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SOJOURN TIME DISTRIBUTION IN DATA NETWORKS 
WITH INDEPENDENT EXPONENTIAL SERVICE TIMES 

AND NON-OVERTAKING PATHS 

J. Hoogwerf 

An open queueing network of a data network is con¬ 
sidered. The services times in the stations have 

independent exponential distibutions. When all the paths 

in the network have the non-overtaking property it is 

possible to derive the distribution of the sojourn time 

of messages in the network. A numerical example is 

presented. 

1. INTRODUCTION 

A data network is a collection of switching nodes 

connected together by a set of communication channels. 

It provides a message switching service to the users at 
the various nodes. Messages in the network are routed 

from one node to another in a store-and“forward manner 
until they reach their destinations. A key performance 

measure of the data network is the sojourn time from the 
arrival of the message at its source to the successful! 

delivery of this message at its destination. Kleinrock 

(1964) developed an open queueing network model for data 

networks and derived an expression for the mean sojourn 
time. This expression has been used extensively for 

performance analysis and network design. 

Kleinrock's result is the mean sojourn time over all the 
messages delivered by the network, but he does not give 

results about the distribution of the sojourn time. 

In this paper we treat; messages with the same source- 
destination pair as belonging to a particular message 

class and derive the distribution of the sojourn time of 
each class. We consider a network with fixed routing, 

and assume that there is one unique path for each mes¬ 

sage class in the network. 

The derivation is based on Kleinrock's model with 
emphasis given to classes of messages. A description of 

this model is given in section 2. The model is a special 
case of the queueing network model studied by Jackson 

(1957). We briefly consider this model in section 3. In 
section 4, we use the results of Walrand and Varaiya 

(1980) for networks with non-overtaking message-paths. 

The basic result on the distribution of the sojourn time 

for a class of messages is given. This result is then 
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generalized to the whole network. Knowledge of the dis¬ 
tribution of the sojourn time allows us to determine 
statistics as the mean, variance and 90-percentile of 
the sojourn time. 
Finally section 5 is devoted to a numerical example and 
application of the results to data networks. 

2. MODEL DESCRIPTION 

We first assume, that the sojourn time experienced 
by a message in a data network is approximated by the 
queueing time and the data transfer time in the chan¬ 
nels. The processing time at the switching nodes and the 
propagation delay in the channels are assumed to be 
negligible. 

Let M be the number of channels and C. be the capacity 
of channel i, i=l,2,...,M. In our open queueing network 
model, each of the M channels is represented by a sin¬ 
gle server queue. The queueing discipline at each chan*- 
nel is first-come^-first-served. We assume that all chan¬ 
nels are error free and all the nodes have unlimited 
buffer space. 

Messages are classified according to source-^destination 
pairs. In particular, a message is said to belong to 
class (s,d) if its source node is s and its destination 
node is d. Let R be the total number of message classes. 
In a network with N switching nodes, R=N.(N-1). For con¬ 
venience, we assume that message classes are numbered 
from 1 to R, and we use r instead of (s,d) to denote a 
message class. The arrival process of class r messages 
from outside the network is assumed to be Poisson with 
mean rate . Message lengths for all classes are 
assumed to have the same exponential distribution and we 
use 1/p to denote the mean message length. It follows 
from this last assumption that the data transfer time of 
all messages at channel i with capacity C. is exponen¬ 
tial with mean 1/pC^. For the mathematical analysis to 
be tractable, Kleinrock's independence assumption is 
used. This assumption states that each time a message 
enters a switching node, a new length is chosen from the 
exponential message length distribution. 

The route of a message through the network may be 
described by an ordered set of nodes or an ordered set 
of channels between these nodes. We assume that the 
routing in a data network is along the shortest possible 
route. If there are alternatives, one route is chosen. 
This means that the route of each message class is 
unique. We use a(r) to denote the ordered set of chan¬ 
nels over which class r messages are routed. 

In fig. 1 we show a hypothetical data network with 6 
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nodes and 12 channels. The matching queueing network is 

shown in fig. 2. 

We note that a full duplex channel between two nodes in 
the data network consists of two independent channels in 

the queueing network. One for each direction of a 

duplex channel in a data network. 

Fig.2. Matching queueing network. 

3. OPEN JACKSON NETWORKS 

The model of a data network and the matching queue¬ 
ing network, which we described in the previous section 

has much in common with an open Jackson network with 
single server queueing stations. We will not give an 
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overview of the existing literature of these networks. 
This would take several pages. We only give one of the 
most recent results. 
A path in a network is an ordered set 

(u1(_'ui'ui+i'•••'um> of channels with 

p > 0 
uiui+l 

for 1 < i,i+1 £ m. 

We say that a path has the non^-overtaking property if a 
message travelling along that path cannot be overtaken 
by the effects of subsequent arrivals of messages on 
that path. 

However a path need not be a message route in the sense 
that it may not be possible for any single message to 
follow the successive channels in a . path. The non¬ 
overtaking property means that all paths from i to iv 
must go through i(j+^. Hence a message which traverses 
i,,..,i ,..,i ,../i cannot be overtaken either directly 1* ' □ v rn 
by any message which inters after him or indirectly 
by subsequent arriving messages. Thus it is information 
or influence as well as physical presence which is not 
allowed to pass a message. 

Walrand and Varaiya (1980) showed that in any open Jack- 
son network, the sojourn times of a message at the vari*- 
ous channels of a non- overtaking path are all mutually 
independent. Since the distribution of the sojourn times 
at each channel is known, it is possible to calculate 
the sojourn times for non“-overtaking paths. 

Walrand and Varaiya showed that the non-overtaking pro¬ 
perty cannot be generally relaxed and they also showed 
that for any network the sojourn times along any path 
which permits overtaking cannot be independent at least 
under light traffic. 

If in a network all the paths have the non-overtaking 
property then we can decompose the network into indepen¬ 
dent M/M/1 channels. This result we use in the next 
section. 

Very recently Daduna (1982) gave a rigorous proof of an 
explicit expression for the sojourn time through a non¬ 
overtaking path in a general Gordon-Newell network with 
different customer classes. 

We note that if we are only interested in the mean 
sojourn time of messages in a channel, on a route or in 
the whole network, we only need to use Jackson's 
results. 
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4. SOJOURN TIME DISTRIBUTION 

In section 2 we assumed that the routing of mes1- 
sages in a data network is along the shortest possible 

route and if there exist alternatives one of these is 

chosen. Under this condition there are data networks in 
which all the message routes in the network are paths 

with the non1-overtaking property. In section 5 we will 

give examples of these data networks. 
Here we assume that a message route in a network is a 

path with the non^overtaking property. In this case it 

is possible to derive the distribution of the sojourn 

time along this route. 
According to the result of Walrand and Varaiya the 
sojourn times of a message at the various channels of 

this route are mutually independent. 

This means that the sojourn time of message of class r 
in the network is given by the sum of /a(r)/ independent 

random variables. Each variable in this sum is the 

sojourn time in a channel on path a (r) . The sojourn time 

of channel i is given by the sojourn time of a M/M/1 

queue. 

Let i=l,2,...,M and r=l,2,...,R be the mean 
arrival rate of class r messages to channel i. Then 

f /r if channel i € a(r) 

l 0 otherwise. 
( 1) 

Let p^r be the utilization of channel i by dlass r 
messages, then 

Pir = ^ir/*jCi * ( 2) 

The total utilization of channel i, , can then be 

written as 

Pi= ^ Pir’ < 3) 
r = l 

We require that pi < 1 for i=l,2,-,M, the equilibrium 

condition. 
According to queueing theory, the density function of 

the sojourn time of channel i d^fx) is 

d • (x) = pC. .(!**>.)-exp (- pC. . (1-p. ) .x) 
1 1 1 x 0. ( 4) 

So the mean E(T^) and variance Var(T-) of the sojourn 

time in channel i are 

E(T.)=l/(pCi.(1- p.)) ( 5) 
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and 

Var (Ti)=l/OjCi. (1- pj))2. ( 6) 

For^the Laplace transform of the sojourn time in channel 
i D.(s) we have 

Dj (s) = f exp(-sx) .dj(x) .dx ( 7) 

thus 

D. (s) = 
^ci ^-Pj) 
S+pC.(1-pj)■ ( 8) 

Let t^fx) be the density function of the sojourn time of 
class r messages and T^fs) be its Laplace transform. 

It 
The Laplace transform T (s) of the sum of /a(r)/ 
independent random variab 

d.(x) and i a(r), is given 

Laplace transforms, i.e. 

t*(s> = n 
i £ a (r) 

* 
T^(s) can be inverted, by 

give tr(x). 

es with density functions 

by the product of their 

PC-.d-p^ 

s+pCj. . ( !-p^ ) * < 

using partial fractions, to 

Also because of the independence the mean E(T ) and 

variance Var(T^) of the sojourn time T of messages of 
class r are given by 

E(Tr)= S l/(pC..(l- p.)) 
i £ a(r) 

and 

(10) 

Var (T ) = 5 l/OiC. . (1-p, ) ) 2 . (11) 
i£a(r) 1 1 

These results apply for a message route which is a path 
with the non-overtaking property. 

If all the routes in a network are paths with the non¬ 
overtaking property then it is possible to derive the 

distribution of the sojourn time of all the messages in 
the network. 

R 
We let y= S Zr. 

Because of the property of linearity of Laplace 

transforms it is easily seen that the Laplace transform 

of the sojourn time of all messages in the network T (s) 
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is given by 

R yr 
<s)= 5 

r=l ' 
Tr (S) (12) 

For the mean E(T) of the sojourn time of messages in the 
network we obtain 

R Kr 
E(T)= 5 5 l/(uC (i-p )). (13) 

r = l ' i e a(r) 

R 
If Kj3 5 >,ir and pj =yi/*iC, then 

r = l 

1 M 
E(T)=7. 5 ^/(pC-.d-p.)). (14) 

' i = l 

For the variance Var(T) of the sojourn time of messages 
in the network we can write 

Var (T) =E (Var (Trl r) ) + Var (E (T^.| r) ) , 

R yr 

h 5 T r = l ' 

R / R / 
Var (T) = 5^-i-.Var(Tr)+ 5 -y. (E (Tr)-E (E (Tr) ) ) ' 

and 

r yr 
E(E(T ) )= 5 —y-- E (T ) =E (T) 

r=l r 

(15) 

(16) 

(17) 

Hence 

r y R X 
Var (T) = $ —7-. Var (T ) + 5 _£[E2 (T,.)--2. E (T^) . E (T)+E2 (T) ] 

rll ^ r r = l "r' 
(18) 

SO 

r y R X 
Var (T) = 5 -?£.Var (T ) + 5 -i.E2(T ) - E2(T). (19) 

r=1 ' r=l r 

We remark that eq.(10), (11), (14) and (19) may also be 

obtained by using 

E(Tn)=(‘l)n.T*(n)(0). (20) 

5. EXAMPLES 

Our numerical examples are based on the hypotheti¬ 
cal network shown in fig. 1. The external arrival rate 

of messages belonging to each source-destination pair is 

given by the traffic matrix in fig. 3. 
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destination 

1 2 3 4 5 6 

source 

1 
2 
3 

4 

5 

6 

0 2 2 2 1 3 

2 0 1 2 2 2 
2 1 0 2 2 2 
2 2 2 0 2 2 
1 2 2 2 0 1 
3 2 2 2 1 0 

Fig. 3. Traffic matrix 

All channels are assumed to have the same capacity. The 
mean message length and the capacity ara chosen that 

1/pC. = 0.05 for channel i, i=l,...,12. 

We first consider the case that the routing is based on 

the shortest path between each pair of nodes. Suppose we 

are interested in the sojourn time from node 1 to 5. 

Messages routed along the shortest path between this 

source and destination pair we denote by class 1. The 

channels on this path are 1, 3 and 9. In fig. 4 we give 

the traffic streams that pass these channels. 

Fig. 4. Traffic streams 

From the traffic matrix we get the total arrival rate 
for 
channel 1: 10 

channel 3: 6 

channel 9: 8. 

With pCi=20, we 
We apply eg.( 9) 

10 6.8 
we get Pl=p, p3pI and Pg^ 
9) and get 

T*(s)= 10 . 14 . 12 
s+10 s+14 s+12 

By using partial fractions we may express this as the 
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following sum 

T*(s)= 210 + 210 - 420. 
s+10 s+14 s+12 

This Laplace transform can be inverted to give 

t^ (x)=210.exp(-10x)+210.exp(-14x)-420.exp(-12x) x 0 

and of course t1(x)=0 for x < 0. 

A plot of t^ is shown in fig. 5. 

The n-th moment of X is calculable from 

E(Xn) = (^l)n.T*(n) (0) . 

For the mean E(X) and the variance Var(X) of the sojourn 
time along the path (1,3,9) we may compute 

E(X)=0.255 

and 

Var(X)=0.022. 

This result may also be obtained by using eg.(10) and 

eg. (11) . 

Fig. 5. Sojourn time distribution of class 1 messages. 
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Now consider the case that we do not have routing based 
on the shortest path from node 1 to node 5. Instead of 
this the messages from node 1 to node 5 go through the 
channels 1,5,8,9 but all other messages are still routed 
through their shortest path. 
In fig. 6 we give the traffic streams that pass these 
channels. 

We see that path (1,5,8,9) can be overtaken by path 
(1,3,9). So it is impossible to derive the distribution 
of the sojourn time along this path. 

In this network with traffic between all nodes we will 
have dependencies if the routing of the message is so 
that 

P37+P84+P45+P63+P58+P76>0‘ 

We will have dependencies between the sojourn time in 
channels of a data network if the matching queueing net¬ 
work allows overtaking. 
It will only be possible to derive the distribution of 
the sojourn time of messages in a data network if in the 
matching queueing network any two channels are only con¬ 
nected by one path. In fig. 7 we give some examples of 
such data networks. We assume shortest path routing of 
messages and if there are alternative routes: take the 
route that turns clockwise. 
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