
KM 10 (1983)
pag 139 - 158

INTERFAC ULTEIT DER

ACTUAR1ELE WETENSCHAPPEN

EN ECONOMETRIE

139

SOLVING THE TRAVELING SALESMAN PROBLEM IN BASIC

PIETER FRIS

TON VOLGENANT

Abstract

An algorithm for the problem will be explained. It

is based on minimal spanning trees as lower bounds

together with weights on the distances to improve these

bounds.

A Basic program has been developed for an Apple II

computer, that solves Euclidean problems of up to 42

cities in a reasonable time within 16K memory.

Universiteit van Amsterdam

JODENBREESTRAAT 23

1011NH AMSTERDAM

THE NETHERLANDS

140

Introduction

One of the most fascinating problems for which computer programs are being

developed is the traveling salesman problem (TSP for short). It can be described

as: A traveling salesman, starting at his residence, wants to visit a number of

cities, each exactly once, and return home afterwards. He wants to make his tour

as short as possible.

The TSP is so fascinating as the number of possible tours, from which the

shortest one has to be chosen, increases exponentially with the number of cities

more precisely: the number of possible tours through n cities is (n-1)!.

A computer able to evaluate a million tours per second, needs 0.12 milliseconds

to solve a 6-city problem. For a 15-city problem, it takes already over 24

hours, and a 33-city problem is only solved in 8.3 x 1019 centuries!

So for this enumeration approach we run into trouble: very quickly the

problem gets too large to be solved by a computer, no matter how powerful.

The successful methods available nowadays skip as many tours as possible

before or during the search process. They are based on "implicit enumeration".

A Basic computer program for use on a microcomputer was shown in the article

"The Infamous Traveling Salesman Problem", by R. Parry and H. Pfeffer (Byte,

July 1981). Their method is simple, but not very effective: They introduced a

12-city problem that could be solved only just within an hour on their micro¬

computer (Sw TPC-6800 system).

We will give a similar Basic program that uses many properties of the TSP.

Knowledge of the article mentioned above is not needed to understand this one.

Compared to the mentioned results, computation times will be reduced considerably

and it will be possible to solve larger problems. For instance, the same 12-city

problem was solved 37 times faster, and this factor increases sharply with the

number of cities. Our program is also capable of solving TSP's with different

beginning and ending location.

Applications

Many practical problems are in fact a TSP, e.g. how to schedule an optimal

tour for a postman to empty pillar boxes. Another example is the following

problem:

A mechanical soldering-bolt, moving above a print plate, has to solder a

given number of points on that plate. We now ask for the shortest tour of the

soldering-bolt above the print plate.

141

A less trivial application arises when a machine has to accomplish a

number of tasks successively (e.g. producing certain colours of paint). Costs

arise by switching over to another task (cleaning and filling paint reservoirs),

depending on the two considered tasks (from red to green may give different costs

than from red to yellow). We now ask for a production sequence (red-orange-yellow

etc.) with minimal total switching costs.

In this example the tasks correspond to the cities, and the switching costs to the

distances (not symmetric in general).

Method

Search_procedure

To evaluate all tours systematically we use the same method as Parry and

Pfeffer: from a given starting city we build up a chain of connected edges,

with different cities on that chain (An edge is the direct connection between

two cities). We call this a required chain. Cities not on the required chain

are called free cities. When no free city is left, we connect the last and the

first city on the required chain: we obtain a tour. From all tours considered we

store the shortest one.

We terminate the construction of a required chain when we are sure that

this chain will never generate a shorter tour than found thus far. Then we will

proceed with a new required chain according to a "Last In, First Out" rule

(see example below).

The advantage is obvious if the construction of a required chain has not

to be finished completely. When six free cities are left at the moment of

termination, we skip 6! = 720 tours at once.

Lower bounds

To illustrate the elimination of tours we give an example:

Assume a 7-city problem with city 1 the starting and ending point. Suppose

1-5-2-6 is the required chain with length 75 and 3, 4 and 7 are free cities.

Suppose further that we know a tour with lenth 100, and that the shortest path

from 6, over 3, 4 and 7, to city 1, (in any order) has at least length 30 (30 is

a lower bound for the length of that path). In that case, any tour with 1-5-2-6

must at least have length 105, so 1-5-2-6 can never be part of an optimal tour.

So we skip the six tours 1-5-2-6-(3-4-7)-1

1-5-2-6-(3-7-4)-1.

142

Adding the cities in numerical order, our next required chain will be 1-5-2-7.

And after 1-5-2-7 has been evaluated completely, we will continue with 1-5-3,

etc.

We shall look for a method to calculate lower bounds for those

shortest paths mentioned above. The computation of that path is nothing but

solving a TSP over the free cities, with fixed beginning and ending point, so

it is sufficient to consider lower bounds for the TSP with no required chain

involved. Intuitively it is clear that the higher our lower bounds (the closer

we approximate the optimal TSP value), the more tours can be skipped in the

search procedure.

We must realize that computation of lower bounds is only useful when

they can be calculated much easier than the optimal value of the TSP itself.

That this is possible will be clear in the following examples:

Suppose we have n cities, with distances d_ (i,j = l,...,n), that are

symmetric (d_ = d^). We take <2^ = «> (i = l,...,n), for edge i-i is not

allowed.

A possible lower bound for the optimal value of the TSP is n times the

minimal number in the distance matrix, because every edge in a tour is at least as

long as the minimum over all edges. As n2 distances must be called from memory,

this lower bound is calculated in order n2 (i.e. the execution time for this

bound increases quadratically with the number of cities). This is very fast

compared to solving the TSP, but unfortunately this bound is bad.

A better bound (not more complex than the first one) is the sum over all

row-minima in the distance matrix. This bound takes into account that every

city must be left exactly once in a tour, so the distances to the next cities

are at least as long as the shortest distance in each row.

1-trees

In our program we use 1-tree lower bounds, developed by Held and Karp
2

in 1971. They can also be calculated in order n , and provide good results

in practice. To describe what a 1-tree is, we give first two definitions:

143

1) A cycle is a chain of edges with the same beginning and ending point

(figure 1).

A cycle containing all cities is a tour.

figure 1 : a cycle

2) A tree on n cities is a set of n-1 edges without any cycle (figure 2).

a tree a tree

figure 2

not a tree

Now we give an arbitrary city number 1, without loss of generality.

fl 1.~tree is a tree on a11 cities but city 1, together with two edges incident

to city 1. A minimal 1-tree is a 1-tree with minimal total length (figure 3).

I : a 1-tree II : a minimal 1-tree III : a 1-tree and tour

figure 3

144

A 1-tree has (n-2) + 2 = n edges and it contains exactly one cycle,

because it has one edge more than a tree.

For a given 1-tree the degree of a city is the number of edges incident

to this city. In figure 31 the degrees are three for city 4, one for city 5 and

two for city 2.

Obviously every TSP tour is a 1-tree (with degree = 2 for every city),

but not every 1-tree is a tour. Therefore the minimum over all 1-trees is at

most equal to the minimum over all TSP tours, and so the length of a minimal

1-tree is a lower bound for the optimal TSP solution.

A minimal 1-tree is easily constructed:

1) Choose an arbitrary city 1) as initial tree.

2) Extend the tree with a city 1), not yet part of the tree, that will

increase the length of the tree as little as possible; connect this city

with the shortest edge to the tree so far constructed.

3) Repeat rule 2 until all cities are part of the tree.

4) Add the shortest two edges incident to city 1.

In figure 4, city 2 is the initial tree. The shortest extension is 5-2.

Then we add successively 3-5, 4-3, and 6-5. We complete the minimal 1-tree with

1-2 and 1-5.

One can prove that this algorithm is correct, see e.g. Dijkstra, A

note on two problems in connexion with graphs.
2

6

figure 4 : a minimal 1-tree

A minimal 1-tree having degree = 2 for every city is an optimal TSP tour,

because there are no shorter 1-trees, and thus no shorter tours.

145

In the search procedure we calculate lower bounds for the minimum of all

tours, containing a given required chain, by constructing a minimal 1-tree on

the free cities, where we use the required chain as a generalized city 1.

Weights

So we want a minimal 1-tree that is also a tour. To try for this, we use

a simple principle.

Suppose we have n real numbers tt . ,11^, . . . ,tt , with it. tt + . . . + tt =0.
^ 1 2 n 1 2 n

We w'll call tt. the weight of city i. If we change all distances according to

d' = d + tt + tt (to every distance we add the weights of both related cities) ,
i} ij 1 }

we seem to have a different TSP. But because a tour passes through each city

exactly once, every weight will be added twice to the length of the tour. We

know that tt + tt + . . . + n = 0 , so the length of any tour remains the same, and
1 ^ n

the shortest tour remains the shortest. However, which 1-tree is minimal depends

in general on the weight set, as in the tree the degree of every city is not

always two.

In order to obtain a minimal 1-tree with every degree equals two, we give

cities with degree = 1 encouragements, and cities with degree >2 penalties by

giving them negative, resp. positive weights. We use the formula 17^=0 (degree^

-2), i = l,2,...,n , with c a positive constant, so it + tt + ... + tt will remain
1 z n

zero. We now hope that the minimal 1-tree looks more like a tour. It will be

intuitively clear that better (= higher) lower bounds can be expected when this

does occur.

We repeat the process many times, letting c decrease to zero. In most

cases this method provides a lower bound close or equal to the optimal TSP value

and often an (optimal) tour.

Upper bounds

Values that are definitely larger than the TSP solution are called upper

bounds. Obviously the length of any tour is an upper bound, because every tour

is at least as long as a shortest one. The method to skip tours during the

search process will clearly work better with sharper (= smaller) upper bounds.

Out of every minimal 1-tree, we can easily construct a tour:

1) Consider the unique cycle in the minimal 1-tree.

2) Extend the cycle by connecting a city with degree = 1 directly to the cycle,

and by deleting the edge on the cycle just after the connection.

3) Repeat rule 2 until the cycle contains all cities and has become a TSP tour.

146

- .. (j f > i; «i tk —a -n ‘ ■ n u* r ** »- r-r.io > : ■

a
For example: In figure 5 we start with the cycle 1-5-3-1. After adding

5-4 and deleting 5-3, we get the cycle 1-5-4-6-3-1 (figure 5^). After adding 4-2

and deleting 4-6, we get the tour 1-5-4-2-6-3-1.

figure 5 : constructing a tour out of a 1-tree

In order to obtain a fast search procedure, it is very important to check

"good" tours first, because "bad" tours will then be recognized sooner. There¬

fore we order our cities according to the tour given by the sharpest upper

bound found in the iteration procedure.

An easy check

In figure 6 we have the required chain 1-8-2-5, and a minimal 1-tree.

Now we add 5-6 to the required chain. Before calculating a new minimal 1-tree,

we get an easy (less sharp) lower bound by adding 5-6 (of course), deleting

5-4 (degree of city 5 must be two), and by replacing 1-3 by 1-4 if d14<dl3-

This is true because the constraint "degree of city 6 is two", has been deleted.

When 1-8-2-5-6 is skipped by this lower bound, we don't have to compute

the new minimal 1-tree, saving a lot of time.

figure 6 : a minimal 1-tree with a required chain

147

Computational results

We ran the program of Parry and Pfeffer (PPP for short) and our program

on an Apple II Europlus computer. Results from a Cyber 750 were used to obtain

proper estimates of long execution times on the Apple (this Cyber runs 1200-

1600(!) times faster than our Apple).

Parry and Pfeffer's 12-city problem (12 American cities) would have

taken at least li hour, solving it by PPP on the Apple, while our program used

only 2 minutes 19 seconds. Furthermore we loaded a number of problems with

randomly chosen co-ordinates. On four 10-city problems PPP's execution times

varied from 1 to 9 hours (I), while our program solved them in 1 to li minute.

Four 15-city problems were solved by our program in 3 to 6 minutes, and

some 19- and 20—city problems in 11 to 26 minutes. A well known 33—city problem

of Karg and Thompson (33 American cities) was solved by our program in only 53

minutes, while a similar 42-city problem took 5i hour.

We did not solve these 15-city and larger problems with PPP, not even on

the Cyber, because it should take too much computer time.

In our program we used integer-type variables for those marked in the

variable list. 6KByte was needed to store the program in the Apple II, which

means that even a 16K computer can manage problems of about 30 to 40 cities.

Conclusions

The program in this article solves TSP's much faster than that of Parry

and Pfeffer. Using a microcomputer, this can save many hours of waiting.

Much more sophisticated and larger programs have been developed to solve

TSP's. They are written in higher programming languages and they can deal with

larger problems than those mentioned above. For example, Volgenant and Jonker

developed a Pascal program that solved a 120-city problem of Grotschel (120

German cities) in 181 seconds on their Cyber.

From this we see that, in spite of the tremendous number of possible

tours, very large TSP problems can be solved in a short time.

148

*JS

References

E.W. Dijkstra: A note on two problems in connexion with graphs, Numerische

Mathematik 1 (1959) 269-271.

R.L. Karg and G.L. Thompson: A heuristic approach to solving traveling salesman

problems. Management Science 10 (1964) 225-248.

R.R. Parry and H. Pfeffer: The Infamous Traveling-Salesman Problem, A Practical

Approach, Byte, July 1981, page 252-290.

A. Volgenant and R. Jonker: The symmetric traveling salesman problem and edge

exchanges in minimal 1-trees, to appear in European Journal

of Operational Research.

Array variables used in the program (*-marked.if integer)

CH

D

*DG

,M,S

*K

N$

*R

In a minimal 1-tree computation, A(j) stores the minimal distance from

city j to the tree, so far constructed.

In the upper bound computation:

{1, if city j is part of the unique cycle,

0, otherwise.

C stores the tour belonging to the sharpest upper bound found in the

iteration block.

CH(H) stores the length of the required chain on depth H.

D is a 2-dimensional array to store the distance matrix,

f-l, if city j is part of the required chain,

degree of city j, otherwise.

Calculating 1-trees, M(j) and S(j) give the minimal and subminimal

distances of the last (j=l) resp. the first (j=2) city on the required

chain to the tree. IM(j) and JS(j) are the corresponding cities on the

tree, for which those minima and subminima aie reached.

K(j) stores the number of the city on the required chain.

N$ is an array to store the names of the cities.

R(j) stores the city on the tree, for which A(j) is minimal. When the

computation of the 1-tree is finished, R(j) will be the city, a-ssigned to

DG(j) J-1’
ll +

*T

TL

W

city j in the 1-tree.

T stores the shortest known tour.

TL is an array for the easy check in the search procedure. In the example

(figure 6), TL(4) = length minimal 1-tree - d(5,4) + min{0,d(l,4) -d(l,3)}.

W(j) stores the weight for city j.

149

Most important real and integer (*-marked) variables used in the program

*A,B

*BT

*C1,C2 I

F

*HE

*it ;

*K

MD

NTT, ML

*N

*P1,P2

*P3

*R

S

T

UT,U

V

Stores the next to last resp. the last city on the required chain.

Connection point of B with the minimal tree.

Calculating 1-trees, C2 is the last city added to the tree, and Cl the

city that is added next.

Last city on the tour (and first city on the required chain).

Used to calculate TL(j). In the example of figure 6

F = d(5,4) - min{0,d(l,4) - d(l,3)}.

Depth in the search procedure (= number of cities on the required chain).

Used to distinguish between the first and the last city on the required

chain.

After the input block: a variable city number.

Maximal number of iterations in the iteration block.

K=N, if the starting and ending point are the same; K = N-l, otherwise.

Minimal distance from any city outside the tree to that tree.

Stores the length of a minimal 1-tree, resp. the best lower bound found

thus far.

Number of cities specified by the user.

Used in the upper bound computation: Pi is a city with degree = 1; P3 is

the connection point of the cycle with the path from Pi to the cycle; P2

is the city on the cycle before P3.

R=1, if the optimal TSP value is found in the iteration block; R=0,

otherwise.

S=CH(H), at the actual depth.

Tolerance value for the real numbers to test inequalities.

Stores the length of the upper bound, derived from a 1-tree, resp. the

best upper bound found thus far.

is a precision, specified by the user; two tours of different length will

differ at least V.

150

Listing 1 : The traveling salesman program in Apple Basic.

oooio Input "hou many destinations ";n
00020 IF N>=4 THEN 00040
00030 PRINT "THE NUMBER OF CITIES MUST EXCEED 3" : GOTO 00010
00040 DIM D<N,N>,T<N + 1>,C(N+1>,K<N + 1>,R(N>,A(N),CH< N>,U(N+1>,P. CN)
00050 DIM DG(N+1>,in<2>,JS<2>,n<2>,S<2>,TL(N>,N*<N>
00060 PRINT "INPUT THE NUMBER OF DECIMALS YOU WANT YOUR EDGES TO HAVE "S
00070 PRINT "(0 >IF THEY ARE INTEGER,AND MAXIMAL 3).NOTICE THAT MORE "i
00080 PRINT "DECIMALS PROVIDE LONGER EXECUTION TIMES IN GENERAL!"
00090 INPUT G
00100 IF GOO AND GOl AND G<>2 AND G<>3 THEN 00060
00110 V=10**G : T=0.001/V
00120 REM INPUT INSTRUCTIONS FOR GENERATING DISTANCE-MATRIX.
00130 PRINT "METHOD 1 IF YOU WANT TO INPUT CITIES USING X-Y COORDINATES.
00140 PRINT "METHOD 2 IF YOU WANT TO INPUT A DISTANCE-TABLE."
00150 INPUT "METHOD 1 OR 2? "Ill
00160 IF IlOl AND 1102 THEN 00150
00170 REM CONSTRUCT INPUT TABLE.
00180 PRINT "YOUR BEGINNING LOCATION IS NUMBER 1"
00190 PRINT "INPUT THE NUMBER OF YOUR ENDING CITYd OR ";N;">";
00200 INPUT E
00210 IF EOl AND EON THEN 00190
00220 K=N-1
00230 IF E=1 THEN K=N
00240 PRINT "INPUT THE NAMES (AND COORDINATES) OF YOUR CITIES "
00250 FOR 1=1 TO N
00260 GOSUB 01870
00270 NEXT I
00280 IF 11=2 THEN 00450
00290 REM DISPLAY INPUT TABLE
00300 PRINT
00310 PRINT TAB(15):"INPUT DATA TO BE USED"
00320 PRINT TAB<3> J"DESTINATION")TAB(20))"X-COORD."!TAB(30);“Y-COORD."
00330 FOR 1=1 TO N
00340 PRINT I ;" = ";Nt(I>;TAB(20>;CH(I);TAB(30);A(I>
00350 NEXT I
00360 REM EDIT MODE FOR EDITING INPUT DATA
00370 INPUT "DO YOU WANT TO EDIT ANY (Y/N) ")Qt
00380 IF 0*="N" THEN 00460
00390 PRINT'.PRINT "TYPE 0 TO END EDITING WHEN ASKED ’WHICH ONE' "
00400 PRINT : INPUT "WHICH ONE ";I
00410 IF 1=0 THEN 00290
00420 IF Id OR I>N THEN 00400
00430 GOSUB 01870
00440 GOTO 00400
00450 REM CONSTRUCT INTER-DESTINATION TABLE
00460 IF 11=2 THEN PRINT “CONSTRUCT INTER-DESTINATION TABLE"
00470 FOR 1=2 TO N
00480 FOR J=1 TO 1-1
00490 IF 11=1 THEN 00520
00500 PRINT "EDGE";i;"-";js“ = ";
00510 INPUT Z s GOTO 00540
00520 X=ABS(CH(I)-CH(J>> : Y=ABS(A(I>-A<J)>
00530 Z=(INT(V*(SGR(X*X+Y*Y))+0.5>)/V

151

10540 D(XrJ)=Z D(J,I)=Z
10550 NEXT J
10560 NEXT I
10570 PRINT
10580 PRINT "DO YOU WANT TO EDIT OR EXAMINE THE DISTANCE-TABLE (Y/N) "!

10590 INPUT Q*
10600 IF Qt="N" THEN 00880
10610 PRINT : PRINT TAB< 14) J "*■*** DISTANCE-TABLE **»*"
10670 PRINT "<VALUES ROUNDED TO NEAREST INTEGER)"
10630 FOR 1 = 1 TO N
10640 PRINT TAB(4*1);11
10650 NEXT I
10660 FOR 1=1 TO N
10670 PRINT:PRINT I: T AB(3)!"!"J
10680 FOR J=1 TO N
10690 PRINT INMDl I - J)+0.5> ;TAB<4*J+4> J
10700 NEXT J
10710 NEXT I
10720 REM EDIT MODE FOR EDITING DISTANCE-TABLE
10730 PR I NT:INPUT "DO YOU WANT TO EDIT ANY UALUES (Y/N) ";Qt
10740 IF Q$="N" THEN 00880
10750 PRINT:PRINT "TO ALTER . USE FORMAT:FROM,TO,NEW DISTANCE"
10760 PRINT "FOR EXAMPLE»2»4»512 ALTER THE DISTANCE FROM CITY 2 ")
10770 PRINT "TO CITY 4 TO 512 . DISTANCE FROM CITY 4 TO CITY 2 IS ALSO
10780 PRINT “CHANGED . INPUT 0,0,0 TO LEAVE EDIT MODE."
10790 PRINT : PRINT
10800 1 = 1
10810 PRINT I;" . ”;"FROM,TO,DIST= "!
10820 INPUT M,L,D1
10830 IF M=0 THEN 00610
10840 IF M = L OR M>N OR L<1 OR L>N THEN PRINT "ILLEGAL INPUT":GOTO 00810
10850 D(M,L)=D1 : D(L,M)=D1
10860
10870
10880
10890
10900
)0910

1 = 1 + 1
GOTO 00810
REM CALCULATE TOTAL POSSIBILITIES FOR TRIP
Z = 1
FOR 1=2 TO K-l
Z = Z*I

10920 NEXT I
10930 PRINT "TOTAL POSSIBILITIES FOR
10940 C(l)=l : C(K+l)=E
10950 V= 1 /V-T
10960 M=32000:U=M:ML=-M
10970 REM TO FIND SHARP LOWER BOUNDS
10980 PRINT "THE ITERATION PROCEDURE
10990 B=1:H=1:R=0
11000 IT=3*K
11010 FOR L=1 TO IT
11020 OOSUB 01980
11030 IF MT>U-V THEN R=1:L=IT+1:GOTO
11040 IF MT>ML + T THEN ML = MT
11050 GOSUB 02370
11060 IF UT>U-T THEN OHIO

TRIP ":Z

. START ITERATION PROCEDURE
IS AT WORK AT THE MOMENT"

01130

152

01070 U=UT : 11=1
01030 FOR 1=2 TO K
01090 11 = R<11) : C<I) = I1
01100 NEXT I
OHIO IF m.>U~V THEN R=1 :l.= IT + l :GOTO 01130
01120 IF LOIT THEN 00303 01740
01130 NEXT L
01140 FOR 1=1 TO N
01150 T CI> = I : K(I) = 1
01160 NEXT I
01170 IF R=1 THEN 01660
01180 REM CALCULATE SHORTEST TRIP IN THE SEARCH PROCEDURE
01190 PRINT "THE SEARCH PROCEDURE IS AT WORK AT THE NONENT"
01200 TL(1)=MT“F
01210 REM RESEQUENCE THE CITIES
01220 FOR 1=2 TO N
01230 FOR J=1 TO 1-1
01240 A = CU):B=C(J>
01250 IF A>B THEN EX=A;A=8:B=EX
01260 D(Ij J)= D(A > B >
01270 NEXT J
01280 NEXT I
01290 FOR 1=1 TO N-l
01300 FOR J=I+1 TO N
01310 D(I,J)=D<J,I>
01320 NEXT J
01330 NEXT I
01340 CH<1>=0:8=1
01350 REM SEARCH PROCEDURE
01360 A=B : 8=1 : H=H+1
01370 DG(8) = 1
01380 IF B=K THEN 01440
01390 0=8
01400 FOR 1=8+1 TO K
01410 IF OG(I)>0 THEN 8=I:K<H>=8:DG<8> = -1:I = K +1
01420 NEXT I
01430 IF 008 THEN 01480
01440 H=H-1
01450 IF H=1 THEN 01660
01460 8=A : A=K<H-1> : GOTO 01370
01470 REM GENERAL CHECK
01480 S=CH(H-1)+D(A»B) : CH(H)=S
01490 IF S+TL(H-l>>U-V THEN 01370
01500 GOSUB 01980
01510 TL(H)=MT~F : MT=MT+S
01520 IF MT>U-U THEN 01370
01530 GOSUB 02370
01540 IF UT<U-T THEN U=UT
01550 IF MT<U~V THEN 01360
01560 REM STORE THE BETTER TOUR
01570 FOR 1=2 TO H
01580 T(I)=K(I>
01590 NEXT I

H600 11 = 1}
11610 FOR I=H+1 TO K
11620 11 =R(II) : T(I> =11
11630 NFXT I
11640 GOTO 01370
11650 PEP! OF'TIPIAI TOUR FOUND . DISPLAY RESULTS.
11660 PRINT: F'R I NT "0PTIP1AL TOUR
11670 FOR 1=1 TO K
11680 PRINT I,N*(C(T(I)))
11690 NEXT I
11700 PRINT K +1 . Nt (t")
11710 PRINT "THE LENGTH OF THE SHORTEST TRIP IS ":U
11720 GOTO 02550
11730 REP! SUBROUTINE 1 TO CHANGE DISTANCE P1ATRIX BY WEIGHTS
117 40 3 = < IT-L + 1 >*< IT--L + 1 >*nT/IT/I T/50
11750 FOR 1=2 TO K
11760 U<I>=Z*<DG<I>-3>
11770 NEXT 1
11780 W(11=0 : W(K+11=0
11790 FOR 1=1 TO N-l
11800 X=U(I>
11810 FOR J=I+1 TO N
11820 Y=W < J1 : Z=D(I.J)+X + Y
11830 D(I> J) = Z : D<J.I)=Z
11840 NEXT J
11850 NEXT I
31860 RETURN
11870 REP! SUBROUTINE 2 TO INPUT CITY NAPIE (AND COORDINATES)
31880 PRINT:PRINT I;"."!
11890 PRINT TAB(5) 1 “NAPIE OF CITY "1
11900 INPUT N»(I)
11910 IF 11=2 THEN RETURN
11920 PRINT T AB(51J"X-COORD I NATE
11930 INPUT CH(I>
11940 PRINT TAB(5):"Y-COORDINATE "5
11950 INPUT Ad)
01960 RETURN
01970 REP! SUBROUTINE 3 TO CALCULATE A 1-TREE
11980 FOR 1=2 TO K
11990 IF 0G < I) > = 0 THEN D6 (I) = 1 : A (I) =P\
12000 NEXT I
32010 HE=B
12020 FOR J=1 TO 2
12030 PUJ)=PI : S(J) = P!
02040 FOR 1=2 TO K
12050 IF DGCIXO THEN 02100
02060 Z=D(HE.I>
02070 IF Z>S(J)-T THEN 02)00
02080 IF Z>n<J)-T THEN S<J)=Z:JS(J)=1:GOTO 02100
02090 S< J)=PU J) s JS(J) = IPU J) SPK J)=Z: IP!< J) = I
02100 NEXT I
12110 IF B = E THEN PI<2> =S< 1) : IP!<2) = JS(1) : J=3
02120 HE=E

ooooccoooooooooocooooooooooociooooooooocoooo
ro w t-j N» ns rJ ro w ro N) ro ro ro w ro w ro M po ro ro ro ro ro ro ro r-j ro ro ro ro N) ro ro ro ro ro N) ro ro ro ro ro

cn ct cn cn c/i cr jv > > >• 4^ ^ -f' ^ js 04 w «>j w w w w oj w w ro ro w ro pj ro ro ro ro ro ^ ^ ^ i-* ^
cn^04r0>--O'000'sJ0'ai>wr0i-O'0C0'OCK(.n^.0Jr0^o>0C0sj!>cn^0JpJ^ON0C0vjCNC.n^0J

COOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOCOO

f—i -n —w i_i ^ • ._i -n i__i -n i_< “n w—i m rr? to T! n ^ m ■*>* ,_. *_i i ,_> -n -» t' ^ ^ -«i —* -n —» -i- ._. m ^ z »-! 33
z m m "n ^

o -h x T>
c H c ro

33 ~
Z >H V ii

C -n
I

N.* *h 13
ii “n ro

ZD
-H o -n

33
»-i •-* 133 CO »-< O •-<

!-*►-» /-» « O H-i 1-*
A “U CO ^ II A

v *« w ^ ro v
m

z c
m -h

z n_

33 -1
m +

—I M
c

33
Z

CO c z
— -i rn

M 11 x
h-* 3 -H

'w' -<
II *-<

"0 13
to OJ >-<

^ »-J-
I -H II

O X 33
m ^

x z
w •-

- c ^
t? ro

N3 ^
CC

o

n 1
o ■ V o —I

ro x i

cc -n 33
^ o m

^ 33 3

!! Hi to
one

ro co
33

•h o
o c

o
PO 1

1-* 33
II

33 CO

W 1

II

LH
W

33 O Z
mom

-H ^ X
e 33 ~i

33 —
Z CO

II
o

C3

o
1>

o o z
co po m

11 :
33 o -

ro « <
ro 3

•w- —I
I!

!! 3
O -I

CO +
-v 3

33 C3

n o
PO co

*-h »-i ro
m m 11

o
3> Nl

^ A t_
t_ 3>

-w- ~ ro

■H X
x m

3 -
o 1

11 '
3>

3 m m »-i m
o co o n m 11

33 ii 33 m o
3 + m ~

t_ »-(o a m
11 11 ~ a -

po x cc co
+ - -h ro

-1 po co x ^
o ■h m 1

-« ^ z o
x o ^

m m
x n -

o co

II X
3 ~

— II

3 *-< X
m m

x 11
m 3 ro

:
03 ^ 1

O
ro

3 *-*

ro «
^ O'

ro
<« 11

1 co 3
• —< ^

11 po

X CO
m ^

•w PO

3

3 PO

X
m co

~ ~ ~ z
co 33 11 ^

w ^ C. w O

O CO + PO

CO
o

z

c

II II
c_ o

ro

o
CO

CO
ro

co
PO

o
o

cc
o

c
z

CO

33
m

155

Listing 2 : Run of the traveling salesman program on the 12 city problem of
Parry and Pfeffer. The execution time is 2 minutes 19 secs on an Apple II .

HOW MANY DC. 1)11NA1 IONS 7 12

!Nf'UY *1 Ml NUM'.f:F< OF DECIMALS YOU WANT YOUK
(0,[|- IHEY ARE INTEGER • AND MAXIMAL D.NOTI
DECIMALS PROVIDE LONGER EXECUTION TIMES IN

EDGES TO MAVL
CE THAI MORE
GE NE RAL 1

1

METHOD 1 IE YOU WANT
METHOD 2 IE YOU WANT
METHOD 1 OR ? ? 1

10 INPUT CITIES USING X-Y COORDINATES
TO INPUT A DISTANCE TABLE.

YOUR BEGINNING LOCATION IS NUMBER 1 „ . „ .
INPUT THE NUMBER OE YOUR ENDING CITYCl OR 12 > 1

INPUT THE NAMES (AND COORDINATES) OF YOUR CITIES

1 . NAME OE CITY ?peoria

X-COORDINATE 7-93.6

Y-COORDINATE 7-87.3

2 . NAME OF CITY YchicaSo

X-COORDINATE 70

Y-COORDINATE 70

3 . NAME OF CITY ?b*ll*vilt*

X-COORDINATE 7-116.6

Y-COORDINATE 7-236.6

6 . NAME OF CITY Ycarbondal*

X-COORDINATE 7-76.9

Y-COORDINATE 7-286.9

. NAME OF CITY ?rockford

156
X-COOKDINAU' 7-66.S'

Y-COOKOINAU ? 2 0 .

6 . NArtt OF CITY ?<J*catur

X-COOFDItlAlt 7-61.7

Y-COOKDXNA1E 7--145.4

7 . NAME OF CITY ?wauke9*n

X-COORDINATE ?-6.5

Y--COOROINA1E ?26.2

8 . NAME OF CITY ?charapaisn

X-COORDINATE 7-19.7

Y-COORDINATE 7-124.4

9 . NAME OF CITY ?d*katb

X-COORDINATE 7-57.9

Y-COORDINATE 7-4.0

10 .NAME OF CITY ?spr i nsJf i eld

X-COORDINATE 7-94.3

Y-COORDINATE 7-151.0

11 .NAME OF CITY ?kankakee

X-COORDINATE 7-4.1

Y-COORDINATE 7-58.9

\:> . N A nt‘ OF CITY ? aurora

X-COOKOINAU ? - 31.1

y-cookdinau'

INPUT DATA TO
DESTINATION XCOORD.

1 .PEORIA -93.6
2 .CHICAGO 0
3 .BELLEVILLE -116.A
A .CARBONDALE --76.9
?, .POCKFORD -66.9
6 .DECATUR -61.7
7 .UAUKEGEN -6.D
8 .CHAMPAIGN -19.7
9 .DEKALB -S7.9
10 .SPRINGFIELD -9A.3

BE USED
Y -COORD.
87.3
0

-73A.6
-286.9
20.5

-1A 5 . A
26.2
-12 A . A
-A
-151

u .KANKAKEE “A.l -58.9
12 .AURORA -31.1 -13.8

DO YOU WANT TO EDIT ANY (Y/N) ? *

TYPE 0 TO END EDITING WHEN ASKED ’WHICH ONE’

WHICH ONE ?7

7 . NAME OF CITY TwaukatJan

X-COORDINATE 7-6.5

Y-COORDINATE 726.2

WHICH ONE 70

DESTINATION
1 .PEORIA
2 .CHICAGO
3 .BELLEVILLE
A .CARBONDALE
5 .ROCKFORD

INPUT DATA TO
X-COORD.
-93.6
0
-11 A . A
-76.9
-66.9

BE USED
Y-COORD
-87.3
0

-23A.6
-286.9
20.5

6 .DECATUR -61.7
7 .WAUKEGAN "6.5
8 .CHAMPAIGN -19.7
9 .DEKALB -57.9
10 .SPRINGFIELD -9A.3
11 .KANKAKEE "A.l
12 .AURORA -31.1

DO YOU WANT TO EDIT ANY <Y/N)

-1A5.A
26.2
-12A.A
•A
-151
-58.9
-13.8
? n

158

00 you WANT TO EDIT OR E XAM INE THE 0!STANCE - TABLE <T/N>

THE^l TERAT lON^ PROCEDURE" AT UOR^A^THE HONENT

OPT I
1

2
3
A
5
6
7
B
9
10
1 1
12
13

THE

HAL TOUR

LENGTH OF

PEORIA
SPRINGFIELD
BELLEVILLE
CARBONDALE
DECATUR
CHArtPAIGN
KANKAKEE
AURORA
CHICAGO
WAUKEGAN
ROCKFORD
DEKALB
PEORIA

THE SHORTEST TRIP IS 761.7

figure 7 : Optimal tour for Parry and Pfeffer*s 12-city problem

