the posterior distribution of (j^ is, by 

combining the likelihood in (7) and the priors, obtained as 

“ exp{? ,yij (9i+,:i'"bj) ' v .exP(9i+Vbj)} 
l.J 

r,* 

1 ,J 

(f) 20 exp(-) <}> jk exp(-Jj: J) 
« i <tfi b j ^>b 

(13) 

To simplify the notation we will in the following derivations refer to 

Mg as y. 

Estimates for the parameters can be obtained by taking the logarithm 

of the posterior density (13), by differentiating with respect to y, 0^ and 

bj, setting their derivatives equal to zero and solving the resulting 

equations: 

E y.. - £ exp (0.+y-b.)=O , 

i»J 1J i,j 1 2 

-E y. . + E exp (0* + y- b.) +0*/d)_=O 
.11 . i i i 6 
j j 

04) 

(15) 

-I y. . + 5: exp (0 + p - b.) - b. / <j>, = 0 , i = 1, , N (16) 
i !J j i J J b 

j = 1, .. , K. 

As is obvious from equations (14) through (16) an iterative procedure 

is required to solve them. A computer program, which performs the 

necessary computations, using a simplified Newton-Raphson procedure has 

been written by the author*. 

4. Examples. 

To better understand the possibilities for working with the approach 

described in the previous sections, some concrete illustrations will be 

given. The first example is based on an artificial data set. This data set 

was obtained by generating the responses of 100 individuals, who were 

randomly sampled from a standard normal distribution, on three tests 

according to the Poisson model. The difficulties of the tests were set to 

* available at request 
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resp. bi = - 0.5 , = 0.0 and b^ = 0.5 . For tests consisting of 50 items 

this correspondends to expected error percentages of 3, 2 and 1 percent for 

a "standard" individual with an ability parameter value of 0 = 0. This data 

set was analysed and both Bayesian and maximum likelihood estimates for the 

test and person parameters were obtained. For the Bayesian analysis the 

prior variances were both set as one. Maximum likelihood estimates for the 

relative difficulties were obtained by using formula (3). From these we 

derived b - estimates by taking logarithms changing signs and rescaling to 

a mean of zero. 

The results are shown in table 1. The Bayesian estimates show the 

typical regression effect that also characterizes Bayesian parameter 

estimates obtained in other situations, as for example for the better known 

one - parameter logistic model (Jansen & Lewis, 1983). The regression 

effect is more marked for the person than for the test parameters, due to 

the asymmetry in the sample information (N much larger than k). Another 

illustration of the regression effect is given by figure 1. 
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Table 1. Maximum Likelihood (ML) and Bayesian estimates (BAY) for the 

Person and Test Parameters for the Artificial Data Set. 

(N = 100, k = 3 and Number of Errors =0 to 15). 

Raw Score Theta Estimates* Test Nr. Beta estimates 

ML BAY ML BAY 

0 

1 

2 

3 

A 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

- -1.16 

-1.19 -0.72 

-0.49 -0.38 

-0.09 -0.10 

0.20 0.13 

0.42 0.33 

0.61 0.50 

0.76 0.64 

0.89 0.77 

1.01 0.89 

1.12 1.00 

1.21 1.09 

1.30 1.18 

1.38 1.27 

1.45 1.34 

1.52 1.41 

1 -0.507 -0.503 

2 -0.028 -0.027 

3 0.535 0.530 

6 = 0 y 

Another interesting feature of the Bayesian method is that we can 

obtain finite ability estimates for persons with a perfect score (raw error 

score of zero). This is important since, with easy tests as are required by 

the model, a relatively large proportion of the sample consists of just 

these persons. 

For the second sample we used an empirically obtained data set. This 

data set consisted of the response of 716 pupils on a spelling test that was 

administered twice under different format conditions. The first was the 

"regular" administration where the test leader dictated the words that had 

to be written down by the pupils. Under the second format condition the 

pupils had to guess the words from pictures and then try to spell them 
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correctly. The research questions involved the importance of auditive clues 

in spelling. The total test length was 30 words. The test responses were 

analysed using the same prior specifications as in the first example. 

Maximum likelihood and Bayesian estimates for the person and test 

parameters can be found in table 2. The results are comparable to those 

reported in table 1. The Bayesian estimates of the test parameters are 

somewhat regressed to a common mean of zero compared to the maximum 

likelihood estimates, though the differences are practically negligeable. 

The regression effect for the person parameter estimates is more pronounced, 

especially for the raw error scores in the range from 0 to 3. 

Table 2. Maximum Likelihood and Bayesian Estimates for the Test and Person 

Parameters of the Data Obtained by Administering the Same Spelling 

Test under Two Different Format Conditions. 

(N = 716 , k = 2). 

Raw Score Theta Estimates* Test Nr. Beta estimates 

ML BAY ML BAY 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 I 

12 

13 

14 

15 

- -0.41 

-0.70 -0.02 

-0.01 0.28 

0.40 0.53 

0.69 0.73 

0.91 0.91 

1.09 1.07 

1.25 1.21 

1.38 1.33 

1.50 1.44 

1.60 1.54 

1.70 1.63 

1.79 1.72 

1.87 1.80 

1.94 1.87 

2.01 1.94 

1 -0.116 -0.115 

2 0.116 0.115 

* e = e + p 
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5. Discussion. 

The results presented in the previous sections show that Bayesian 

estimation procedures are potentially useful for estimating the parameters 

of the multiplicative Poisson model. A from a more practical point of view 

attractive feature of the model is, that we are able to provide finite 

ability estimates for individuals having a perfect score. In other contexts 

it has been shown that Bayesian estimates are in general more accurate than 

ML estimates, especially in the case where the number of observations 

available is relatively small (Swaminathan & Gifford, 1982). More research 

however is needed to substantiate this claim. 

A drawback of the approach used here is, that we have to be rather 

precise in the specification of our prior beliefs. It still has to be 

investigated how robust the procedure is against differences in prior 

specifications. Is is also possible to extend the model to the case were 

the prior variances are not assumed to be known exactly but where the prior 

information about these variances is also specified in the form of prior 

distributions. This socalled hierarchical two-stage Bayesian model is used 

by Jansen & Lewis (1983) and Swaminathan & Gifford (1982) for the 

one-parameter logistic model. Despite its advantages, it also tends to 

produce anomalous results in some situations, for which the reasons are not, 

at this moment, fully understood. 
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