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TESTING FOR INDEPENDENCE OF BINARY RESPONSES 

By Vaclav Fidler and Andre de Jonge 

Summary 

In the context of experiments involving visual 
inspection of random dot patterns the problem of testing for 
independence of binary responses is considered. A flexible 
model for dependence between binary responses is proposed. 
Two tests, optimal under different versions of the model, 
are derived. These two tests turn out to involve the same 
computations as the Wilcoxon two sample test and the runs 
test respectively. 
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1. Introduction 

Consider the following experiment conducted in the 
context of a study of processes involved in visual pattern 
recognition (DeJonge and Rashbass, 1982). An observer views 
a pair of static random dot patterns presented to him on two 
oscilloscope screens placed alongside each other. For each 
pair he points at the pattern consisting - according to his 
judgement - of more dots; he has been instructed to force 
his choice if necessary. The two patterns in a pair are 
generated independently from the same probability 
distribution. There are m different pattern pairs, possibly 
generated from different distributions. Each pattern pair 
is n times replicated, equally often in the left-right and 
in the right-left orientation. The n.m pattern pairs are 
ordered at random. 

The patterns consist of several hunderds of dots so 
that a judgement cannot be a result of a conscious 
enumeration. The purpose of the experiment is to find out 
whether there exists a consistency in replicated assessment 
of the same pattern pair and to infer on differences in 
consistency for different pattern pairs. Obviously, an 
operational definition of consistency and a method for its 
evaluation is required - these are the problems dealt with 
in this paper. We restrict our attention to inference based 
on replicated assessments of a single pattern pair. 

2. Model 

Consider a specific pattern pair consisting of patterns 
A and E. The observer's assessment of this pair for the 
i-th time is denoted by Xif i=1,...,n. If the observer 
concludes that dots are more numerous on A then Xj_ equals 
1, if he concludes that it is the pattern E which contains 
more dots then Xi equals 0. Note that the observations 
Xlt...,X are only a part of the experiment in which m 
different pattern pairs are included. 

If the numbers of dots on the two patterns in the pair 
are nearly the same the observer's first assessment is 
likely to be a pure guess. If he recognizes some structure 
in this pattern pair his next assessment will be probably 
positively correlated with the first one. On the other 
hand, if the observer fails to recognize the pattern pair he 



will presumably use the same guess mechanism again, 
independently of previous assessments. 

To express the dependence of responses we propose the 
following model for the conditional probability of X. given 
X.X. , : 1 

P(X . |X.X 
1 1 

exp £ Xi(a+b. Si_1> J 
-1^ 1 + exp(a+b. S. ^^~^' ( 1 ) 

where a and b are model parameters and where the statistic 
S determines influence of X.X. on the conditional 
distribution of X , 1 1"'1 

i 

i 
S± = £ w± .[X . - 1/2 ], i > 1; S = 0. 
1 j=l ■’ -1 

If b=0 the Xi's are independent with the same 
distribution as X , P(X1 r0 I b=0 ) = 1/[ 1 + exp(a) ]. If 
b^O the X.'s are dependent. If b>0 there exists a positive 
dependence between X.'s in the sense that P(X.=1 | S. >0) > 
PU^I) and PCX^O |1Si l<0) > PCX^O). 1 1 1 

The choice of weights (w..) should be preferably based 
on theoretical considerations concerning the involved 
process of visual perception. We shall consider the 
following two possibilities: 

and 

w . . = 1 if i = j and w. . = 0 if i/i . ( 1 ) 

With weights given by (2) all observations prior to X^ are 
equally relevant, with weights (3) only the latest 
observation is employed. 

The choice of values zero and one as the two possible 
outcomes of an assessment is arbitrary. It is therefore of 
interest to know what happens if the role of zero and one is 
interchanged. With 

= 1 - *1 , i = 1.n ( 4 ) 

we find from (1) 
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P(Y. | Y.Y. .) 
it i~i 

exp [ Yi(-a+b Si*1) ] 

1 + exp(-a+b 

where 3*^= S(Y |. f j). Thus the dependence parameter b 
is invariant under the transformation C^). 

j. Inference 

Given observations X,,...,X distributed according to 
I n 

(1), with S{ given by (2) or by (3) we wish to test 
: b=0 against the one sided alternative Hj : b>G. As 

P(X .X ) = P(X,) P(X_|X.) ... F(X IX..X^ .) 
1 n 1 2 1 n i n-1 

we obtain by substituting from (1) 

log[ P (X .X )] = 
1 n 

= a X + b - I X .3 . . - Zlog[1 + exp(a + b S. )] 
i i-l i-l 

where X = I X^^ . The statistic X is under Hq sufficient 
for the nuisance parameter a. Thus for inference on b the 
standard theory - see for example Cox and Hinkley (197^) - 
suggests to consider the conditional distribution of 
(X1#...,X ) given X. This conditional distribution still 
involves the nuisance parameter a. Thus no uniformly most 
powerful test exists. It is however possible to look for a 
test with maximal power for alternatives close to . Such 
a test - see Cox and Hinkley (197*0 - rejects HQ for large 
values of 

lim d log[P(X .X )]/ 9 b 
b 0 n 

from which its critical region is derived as 

Z X..S 
i-l 

1 + e 
~i-l 

const. ( 5 ) 

To derive specific tests we substitute the two choices 
of weights, (2) and (3). in (5). With weights w.. given by 
(2) we have ^ 

T, X.S. = (X2 - T)/2 
1 1-1 

Z = X. n-n( n-1 )/*J - T 
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T = EiX. 
i 

and the critical region (5) can be written as 

T ( 
1 + e 

i> 
K(X), 

where K(X) has to be determined so that the test is of a 
required size. If a / 0 it follows from invariance 
considerations - under transformation (4) - that H should 
be rejected if T is either too large or too small. This 
test is computationally equivalent to the two-sample 
Wilcoxon test. The vector (X .....X^) can be viewed as 
indicating sample membership of ordered observations from 
pooled samples consisting respectively of X and of n-X 
observations. It follows that T equals to the sum of the 
ranks from the sample labeled by ones. 

If a = 0 the above test can still be used. However, in 
this case there is no need to condition on X; a locally 
most powerful test can be derived directly from 
PtXj,...,Xn). This test turns out to reject HQ for large 
values of XCX-n), that is for too small or too large values 
of X. 

Next consider weights (3). Ke have 

l X.S. , = T. X.X. - X/2 + X,/2 
x i-l i i-l 1 

E S. , = X - (n-1 )/2 - X . 
i-l n 

Substitution in (5) results in 

£ X X + — X 
i i-l 2 1 

1+e 
- X > K (X ) 
an 

and invariance considerations lead to use this critical 
region with a=0. Thus H is to be rejected for too large 
values of 0 

U = £ X ,X. , + (X + X )/2. 
i i-l 1 n 

Here £ ^i^i-i fibbals to the number of runs of ones. This 
test is equivalent to the runs test as described for example 
by Lehmann (1S75). The runs test statistic equals to the 
number of runs of ones plus the number of runs of zeros, 

£ (l-X.XI-X^) + EXiXi l = 2U — 2X + (n-1) 
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The nulldistributions of the above derived test 

statistics are well known, they can be found for example in 

Lehmann’s (1975) book. 

Alternatively, the likelihood ratio test for H could 

be derived. Such an approach is however less attractive as 

it requires numerical maximalization of the likelihood 

function. 

*4. Example 

To illustrate the t 

section we consider 

assessments of the same 

different vectors (Xlt 

outcomes ( 00000 01111 ) 

while the vector ( 0 

( 00011 11000 ) is label 

by the Wilcoxon test, 

outcome ( 00010 10101 ) 

test while being relativ 

wo tests derived in the preceding 

an example with n=10 repeated 

pattern in which Xr*J. The number of 

. ..,Xn ) is c1® )=210. The vector of 

is labeled as extreme by both tests 

1010 01010 ) is not. The vector 

ed as extreme by the runs test, not 

The situation is reversed for the 

which is not extreme under the runs 

ely extreme under the V.'ilcoxon test. 

5. Discussion and conclusion 

The model (1) proposed for the experimental design of 

Lection 1 is parsimonious as only two parameters are 

involved. In view of possible choices for function Si the 

model nevertheless appears to be flexible. The choice of 

the function Z . clearly affects the power of the test for a 

particular class of alternatives. Further research on 

goodness-of-fit tests and parameter estimation is needed. 

The parameter b, which controls the dependence 

structure of the model, may be interpreted as describing 

consistency of replicated binary responses. Derived tests 

of hypothesis of no dependence - and thus of no consistency 

- of observers judgements are equivalent to well-known 

distribution-free tests. Both tests are easy to use and 

their working is readily understood. 
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