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Summary 

Depending on the permissible transformations, four types of 

metric scales may be distinguished: the absolute scale, the 

ratio scale, the additive scale and the interval scale. For 

each of these metric scales a standardizing transformation is 

presented. A general formulation of a coefficient of asso¬ 

ciation for two variables of the same metric scale type is 

developed. Some properties of this general coefficient are 

discussed. It is shown that the matrix containing coeffi¬ 

cients of this kind between any number of variables is 

Gramian. After the proper standardizing transformation of the 

variables the general coefficient reduces to a specific 

coefficient of association for each of the four metric 

scales. Two of these coefficients are well known, the 

product-moment correlation and Tucker's congruence coeffi¬ 

cient. Applications of the new coefficients are briefly dis¬ 

cussed . 
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Association Measures 

for Metric Scales 

The product-moment correlation coefficient (PMC) is the 

most popular measure of association between two variables. 

This coefficient is the indicated measure of association when 

the variables are measured on an interval scale. 

A measurement constitutes an interval scale if it is 

invariant up to linear transformations. It does not make any 

difference, in this context, whether this invariance is 

determined by some formal model, as, for example, in the case 

of conjoint measurement, or by the use that is made of the 

measurement. 

The interval scale is one of the four metric scales (in 

a strict sense). The other three metric scales are the 

absolute scale, which allows no transformation at all, the 

ratio scale, which is only invariant under multiplicative 

transformations, and the scale that is only invariant under 

additive transformations. This last type of metric scale 

sometimes is called 'difference scale', cf. Fischer (1974, 

p.433). In this paper, this scale will be called 'additive 

scale'. 

Coefficients of association between two variables are 

known for the interval scale and the ratio scale. These are 

the PMC, as mentioned above, and Tucker's congruence coeffi¬ 

cient (Tucker, 1951), originally proposed by Burt (1948), 

respectively. In this paper, a general formula for coeffi¬ 

cients of association between two variables of the same 

metric scale type will be derived. This general formula 

reduces to the PMC and Tucker's congruence coefficient in the 

case of interval scales and ratio scales, respectively. For 

the other two metric scales, the general formula generates 

two new coefficients. These two coefficients can not be 

expressed as product moments in any obvious way. Neverthe¬ 

less, the associated matrices, containing these coefficients 

between any number of variables, will be shown to be Gramian. 

Some applications of the new coefficients will be discussed. 
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Criteria for coefficients of association 

Galtung (1967) gives ten criteria for parameters in 

general and six criteria for parameters measuring covariation 

and agreement. Similar criteria have been formulated by 

various authors, among which Mokken (1971 , p.49-57) and 

Janson Sc Vegelius (1982). For a review, see Popping (in 

preparation). The criteria given by Galtung which are most 

relevant in the context of this paper are listed below. 

. Four of the criteria for parameters measuring covaria¬ 

tion and agreement are: 

1. The parameter should be zero when the variables are 

independent. 

2. The parameter should be maximum when the variables are 

maximally dependent. 

3. The parameter should tell the direction of dependence. 

4. The parameter should be normed. 

To these criteria we add five of Galtung's criteria for 

parameters in general: 

5. The parameter should be defined for all possible distri¬ 

butions . 

6. The parameter should be stable. 

7. The parameter should be simple. 

8. The parameter should be independent of legitimate trans¬ 

formations of the values of the variable(s). 

9. The parameter should have a known sampling distribution. 

Throughout the remainder of the text, the criteria will be 

referred to with the numbers presented here. 

A general formula for coefficients 

of association for metric scales 

Consider two variables, and , of the same metric 

scale type. In order to obtain a coefficient of association 

which is invariant under permissible transformations of the 
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variables (criterion 8), this coefficient will be based on 

some kind of standardized version of the variables. To avoid 

confusion in terminology these standardized versions will be 

called 'uniformed' versions, IK and IK, respectively. A 

uniforming transformation centers the variable, if an addi¬ 

tive transformation is allowed, and it rescales the variable 

to obtain an expected squared value of one, if a multiplica¬ 

tive transformation is allowed. The various uniforming 

transformations for the four metric scales are: 

absolute scale 

additive scale 

ratio scale 

interval scale 

Ui = Xi (la) 

IK = X. - E(X.) (1b) 

Hi = XiPUi)]-* (1c) 

IK = [X. - E(X.)]{E[X. - E(Xi)J} (Id) 

A coefficient of association between two variables may 

be defined as the extent to which their uniformed versions 

are alike. The expectation of the squared difference of the 

uniformed versions of the variables is a common indicator of 

this likeness. A simple function of this expectation, which 

attains its maximum (+1) if the uniformed variables are 

equal, is 

f(IK,IK) = 1 - cE(IK- IK)" , (2) 

where c denotes some positive constant. The constant c may be 

uniquely determined by specifying criterion 3 as 

f(lK,-lK) = -f(0.,lK). ' (3) 

Some algebra shows that 
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c = [E(U*) + E(U?)]~1. (4) 

Combining (2) and (4) yields the general formula for the 

coefficient of association 

v.. = 1 - [e(U.- D.)2][E(U?) + E(U2)]-1. (5) 
'ij L " i j i J 

It can be readily shown that (5) can be written as 

v.. = 2 [E(U.U.)] [E(U?) + E(U2)]-1. (6) 
IJ 1 J 1 J 

Clearly, y satisfies the criteria 2,3,4,5,7 and 8. For 

interval or additive scales, the numerator of (6) contains a 

covariance. In that case, a sufficient condition for crite¬ 

rion 1 is satisfied. In other cases, criterion 1 will, in 

general, not be satisfied. 

For each of the four metric scale types, the proper 

uniforming transformation may be inserted into (6). This 

yields four special coefficients of association. Before dis¬ 

cussing these coefficients separately, we will prove that a 

matrix containing y coefficients between any number of 

variables is Gramian. Three lemmas which are needed for this 

proof, will be presented first. 

Lemma 1: The Hadamard (elementwise) product of two Gramian 

matrices is Gramian. 

Proof: See Schur (1911, p.14) or Browne (1977, p.208). 

The proof of a closely related theorem, stating that the 

Hadamard product of two symmetric positive definite (SPD) 

matrices is SPD too, may be found in Bellman (I960, p94)• 

This proof can be easily modified to prove Lemma 1. 
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Lemma 2: A symmetric matrix is Gramian if and only if all 

principal minors are nonnegative. 

Proof: See Gantmacher (1956, p.282). 

Lemma 3: Let , . ..,. . .and y1 , .. .y^^.y^ ,.. .y^, with 

i,j = 1,...k, be numbers satisfying x^ + y^ ^ 0, i,j = 

1,...k. Let be the k x k matrix, k >2, with elements 

w. .= (x. + y.) ,' i,j = 1,...k. Then the determinant 'of W, , 
1 J ^ 

k > 2, is given by 

det(Wk) 

k 

j<.i (xi - xi)(yj - y.j) 

n (xi + y.) 

i. j 

(7) 

Proof: See Polya & Szego (1925, p.299). 

A slightly different proof can be given by partitioning 

W, as 
k 

w 
Wk-1 

w 

v' 
i 

xk+yk 

and using a standard result on determinants 

det(Wk) = (xk + yk)-1 det[Wk_1- (xfc + yk)wv']. (9) 

After some algebra we obtain the recurrent formula 

det(Wk) 
k-1 (x1-xk)(y1-yk) 

i=l (^i+ykHxk+yi) 
det(Wk_i) (10) 

from which Lemma 3 can be deduced. 
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The matrix of Y coefficients Is Gramian. 

Given a set of r variables, the y coefficients between 

the variables can be collected in a symmetric matrix r, of 

order r, with elements 

Yij 
= 2u. 

ij <uii + 
(11) 

where 

u. . = E(U.U.), i,j = 1,...r. (12) 
i J J 

This matrix T may be expressed as the Hadamard product 

r = u«v, (13) 

where U denotes the symmetric matrix with elements vn ^ and V 

is the symmetric matrix with elements 2(u^ + lJj j ) 1 • 

By Lemma 1 , f is Gramian if both D and V are Gramian. 

Clearly, U is Gramian, being a product-moment matrix. It will 

be shown that V is Gramian too. 

Let , 1 <k<r, denote the symmetric submatrix of V, 

obtained by deleting all but the first k rows and columns of 

V. Then dettV^) is the k-th leading principal minor of V. 

Because uii = E(U?) >0, we have 

det(V1 ) = u"* >0. (U) 

For 2 <k <r, is a matrix of the type defined in Lemma 3, 

multiplied by 2, with xi = = ui;L- Therefore, 

n ( i 
det(v,) = i^L 

'Ujj' 

. n. 
i.j 

(2k 

(Uii+Ujjr 

(uii-ua£ _> o n u^)-1 n ( 
i=1 “ i<J (uii+ujjr 

(15) 
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with equality iff for at least one pair (i,j). Equa¬ 

tions (14) and (15) show that all leading principal minors of 

V are nonnegative. Because no use has been made of the num¬ 

bering of the r variables, (14) and (15) hold for any permu¬ 

tation and renumbering of the variables. Therefore, it can be 

concluded that all principal minors of V are nonnegative, 

which, by Lemma 2, proves that V is Gramian. 

The Gramian property of f permits the factorization of 

in Euclidean space, for example by principal component ana¬ 

lysis . 

The matrix of Y coefficients is a correlation 

matrix associated with linear combinations 

of the uniformed versions of the variables 

The matrix f has diagonal elements 

Yii 
2u. . (u. . + u. . ) 1 . 

11 11 11 
(16) 

A Gramian matrix with unity diagonal elements may always be 

conceived of as a correlation matrix. It will be shown that f 

can be expressed as the correlation matrix associated with 

linear combinations of the uniformed versions of the varia¬ 

bles X. . 
1 

Let be the standardized version of IL, i=1,2,...k, 

with mean zero and variance one, let Z be the random vector 

with elements Z^, and let R = E(ZZ'). It is desired to find 

a k x k transformation matrix T satisfying 

E(TZZ'T') = TRT' = V. (17) 

It can be verified that (17) is satisfied iff 

T = BA~ 1. (18) 

where B is an arbitrary factorization of f, with F = BB', and 

A is an arbitrary factorization of R, with R = AA'. 
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The result presented in this section implies that the 

matrix of y coefficients is a correlation matrix of variables 

which have a multivariate normal distribution if the varia¬ 

bles have a multivariate normal distribution. This result 

may be of importance in the study of the sampling distribu¬ 

tion of the y coefficients. 

The four coefficients of association 

for metric scales 

Inserting the proper uniforming transformation (1) into 

the general formula (6), yields a coefficient of association 

for each of the four metric scales. These coefficients will 

be discussed now separately. 

The coefficient of identity 

The coefficient of association for absolute scales 

reflects the degree to which two variables are identical and, 

therefore, it will be called coefficient of identity. Inser¬ 

ting the identity transformation (la) into the general 

formula (6) yields 

e.. = 2 pKX.X.)] [E(X.2) + E(X?)] 1 (19) 

where e„ denotes the y coefficient for absolute scales. This 

coefficient may be estimated by 

e. . = 2 (XX.X.) (XX2. + XX2.) 1 . 
ij i J i J 

(20) 

The coefficient of identity may be used as a measure of 

agreement between two raters in cases where rater bias, both 

additive and multiplicative, is irrelevant from a theoretical 

or a practical point of view. 
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The coefficient of additivity 

The coefficient of association for additive scales 

reflects the degree to which two variables are identical up 

to an additive transformation. This coefficient will be 

called coefficient of additivity. Inserting the additive 

transformation (lb) into the general formula (6) yields 

°ij(°i (21) 

where j is the covariance between and X., 

variance of X^. The coefficient of additivity 

ted by 

and 0? is the 

can be estima- 

i j sij(si (22) 

where s^^ is the sample covariance between X^ and X., and s^ 

is the sample variance of X^. 

From (21) it is clear that the coefficient of additivity 

is the PMC iff o? = a?. The estimate (22) equals the maximum 

likelihood estimate of the PMC in the case of a bivariate 

normal distribution with o? = a?, cf. Cureton (1958,p.722). 

The coefficient of additivity is Winer's 'anchor point' 

intraclass correlation (Winer, 1971, p.289-296), in the 

special case of only two variables. Winer's anchor point 

method has been severely criticized by Bartko (1976), because 

of its invariance under additive transformations of the 

variables involved. However, the coefficient of additivity is 

a proper measure of agreement between two raters in cases 

where additive rater bias is irrelevant from a theoretical or 

from a practical point of view. 

Another use of the coefficient of additivity is in the 

context of test theory. If a set of items satisfies the 

requirements of the one parameter logistic (Rasch) model, the 

item parameters are measured on an additive scale, cf. 

Fischer (1974> p-433). The coefficient of additivity may be 

used to compare the results of two studies in which the same 

set of items has been analyzed according to the Rasch model. 
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The coefficient of proportionality 

The coefficient of association for ratio scales reflects 

the degree to which two variables are identical up to a mul¬ 

tiplicative transformation, that is, the degree to which the 

variables are proportional. Therefore, this coefficient may 

be called coefficient of proportionality. Inserting the mul¬ 

tiplicative transformation (1c) into the general formula (6) 

yields, after some algebra 

=[E(X.Xj)][E(X?) E(X?)]_i, (23) 

where b. . denotes 
ij 

coefficient may be 

the coefficient 

estimated by 

of proportionality. This 

•u - (a^xa^xjr*. (24) 

It may be noted that is Tucker's congruence coefficient. 

Tucker's congruence coefficient is often used to compare 

factor loadings from different factor analytic studies. For a 

discussion of the congruence coefficient in this context, see 

ten Berge (1977, p.4-7). 

The coefficient of linearity 

The coefficient of association for interval scales 

reflects the degree to which two variables are identical up 

to a linear transformation. This coefficient may be called 

coefficient of linearity. The uniforming transformation (Id) 

equals the usual standardization, transforming X^ into Z^. 

Inserting IK = into the general formula (6) yields 

2[E(ZiZj)J[E(Z*) + E(Zp]*1= Pij, (25) 

where . is the PMC. In the usual way, 

by 

P. . 
ij 

may be estimated 

P. . = s . . ( s . s .)' 
ij ij i 0 

(26) 
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where s^. is the sample covariance of and X^, and s^ is 

the sample standard deviation of X^. 

Applications of the PMC are so common that they will not 

be discussed here. 

Relations between the four coefficients 

of association for metric scales 

It can be verified that all four coefficients of asso¬ 

ciation between X^ and X^. equal one if X^ = X^, with proba¬ 

bility one. Order relations exist between the PMC and the 

coefficient of additivity, and between Tucker's congruence 

coefficient and the coefficient of linearity. Both order 

relations rely on the fact that the arithmetic mean of two 

positive numbers exceeds or equals their geometric mean. 

From 

.5 (of + oj) > (ofoj)*. (27) 

it follows that 

Clearly, (28) holds as an equality iff o? = oj- 

From 

.5 [E(X?) + E(Xj)] > [E(X?) E(Xf)]4. 

it follows that 

(28) 

(29) 

2 e 
ij 

(30) 

with equality in (30) iff E(X?) = E(Xp. 

No other order relations exist. Therefore the coefficient of 

identity and the congruence coefficient may exceed the other 

two coefficients. 
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Discussion 

The stability and the sampling behaviour {criteria 6 and 

9) of the two new coefficients proposed in this paper have 

not been investigated yet. As has been stated above, the 

coefficient is a PMC coefficient of linear combinations of 

the uniformed versions of the variables involved. The 

sampling behaviour of the y coefficient may be investigated 
in line with the research on the sampling behaviour of the 

regular PMC coefficient. 

As has been shown in the previous section, the coeffi¬ 

cient of proportionality always exceeds or equals (in abso¬ 

lute value) the coefficient of identity and the PMC coeffi¬ 

cient always exceeds or equals (in absolute value) the coef¬ 

ficient of additivity. How much the various coefficients 

differ in practical situations is another point of future 

research. 

References 

Bartko, J.J. On various intraclass correlation reliability 

coefficients. Psychological Bulletin, 1976, 83., 

762-765. 

Bellman, R. Introduction to matrix analysis. New lork: 

McGraw-Hill, I960. 

ten Berge, J.M.F. Optimizing factorial invariance. 

Unpublished doctoral dissertation. University of 

Groningen, 1977. 

Browne, M.W. Generalized least-squares estimators in the 

analysis of covariance structures. In D.J. Aigner & 

A.S. Goldberger (Eds.), Latent variables in socio¬ 

economic models. Amsterdam: Horth-Holland Publishing 

Company, 1977. 

Burt, 0. The factorial study of temperamental traits. British 

Journal of Psychology, Statistical Section, 1948, 1_> 

178-203. 



65 

Cureton, E.E. The definition and estimation of test reliability. 

Educational and Psychological Measurement, 1958, 18, 

715-738. 

Fischer, G.H. Einfiihrung in die Theorie psychologischer Tests. 

Bern: Hans Huber, 1974< 

Galtung, J. Theory and methods of social research. Oslo: 

Universitetsforlaget, 1967. 

Gantmacher, F.R. Matrizenrechnung (Teil 1). Berlin: 

VEB Deutscher Verlag der Wissenschaften, 1958. 

Janson, S., & Vegelius, J. Correlation coefficients for more 

than one scale type. Multivariate Behavioral 

Research, 1982, 1_7, 271-284. 

Mokken, R.J. A theory and procedure of scale analysis. 

The Hague: Mouton, 1971. 

Polya, G., & Szegb, G. Aufgaben und Lehrsatze aus der 

Analysis, Band 2. Berlin: Springer, 1925. 

Popping, R. Overeenstemmingsmaten voor kwalitatieve data. 

Unpublished doctoral dissertation, University of 

Groningen, in preparation. 

Schur, J. Bemerkungen zur Theorie der beschrankten Bilinear- 

formen mit unendlich vielen Veranderlichen. Journal 

fur die reine und angewandte Mathematik, 1911. 

140. 1-28. 

Tucker, L.R. A method for synthesis of factor analytic 

studies (Personal Research Section Report No. 984). 

Washington, D.C.: Department of the Army, 1951. 

Winer, B.J. Statistical principles in experimental design. 

New York: McGraw-Hill, 1971. 


