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Breda 

Abstract 

The linear assignment problem can be solved by finding 

the row- and column reduction constants such that their sum 

is maximal. We do this with the aid of the simplex method 

applied to the dual problem. For the administration of the 

process we need only a straightforward assignment tableau 

format, containing the reduced costs. Results of application 

of the algorithm to some small problems are compared with 

the behaviour of the Hungarian and the Tomizawa approach. 
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1. Introduction 

We consider the linear assignment problem: 

*1in c . . x . . 
, • 13 i'J 

n 
s.t E i = 1 , . . . , n 

(1) n 
j = 1 , . . . ,n 

i = 1, . . . , n ; j = l,...,n 

non-negativity constraints, because every basic feasible 

solution of (1) automatically has this property. For our 

purpose we need the dual formulation of problem (1): 

n n 
Max F n. + F v 

(2) 

u., v. unrestricted! 
1 3 

We will show that this dual problem can be solved by the 

simplexmethod , using only an assignment tableau format for 

updating the "reduced-cost"-matrix. This matrix can function 

as "right hand side-column" containing the values of the 

basic feasible solution. Also the non-basic variables of 

the corresponding simplex tableau are indicated in the 

assignment tableau. The relative costs of the non-basic 

variables can be determined from primal equations and the 

appropriate pivotcolumn is generated in an easy way by 

using "reduction" arguments. 
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2. Row- and columnreduct ion 

Most of the efficient algorithms for solving the assignment 

problem make use of the following theorem: 

Theorem 1: 

Proof: 

The optimal solution of the linear assignment 

problem does not change under addition of a 

constant to each element of a row or column of 

the cost matrix. 

Suppose c..=c..+c for i=l,...,n in row i of the 
iO ill 

cost matrix. Then the objective function is: 

MinfEE c..x.. + cEx..] = Min EE c..x.. + c, because 
• • 13 13 13 ii 13 13 

E x..=l should hold for every feasible solution. 

Throughout this study we will use Th. 1 in the following 

order: 1.Reduce all costs c^ in row i with 

(3) u. = Min {c. . |j = 1 , . . . ,n} for i = l,...,n 

1 j 1:1 
2.Next diminish all reduced costs in column j with 

(4) v. = Min {c. .-u. |i = l, .. . ,n} for j = l,...,n 
3 • 13 

Example 1 As an illustration we use the example from [ 2] : 

Cost matrix: 

(c. .} = 
13 

7 12 

5 10 

14 15 

8 13 

10 9 

9 11 

7 8 

13 12 

11 14 

7 6 

5 

12 

8 

7 

13 

Table 1. 
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Table 2 

The numbers and v. represent a basic feasible solution 

of the dual problem (2). The corresponding values of the 

slack variables are: 

(5) y..=c..=c..-u.-v.>0 i=l,...,n;j=l,...,n 
•’i: 13 13 i 3 

and the objective value: E u.+ £ v.- 35 
i 1 j 11 

The O-elements corresponding to non-basic variables will be 

underlined in the assignment tableau. The elements v_.= 0 

are included whenever the cells where Min ^c£j“ and 

Min {c..} coincide. So in total there are 2n non-basic va- 

j 13 
riables. The remaining numbers c^_. and u^, v^ are the values 

of the basic variables in the dual simplex tableau. 

In Table 3 and 4 resp. the initial dual simplex tableau and 

the tableau corresponding to the solution after reduction 

in Ex. 1. are given. In fact 7 simplex iterations are needed. 

x) For ease of notation we use y. . , 
13 

ponding primal variables x 
13 

referring to the corres- 



Table 3 Table 4 
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T; 3 cost matrix {c^.}can be reduced further by changing u^ 

and v. in an appropriate way. These alterations are repre¬ 

sented by A u ^ and A v.. Be'ause of (3) and (5) we must choose 

Au.< 0 for i = l,...,n. * ^ 
i 

E.g. in Table 2 let us take Auc= -1, so add 1 to each ele¬ 

ment of row 5. Then we can choose Av^3 ^V3= ^V4=: ^ giving 

an improvement EAu.+ EAv.= 2 for the objective value. The 

i 1 j ^ 

new assignment tableau is: 

c . . 

Table 5 

Further improving combinations of Au^ and Av. can be selec¬ 

ted, until £u^+ £v. is maximal. This "reduction process" 

can be controlled completely by the simplex method applied 

to the dual problem. 

3. Preparation for the simplex method 

In using the simplex method for solving problem (2) we 

should be aware of the fac’4-, that the variables u. and 
i 

v^ are unrestricted in sign. The optimal solution is not 

necessarily non-negative. 

*) See also Th. 5. 



Example 2 

u . Au . 
i i 

110 

0 0 0 

110 

0
0
0

 

-1 

0 0 0 

1 1 

u . 
i 

0 0 0 

0 0 1 

0 0 0 

0 

-1 

0 

110 1 

Table 6 Table 7 

Optimal solution: 

u = (0,-l,0) 

v = (1,1,0) 

£ u . + E v . = 1 
1 3 

Primal solution: 

e.g. 
33 

1 

Repeated application of Th. 1 can give relief: 

Theorem 2: Addition of a big number M to all elements of 

the cost matrix can give a non-negative solu¬ 

tion of the dual problem. 

Proof: Let the optimal solution be {u^}, {v.} with 

u = Min u.< 0 and v = Min v.< 0. Then {u.+ v }, 
r . i s . n is 

i 3 
{v.- v } is also a feasible solution with the same 

3 s 
object value E u.+ E v.. If we take M> -u -v 

13 r s 
then {M+ u.+ v }, (v.- v } is a non-negative 

is 3 s 
feasible solution with E u.+ E v.+ n.M, hence 

! i 1 j 3 optimal. J 

Example 3 Add M= 10 to the cost matrix of Ex. 2: an opti¬ 

mal solution is then: u^= (10,10,9), v = (1,1,0). 

E u.+ E v.= 31- 30= 1 
1 3 

Simplex method 

The content of the next theorems allows us to use the simplex 

method without carrying the burden of the dual simplex ta¬ 

bleaux . 
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Theorem 3: The relative costs of the non-basic variables in 

the dual simplex tableau can be determined by 

solving the equation set: 

(6) 
j = 1;NB 

R..= 1 for i=l,...,n and 
1D 

R.• - R „ . = i ij n+1,j;NB 
i = 1; NB 

for j = 1, . . . ,n 

where NB means summation only over non-basic elements 

R. .= relative cost of non-basic variable y. . 
1:1 11 p*) 

R .= relative cost of non-basic variable v. 
n + 1 , j 3 

Proof: In a simplex tableau the relative costs of the non- 

basic variables are equal to the values of the cor¬ 

responding primal basic variables, whereas dual basic 

variables have corresponding primal value zero. The 

constraints of the primal problem can equivalently, 

be written as follows: 

Z x..< 1 , Z x.> 1 

3 13 i 13 

°r’ D D 
Z x..+ u. = 1 , Z x..-v. - 1 
j 13 i i ^ 3 

P P 
ui > 0 vj > 0 

For any simplex tableau, where all u. are basic variables 

and so u? = 0 and all = 0, resp. v? = 0 whenever 

resp. v. is basic (6) must hold. Because these 2n equations 

are independent the 2n variables can be determined uniquely. 

*) u? and v? 
i 3 

u. and v. 
i 3 

refer to the corresponding dual variables 



86 

Example 4 Let us start from the basic feasible solution in 

Ex 1: 

Table 8 

The equations (6) become: 

15 

*21 

35 

*4 5 

5 2 

1 

1 

1 

1 

R53 + R54 = 1 

R21- 

52 

5 3 

R54- 

R15 + 

Solution: R_ .. = 0 , R = 2 , P.c,= -1 and RCI= -2 etc. 
61 6 5 ’54 64 

Notice that E R . = 0-2+2 = 0 

j,NB 63 

In Th. 4 it will be shown that this follows automatically for 

each tableau. 

From these relative costs it can be decided which variable 

should go into the basis by determining 

(7) Min {R..I i= 1,...,6 ; j= 1,...,5} = R 13 1 > > > 5 rs 

The corresponding y^ or v^ leaves the set of non-basic va¬ 

riables. In the example we find R = R„, = -2, so we make v >0. 
K rs 64 ’ 4 

Theorem 4: In each assignment tableau the sum of the relative 

costs of the non-basic v .-variables is zero. 
3 

Proof: The relative costs of the non-basic variables v. 

P . D ^ 
are R , . = v\ , whilst u.= 0 for all i, so from 

n+1»3 3 1 

the primal problem it follows that 

and 

E X . . : 

j 

E x . . - 
i 13 

1 for i= l,...,n or EE x..= n 

ij 1:1 

?? = 1 for i=X....n or EE x..- E v 
^ ij ^ j.HB 

Hence E 

j ,nb j ,NB 
n +1 , j 

0 . 
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5. Pivotcolumn determination 

After determination of the new basic variable we need the 

corresponding pivotcolumn in the dual simplex tableau. This 

column can be found with the aid of the following "reduction 

. We distinguish two cases: 

5.1.Some v. becomes basic. -1- 
Suppose we take 1. So each element c the corres¬ 

ponding column of the reduced-cost matrix becomes c^^-1. 

In order to maintain non-negativity of the reduced costs 

we should make Au^= -1 in each row containing a non-basic 

element in that column. Next for each new row with Au.= -1 
i 

we must mark columns containing non-basic elements with 

Av_.= 1 and so on. This marking process is finished if no 

new marks are needed. 

Example 5 Consider the tableau of Ex. 4 and make Av^= 1. 

Au . 
i 

Then Au^ = -1, next Av^ = Av3 = 1 

are needed. 

Notice that E Au.+ £ Av.= 2, 
i 1 j 3 

fitting in with the meaning of 

relative costs. 

x= NB-element 

X 

X . . . . 

. . . . X 

. . . . X 

XXX. -1 

X . . X X 

111 2 

Table 9 

From the influence of the alterations Au. and Av. on the 
1 : 

cost matrix and thus on the values of the basic variables 

of the dual tableau we can deduce the pivotcolumn. 
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Example 6 The pivotcolumn in Ex. 5 is found by taking the 

reverse of each element in Table 10. 

Compare this with the v^-co- 

lumn of Table 4: e.g. making 

v4= 1 gives: 

yi2= 4-v4= 4~1= 3 

The only difficulty in this "reduction" argument is that 

besides v, other variables v. could be forced to become 
k 1 

basic. However from Th. 2 we know that, eventually after 

introduction of M at the start, there is a non-negative dual 

solution, to be found with the simplex method. Therefore 

this situation can not be met, because then two variables 

would become simultaneously basic, which is impossible in 

the simplex method. 

5.2.Some y.. becomes basic. 
-—i j- 

In this case we can use similar "reduction" arguments. We 

start with Au^= -1, next marking all columns k with non- 

basic elements in row i, except column j, with Av^= 1 and 

so on. In contrast with case 5.1. now another way of reaso¬ 

ning is possible: begin with AvJ.=-l and so on. But then we 

get some Av^< o and the new solution could become infeasible. 

In Th. ‘5 we consider this seperately. 

Example 7 

Au. 

Table 11 

Suppose the variable y^ in 

Ex. 5 should become basic. 

Then take Au^=-1, next Av^3 

=Av=l with RCI =EAu.+EAv.=l 
3 54 . i . i 

i 3 

In this example starting 

with Av^= -1 is impossible. 
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Theorem 5: 

Proof: 

For a non-basic element with ^ "the * educ¬ 

tionM-int erpret at ion with some Au^ = -1 and some 

Av. = 1 can always be used in order to determine 

the pivot column, provided that we start the 

algorithm with row reduction followed by column 

reduct ion. 

Suppose an appropriate M is added to {c^.} , such 
r o J o-. 

that a non-negative optimal solution lu^, ,v_.j 

exists. This solution can be found with the sim¬ 

plex method. In the first reduction phase we 

determine the row minima: ^ for i = l,..,n and 

next some v.> 0 (at most n-1), say for with 
3 

JC{l,...,n} are found. In the following step we 

can consider the reduced matrix as 

the initial cost matrix of a new problem. This 

problem has the same optimal primal solution (by 

Th. 1) and corresponding non-negative dual solu¬ 

tion: 

{u?'}={u°} and v°'= v° for j?J and v° = v°~vj 

for j£J. 

In applying the simplex method to the new problem 

we meet the same simplex tableau after the first 

reduction phase, with the same non-basic elements, 

relative costs and reduction constants ul^ = u^, but 

with all v! = 0. Now the only way to improve the 

solution is making some Au^< 0 and some ^vj> °5 

otherwise the solution becomes infeasible, leading 

to a contradiction. The same argument can be used 

in further steps. 

Theorem 5 does not hold in general for non-basic 

elements with R..> 0. 
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Example 8 

Au. 
i 

. . . . X 

X . . . . 

. . . . X 

. . . . X 

. XXX. 

-1 

X . . X X 

-1 

'Table 12 

Suppose in the solution of Ex. 4 

we want the column belonging to 

NB-variable y.,. with R1ir= 1. 
lb Id 

Then we conclude that Au^= -1 

For variable with ^ 

follows Ar -1. 

Remark: In fact it is always possible to use the reduction 

argument starting with Au^= -1. When a second 

variable in the v.-row should become basic we can 
D 

compensate this by the following move: 

make j-Av^= -1 for j = l,...,n and 

''Au!= 1 for i = l,...,n 
i ’ 5 

Example 9 

Suppose we want y^2= ^ 

Table 13. Then the reaso¬ 

ning is as follows: 

iu5= -1 " 1 - 

Au!= 1 for i=1,...,5 ^ 
i 

Av^ = -1 ^or j = l, . . . ,5, 

because otherwise v, >0 
4 

too ^ A v" = A v ^ = 1 for 

feasibility =* 

Au^ =Au^' =Au” =Au^' = -1. 

Final i-esult : Av^= -1. 

Au. Au! AuV 
iii 
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•Determination of the leaving basic variable 

From the simplex criterion 

i = 1,. . . c = Min{c . . IAv. = 1 and Au.=0 
pq il1 1 i 

it follows, that y 
pq 

; j = l, . . .,n} 

becomes non-basic. Justification is easy 

because each pivotcolumn element that is involved equals 

unity. Therefore c gives also the amount by which the same 

reduction can be performed. 

Example 10 

From Tables 8 and 10 we conclude: 

c = c = 1, so (2,3) is the new 
pq z o 

non-basic element. After reduction, 

amount 1, the assignment tableau of 

Table 14 is reached. Object value: 

£u.+ Ev . = 37 . 
i 1 

Remark: The reduction amount c could be zero. In that case 
- . . pq . 

the composition of the basis changes, the matrix 

(c. .} does not. 
il 

7. Relative costs 

The next simplex step starts with the calculation of the 

relative costs of the non-basic variables according to Th. 3. 

However this can be done more efficiently by using the next 

theorem: 

Theorem 6: The relative costs of the non-basic variables can 

be determined by 

a. Constructing a loop, involving cell (p,q) and 

cell (r,s) and other non-basic cells (in the 

v . -row as well) 
1 

2 3 2 5 £ 

£ ! 0_ 2 7 

6 3 3 3 _ 

! 2 2 6 £ 

5 £ £ £ 8 

5 

5 

8 

7 

5 

£ 4 2 1 0. 37 

Table 14 

X The elements of the u_.-column are supposed to be big 

enough, eventually after addition of M, to remain positive. 
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Proof: 

b. Recalculation of R^'s: 

k +1 
R..= R.. + (-1) R , where k=l in cell 
ij 13 rs’ 

(p,q) moving around the loop and temporary 
s t 

reversal of signs in the (n+1) row. 

c. Leaving the remaining R^ unchanged. 

The new values of R^ satisfy the equations of 

Th. 3, because the row- and columnsums are un¬ 

changed. This holds also for the v_.-row, where 

ER .= 0. 
n + l »3 

Further, in the primal tableau the non-basic cells 

can be considered as a basic solution in a trans¬ 

portation tableau (m=n+l, n=n; number of basic 

elements: 2n), provided that we take -^n+2 j* 

In a transportation scheme such loops are unique. 

Example 11 
u . —I, 

2 

6 

1 

4 

4 3 6 _0_ 1 

3 
4 4 1 4 n 1 

3 3)7 1 

£ 1 o/1 o"1 7 

5 

5 

8 

7 

6 

0° 3 1 ia~2 n. 2 

Table 15 

u . 

Table 16 

The relative costs of Ex. 4 are given in Table 15. From Ex. 

10 we know that y^^ is leaving the basis. The loop is passing 

the elements (2,3): R23= 0+2=2 ; (2,1): R21= 1 - 2 = -1; 

(6,1): Rc = 0+2=2 ; (6,4): R_ = 2-2=0 (disappears); 

(5,4): R54= -1+2=1 and (5,3): R53= 1 - 2 = -1. After 

these adjustments the sign of R^^ is reversed again, so 
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8 . Stopping rule 

The algorithm terminates when all relative costs of the non- 

basic variables are non-negative. Obviously the elements 

with R£j= 1 then represent a feasible and optimal assignment. 

The corresponding primal variables x.. have the same value 

and satisfy the constraints of the primal problem (1). 

Moreover by Th. 4 we know that all relative costs in the 

v.-row must be zero. The optimal objective value is: 

EEx..= £u. + £v.. 
ID i D 

9 . Algorithm 

Define the matrix {NB(i,j)}, with NB(i,j) = 1 if the element 

( i , j ) is non- 

basic 

= 0 if not. 

Define J={l,...,n}. 

Start: 

0. If necessary: + M j = l,...,n 

Set NB(i,j)=0 for i=l,...,n+l ; j=l,...,n 

1. Calculate u.= c. = Min{c. . Ij = 1 , . . . ,n} for i = l,...,n. 
i is 13 1 J ’ 

Make s^J ; NB(i,s)=l ; NB(n+l,s)=l 

and reduce the cost matrix: 

c..= c.. - u. i=l,...,n; j=l,...,n 
ID ID 1 

2. Calculate v.= c .= Min{c. . Ii=1, .. . ,n} for . 
D rD iD 1 

Mak^: NB ( r , j ) = 1 

and reduce the cost matrix: 

c..= c.. - v. i=1, . . . , n ; j = 1,. . . ,n 
ID iD D 

3. Determine Min cost= Eu. + Ev. 

i 1 3 3 

Determination of relative costs: 

4. Solve 
E NB(i , j ) R . . = 1 i = 1 , . . . ,n 

j=i 
13 
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n+1 
£ NB(x,j)R.. = 1 

i = l 1] 

Determination of new basic variable: 

S. Hake Rn+1>. = -Rn+1>j if NB(n+l,j) = 1 

Determine Min{ FU ^ |NB(i , j) = 1 ; i = l,...,n + l ; j=l,...,n} = 

R If R >0 then stop: optimal solutionrx. . = 1 iff R. .=1 
rs rs ^ i] i] 

Calculation of "pivotcolumnM 

6a. If r=n+l: Mark column s with Av =1. Next mark each row 
s 

i^n+1 having NB(i,s)=l with Au.=-1. For all new marked 

rows i successivily mark unlabeled columns having 

NB(i,j)=l with AVj=l. Then again for all just marked 

columns mark rows, and so on until no marks can be 

given. Go to 7 

6b. If r^n+1: Mark row r with Au =-l. Next mark each column, 

except column s, where NB(r,j)=l with Av.=l etc, see 6a. 

Determination of reduction amount 

7. Calculate 0 = c =Min{c. . I Av . = 1 and Au.=0; i = l.n; 
pq i] 1 ] i ’ > > > 

j = 1,. . . ,n} 

Reduction of the cost matrix: 

8. If 9^0 then make c..= c..-(Au.+ Av )*9 ; 
ID ij i d 

u.= u.+ Au.*0 for i=l,...,n 
ill 5 ’ 

v . = v.+ Av.*0 for j = 1, . . . , n 
3 3 1 

Min cost= Min cost + 0 

Recalculation of relative costs: 

9. Make Rn+^ j= -Rn+2 j ^or 3=l9**-»n whenever NB(n+l,j)=l 

Construct a loop involving cell (p,q), cell (r,s) and 

other NB-cells. Recalculate R..= R.. + (-l)k+1R movin? 
il 11 rs B 

around the loop, starting from cell (p,q) with k=l. 

Changing NB elements: 

10. NB(p,q) = 1 NB(r,s) = 0 

11. Go to 5 . 
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10. Example 

We apply the algorithm to the problem of Ex. 1. After step 

3 the reduced cost matrix is given by Table 17.2. The 

solution of the equation set in step 4 was found in Ex. 4 

and is entered in the non-basic cells (underlined) of the 

tableau. In step 5 we find: Min R. . = R_, = -2 and v, goes 

into the basis.In Ex.5 we already determined the appropriate 

set {Au.,Av.} and in step 7 we calculate 0= c^ = 1, indica- 
13 2 3 5 

ted by a rectangle. After reduction, step 8, the tableau 

is represented by Table 17.3. The relative costs are 

changed, moving around the loop, indicated in the tableau, 

starting from cell (2,3). 

In the next tableau we determine: Min R. .= R^. , = -2, so v, 
13 61 5 1 

goes into the basis. The order of the alterations in u^ 

and v is: Av^= 1 =* A u ^ - -1 ^ ^ Au 5 = -1 =* Av^Av^l 

Next we find Min{c..jAu.= 0 : Av.= 1} = c. = 1. As a conse- 
13 1 1 ’3 41 

quence y^ becomes non-basic and 0= 1. 

In Table 17.4 we choose y^^ for entering the basis. As 

leaving variable we choose y, ^ because Min{c. .}= cn.=c =1 

with 0 = 1. 

Finally in Table 17.5 we can improve the object value again 

by one unity getting Table 17.6, where all R .^0. 
1:1 

An optimal solution is x11= X23” x35= X42= X54~ 1 with 

value Eu. + Ev . = EEx. . = 41. 
. 1 .3 •• 13 
i -1 in-' 

1 U . 

7 12 9 11 5 

5 10 7 8 12 

14 15 13 12 8 

8 13 11 14 7 

10 9 7 6 13 

0 
0 
0 
0 
0 

0 0 0 0 0 0 

2 4 3 6 £ 1 

0 1 2 ITI 3 7 

5 

5 

8 
7 

6 -1 

> 6 
1 

4 

4 

3 

0 1 

4 “tO.1 

3 7 

0 1 O"1 7 

0 0 3 1 0 2 o-2 35 

111 2 

Eu . + 
1 

Ev . 
3 

E Au . + 

EAv . 
3 
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12 1 4 £ 1 
-1 2 
£ __1 0. 2 8 

5| 2 2 2 .0. 1 

( i s jl” 1 
- I 

5 i0_ A0 ~ 0_ 9 

5 

4 

8 

7 

4 -1 

1 5 3 2 £ ° 39 

1 1 1 

Table 17.1-6 

11. Computational Results 

The algorithm is applied to some small problems, by hand. 

The results, given in Table 18, are compared with the 

performance of the Hungarian method and the revised Tomizawa 

approach from [ 2] . 

All methods start with row-reduction of the cost-matrix 

followed by column-reduction. The dual method always uses 

Au^ 0 and Av_.> 0. The Hungarian method, as described in 

[1] , always gives Au^> 0 and Av_.< 0. Therefore we also 

applied the following "vertical" version of the Hungarian 

algorithm (notation according to algorithm 10.1, p. 172 in 

[ 1] ) , enabling a better comparison: 

Start: a. reduction on rows, next on columns 

b. simple determination of a set of independent 
zeroes, row by row 
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part 

part 

part 

! rows are replaced by columns and vice versa. 
i . : = ( u . 

1 I 1 lu. 

r.:= f v. 3 u 
i€l 

otherwise 

jGJ 

otherwise 

c 
i j 

c^j+ri i£I and 

c . . -ri i^I and J 

-13 
c.. otherwise 
13 

In most problems the number of iterations in the vertical 

method was less than in the horizontal version! 

Also in the Tomizawa algorithm we started with a simple 

determination of independent zeroes, row by row. 

We distinguished two different kinds of iteration steps: 

a. steps where also the matrix was to be reduced. 

b. steps where only the number of assignments or the 

composition of NB-elements (dual method) changed. 

The first number of an entrance-pair in the table gives the 

sum total of (a)-steps, the second one the sum total of 

(b ) -steps. 

Note that the total number of steps in the Tomizawa column 

automatically also gives the number of rows without an 

independent zero in the start . 

Comparison of dual and Hungarian method on one side and the 

Tomizawa algorithm on the other side can better be based on 

C.P.U.-running times, computerprograms are being written at 

the moment. 

Some remarks on the problems: nr. 1 is the example we used 

in the preceding pages, nr. 5 and nr. 6 contain random 

integers between 0 and 100. In this last problem some alter¬ 

native relative costs were chosen, which gave the mentioned 

numbers of iterations. Nr. 7 was constructed such that only 

one independent zero was found in the beginning and Nr. 8 is 

very much dual degenerate. 
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For the present some conclusions are: the dual method 

differs from and can compete with the Hungarian method, 

not with the Tomizawa algorithm. In cases of few indepen¬ 

dent zeroes the dual method could be the best method, 

because it chooses the best relative cost. In small problems 

these costs do not variate much, in larger problems this 

aspect could become important. This will be investigated 

with the aid of the computer. 

Problem size 

nr. n 

1 5 

2 7 

3 4 

4 7 

5 10 

6 10 

7 5 

8 5 

Dual Hor.Hung. 

4+2 

2+2 

2+2 

2+1 

5+2 

5+2 

2+4 

0 + 1 

4+0 

2+1 

2+0 

1+1 

4+1 

3-4-5-6 

2 + 1 

0+1 

Algorithm 

Vert. Hu'-.g. 

4+2 

2+2 

2+2 

1+1 

3+2 

3+2 

3+4 

0+1 

Rev.Tomizawa 

2+0 

2+0 

2+0 

1+0 

2+0 

2+0 

3+1 

0+1 

Remarks 

from [ 2] 

from [ 1] , p. 169 

from [ 3] , p. 78 

from [ 4] 

random numbers 

random numbers 

one independent 
zero 

dual degenerate 
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