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SOME NOTES ON RIDGE REGRESSION 

John P. Van de Geer* 

Summary 

Solutions for ridge regression are compared to other solutions for 

relating a criterion variable to a set of predictor variables. The 

unifying frame is provided by a generalization of the determinantal 

equations for eigenvalues. This approach makes it possible to relate 

ridge regression to solutions based on eigenvalues both of the 

correlation matrix of the predictors and of the combined matrix of 

criterion and predictors. Some other possible solutions are briefly 

indicated. 
The paper concludes with an illustration of the vector geometry of 

ridge regression. 

KEY WORDS: Geometry of regression. Multiple correlation. Regression, 

Ridge regression. 

1. Ridge regression 

Ridge regression has been introduced by Hoerl and Kennard [1970a,bl as an 

alternative to classical multiple regression in cases where there is 

near-collinearity in the set of predictor variables. For a detailed 

discussion one could also consult Marquardt [1970] or Winer [19783; Swindle 

[19813 shows some of the geometrical aspects. 

Let y be an n x 1 vector of observed values on a criterion variable, and 

let X be the n x m matrix of observations on m predictor variables. It is 

assumed here that y and X are in deviations from column means, and also 

that y and X are scaled in such a way that columns have unit norm. The 

latter assumption is for convenience only. It ensures that X'X is a 

matrix of correlations, and that y'X is a row vector of correlations between 

criterion and predictors. 

Classical multiple regression solves for regression weights 

b=(X'X)”1X'y 

with the effect that the sum of squares of the difference vector y-Xb is 
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minimized. However, results for b can be extremely unstable if there 

is near collinearity among the columns of X. Small changes in X then may 

produce dramatic changes in the values of the elements of b. Non-stability 

also will be revealed by the fact that the value of b'b (the sum of the 

squared weights) is suspiciously large. 

Ridge regression replaces the solution for weights by 

b=(X'X+Yl)'1X'y 
where y is a suitably chosen positive constant. The effect will be that 

b'bcb'b. But the effect is also that b no longer is an unbiased estimate. 

Ridge regression trades off some bias against a gain in stability. 

2. Singular value decomposition 

A re-formulation is obtained as follows. Let ^ 

X=P$Q' 
be the singular value decomposition of X. I.e., assuming that X has rank 

k, this decomposition requires that P is an n x k matrix with P'P=I, that 

Q is an m x k matrix with Q'Q3!, and that <i> is a diagonal k x k matrix 

with positive diagonal elements in descending order. 

Mandel [19823 gives a detailed discussion of the relation between the 

singular value decomposition and multiple correlation. For the present we 

need only the following results. The classical solution Xb for multiple 

regression now can be written as Xb=P$t, with b=Qt. This implies that 

b and t have the same norm: b'b=t,Q'Qt=t't. The solution for t becomes 

t=® 'p'y 

This equation explains why t (and therefore b) becomes unstable when there 

are elements in ® close to zero. Corresponding elements in ® 1 then become 

disproportionately large. 

Table 1 gives a small example, with only two predictors x1 and x2, highly 

correlated. The solution for regression weights is b^=2.374 and b2=-1.869, 

with sum of squares 9.127. The solution for t becomes: t^=(1.96) 1(.70)= 

.357 and t2=(.04)"1(.12)=3.000, again with sum of squares 9.127. Clearly, 

t2 becomes so large because the second singular value is so small. 

Ridge regression replaces the solution for t by 

t=(<t^+YI) W'y 
with y a positive constant. The effect of near-zero elements in o now 

will be damped, so to speak. In the example above, taking y=-088, we obtain 

t1=(2.048)"l(.70) = .342 and t2=(. 128)'1 (.12) = .940, with sum of squares 

equal to 1.000. This shows that even a rather small value of y may produce 
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Table 1 

Correlations between y and X (left part) and sums of squares 

and cross products for y and P® (right part). 

y 1 .5798 .4101 y 1 .70 .12 

Xl .5798 1 .96 p^ .70 1 .96 0 

x2 .4101 .96 1 p202 .12 0 .04 

a substantial decrease of.the sum of squares of the weights. But the price 

one has to pay is a decrease of the correlation: whereas the squared 

multiple correlation is .610, the squared correlation between y and P$t 

is .469. 

3. Determinantal equations 

Solutions for multiple regression and ridge regression can be interpreted 

as special cases of a more general problem. This general problem is 

defined by the stationary equations 

1 

iJP 'y 

y'P® 

®2 
cu 

Special cases are the following. 

(i) Multiple regression. The solution for multiple regression is obtained 

by taking U2=0- The second stationary equation then implies 

®P'yc=-®2t 

or 

-t/c=® 'p‘y 

so that -t/c becomes the solution for regression weights for the 

regression of y on P®. Moreover, a little algebra shows that in this case 
2 

Ul = 1-Ry jj, where ^ is the multiple correlation coefficient. 

(ii) Ridge regression. Ridge regression corresponds to a solution where 

U2 has negative value. The second stationary equation then implies 

-t/c=(®2-u2D'1®P'y 

which agrees with the solution given in section 2, with u^-Y- 

(iii) Eigenvalues. The solution for eigenvalues and eigenvectors of the 

combined matrix of correlations between y and X is obtained by setting 

UpU2> so that the stationary equations become classical equations for 

eigenvalues. 
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The stationary equations above imply the determinantal equation 

g(u1,10.2) = 
1 -u, y‘P® 

oP'y 
= 0 

It follows that one can make a graph of gtu^.Ug) in which feasible 

solutions for are plotted. For the numerical example of Table 

1 this graph is shown in Figure!. Table 2 identifies a number of 

special points of the graph. 

4. Properties of the graph 

The graph in Figure 1 has a number of interesting properties some of 

which are listed below. 

(i) Typically, the graph shows a curve consisting of (k+1) "branches" 

(k is the column rank of X). These branches have asymptotes at u^=y'y=1> 

and at (i=1,..,k). For the numerical example there is a horizontal 

asymptote at u^=l, and there are two vertical asymptotes at q.2=1.96 and 

U2=.04. 

(ii) For any point on the curve the tangential to the curve has slope 

-(t't)/c2. 

(iii) Eigenvalues of the combined correlation matrix for y and X are 

shown at the points where u^=U2> i-e-> where the curve is intersected by 

the line u^=U2- 

(iv) For any set of (k+1) solutions located on a straight line through 

the origin, corresponding solutions for the vectors yc+P®t are orthogonal 

to each other. The eigenvector solutions are an example. 

(v) For any set of (k+1) solutions located on a line parallel to the 

line corresponding solutions for the vectors of weights 

are orthogonal. 

(vi) For any set of k solutions with identical value of u1, corresponding 

solutions for t are orthogonal to each other. 

(vii) The classical solution for multiple regression is given by the 
2 

point of the graph where and p^=1-Ry Figure 1 shows that the 

tangential at this point is rather steep, for this example. This indicates 
o 

that c is relatively small compared to t't, and therefore that the sum of 
2 

the squared regression weights, equal to t't/c , is large. The figure 
2 

makes it clear why this is likely to happen when there is a smallest cp. 

close to zero. 



p.2=.04 

o- 
O'. 

Figure 1. 

Graph of determinantal 

equation. 
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TABLE 2 

Solutions for (u«jUg) with corresponding solutions for c, t, and -t/c, 

based on the numerical example of Table 1. The normalization c +t't=2 

is chosen. What makes the solution special is underlined. 

U-| c ^"1 *"2 -ti/c 

x2 
M (slope -1) 

R (mult.regression) 

E (eigenvalue) 

P (partials of X) 

.752 -.357 

.648 -.088 

.390 _0_ 

i02g___.02g 

0 .021 

1.300 :i393__:i393 

KOgg -.342 -.940 

.444 -.159 -1.333 

.230 -.083 -1.393 

.224 -.081 -1.394 

.3g2___.3g2 

.342 .940 

.357 3.000 

.361 6.060 

.361 6.227 

y 
M (slope -1) 

X1 
B (bending point) 

E (eigenvalue) 

M (slope -1) 

P (partials of X) 

-L -O95 
.837 .170 

.752 .321 

.698 .493 

i65g___.65g 

.315 1.257 

_g_ 1.475 

.581 -.218 1.271 

uggg -•391 •92° 
1.211 

1.241 -.592 .329 

1.229 -.657 .242 

l.ggg -.995 .099 

.805 -1.161 .067 

.375 -2.190 

.391 -.920 

■All-z-All 
.477 -.265 

.534 -.197 

.995 -.099 

1.443 -.084 

E (eigenvalue) .661 1.250 .035 -1.891 -.052 

M (slope -1) 1.705 2.661 l.ggg .999 .046 -.999 -.046 



38 

(viii) Solutions where u^O define t as an eigenvector of the matrix 

<t( I-P'yy'P)®- This is the matrix of sums of squares and cross-products 

of P® with y partialled out. Such solutions for t are orthogonal (property 

vi). Moreover, the solution with smallest value of then corresponds 

to an estimate for linear relation between y and Xt if it is assumed that 

there is measurement error in X but not in y. This "model" in fact says 

that the sum of squares of yc+P®t must be minimized under the restriction 

that this sumvector is uncorrelated with y. Compare with the classical 

solution for multiple regression, where it is assumed that y has measurement 

error whereas X has not: we then minimize the sum of squares of yc+P®t 

under the restriction that this vector is uncorrelated with X. 

(ix) Solutions with negative value of are ridge regression solutions. 

Obviously, the tangential slope becomes flatter to the extent becomes 

more negative, thereby decreasing the value of the sum of squares of the 

weights -t/c. 

(x) In Figure 1 there is one particular ridge regression solution 

where the tangential has slope -1, which implies t't=c2=l. It has the 

simple interpretation that the sum of squares of the difference vector 

y-Xb is minimized under the restriction that b'b=1. It follows that Xb 

can be interpreted in terms of projections of the row points of X on a 

vector with direction cosines b. Such a solution also is "fair" in the 

sense that it gives equal shares to y and X. Figure 1 shows other such 

"fair" solutions. E.g., the solution with largest eigenvalue is not 

fair: it depends mainly on the internal structure of X (X'X has large 

eigenvalue) and it more or less ignores y. The solution therefore 

"explains" much of the variance of X, but little of the variance of y. 

The solution where the tangential slope equals -1 corrects this bias. 

(xi) The solution for smallest eigenvalue of the combined correlation 

matrix of y and X is on the left lower branch of Figure 1. It gives the 

best estimate of a linear relation between y and Xt under the assumption 

that both y and X are subject to measurement error of the same order of 

magnitude. This solution is probably the oldest example of application 

of eigenvector theory to data analysis (Pearson 11901]).The example of 

Figure 1 also shows that at this particular eigenvalue solution the 

tangential has steep slope, indicating that the solution depends more on 

the internal structure of X than on the relation between X and y. 
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(xii) Figure 1 and Table 2 also identify a solution on the left lower 

branch labeled x,,. It is a ridge regression solution where yc+P$t is 

uncorrelated with x2- Such a solution would be appropriate if it could 

be assumed that y and x^ are subject to measurement error whereas x^ is not. 

Its counterpart is the solution labeled x1 on the middle branch, where 

yc+P$t is uncorrelated with x^. 

(xiii) The solution labeledy, and where the horizontal asymptote 

intersects the middle branch, has the characteristic that Port is 

uncorrelated with y. 

(xiv) Finally, Table 2 also identifies the bending point of the middle 

branch. This point does not seem to have any particular meaning for 

data analysis. It explains, however, why it can happen that there are 

more than (k+1) solutions where the tangential slope is equal to -1 

(labeled M in Figure 1 and Table 2). 

5. Geometry of ridge regression 

Figure 2 shows the geometry of ridge regression. First of all, this figure 

shows the two vectors p^^ and P2cp2 as principal axes of an ellipse. All 

vectors Pot with t't=1 (and therefore all vectors Xb with b'b=1) will be 

located on this ellipse. Figure 2 also shows the projection of vector 

y on the plane spanned by X. Clearly, to obtain a weighted sum Pot 

which coincides with the projection of y (this solution for Pot would 

be the solution for classical multiple regression) requires that this 

vector Pot is far outside the ellipse. In other word, this solution 

requires that ft is much larger than 1 (in fact, section 2 showed that 

t't=9.127, so that an ellipse passing through the projection of y 

should be a factor /9.127 larger than the ellipse shown in Figure 2.) 

Suppose now that we require a ridge regression solution with t't=l. I.e., 

the solution for Pot should be located on the ellipse of Figure 2. At the 

same time we want Pot to be as close to the projection of y as possible. 

This implies that Pot should be selected at the point where y has smallest 

distance to the ellipse; in other words, where a circle around the point 

y is tangential to the ellipse. Figure 2 illustrates this for the four 

solutions labeled M (also in Figure 1 and Table 2). The ridge regression 

solution is, of course, the solution M which is closest to y. 

Figure 2 also explains why there is a bending point in the middle branch 

of Figure 1. If we would require a solution for Pot with ft much smaller 

than 1, the corresponding ellipse becomes also a very small one. Circles 



-p> 
o 

Figure 2. Geometry of ridge regression for P®t with t't=1. 
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around y then are tangential to this small ellipse at only two points 

(instead of four). The bending point in Figure 1 indicates where the 

transition from four to two such solutions occurs. 

6. Conclusions 

Purpose of this paper was to relate ridge regression to a number of other 

least squares solutions which express relations between y and X. Such 
solutions are illustrated in the graph of the determinantal equation 

(Figure 1). Moreover, solutions on the left-lower branch are all of 
the regression type, with relatively small sum of squares for the vector 

yc+Pot. Solutions on the right-upper branch, on the other hand, are 
characterized by the fact that the vector yc+P®t explains much of the 
variance of y and X. Solutions on the intermediate branch are in-between 

these two "ideals”. 
A similar approach can be developed for the situation where there are 

more than one criterion variables. The classical solution then is the 
canonical solution. But it then becomes rather easy to develop "canonical 
ridge regression" solutions and other solutions for relating two sets of 

variables. This is further discussed in Van de Geer F1984, in press]. 
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