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Introduction 

One of the most fascinating problems for which computer programs are being 

developed is the traveling salesman problem (TSP for short). It can be described 

as: A traveling salesman, starting at his residence, wants to visit a number of 

cities, each exactly once, and return home afterwards. He wants to make his tour 

as short as possible. 

The TSP is so fascinating as the number of possible tours, from which the 

shortest one has to be chosen, increases exponentially with the number of cities 

more precisely: the number of possible tours through n cities is (n-1)!. 

A computer able to evaluate a million tours per second, needs 0.12 milliseconds 

to solve a 6-city problem. For a 15-city problem, it takes already over 24 

hours, and a 33-city problem is only solved in 8.3 x 1019 centuries! 

So for this enumeration approach we run into trouble: very quickly the 

problem gets too large to be solved by a computer, no matter how powerful. 

The successful methods available nowadays skip as many tours as possible 

before or during the search process. They are based on "implicit enumeration". 

A Basic computer program for use on a microcomputer was shown in the article 

"The Infamous Traveling Salesman Problem", by R. Parry and H. Pfeffer (Byte, 

July 1981). Their method is simple, but not very effective: They introduced a 

12-city problem that could be solved only just within an hour on their micro¬ 

computer (Sw TPC-6800 system). 

We will give a similar Basic program that uses many properties of the TSP. 

Knowledge of the article mentioned above is not needed to understand this one. 

Compared to the mentioned results, computation times will be reduced considerably 

and it will be possible to solve larger problems. For instance, the same 12-city 

problem was solved 37 times faster, and this factor increases sharply with the 

number of cities. Our program is also capable of solving TSP's with different 

beginning and ending location. 

Applications 

Many practical problems are in fact a TSP, e.g. how to schedule an optimal 

tour for a postman to empty pillar boxes. Another example is the following 

problem: 

A mechanical soldering-bolt, moving above a print plate, has to solder a 

given number of points on that plate. We now ask for the shortest tour of the 

soldering-bolt above the print plate. 
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A less trivial application arises when a machine has to accomplish a 

number of tasks successively (e.g. producing certain colours of paint). Costs 

arise by switching over to another task (cleaning and filling paint reservoirs), 

depending on the two considered tasks (from red to green may give different costs 

than from red to yellow). We now ask for a production sequence (red-orange-yellow 

etc.) with minimal total switching costs. 

In this example the tasks correspond to the cities, and the switching costs to the 

distances (not symmetric in general). 

Method 

Search_procedure 

To evaluate all tours systematically we use the same method as Parry and 

Pfeffer: from a given starting city we build up a chain of connected edges, 

with different cities on that chain (An edge is the direct connection between 

two cities). We call this a required chain. Cities not on the required chain 

are called free cities. When no free city is left, we connect the last and the 

first city on the required chain: we obtain a tour. From all tours considered we 

store the shortest one. 

We terminate the construction of a required chain when we are sure that 

this chain will never generate a shorter tour than found thus far. Then we will 

proceed with a new required chain according to a "Last In, First Out" rule 

(see example below). 

The advantage is obvious if the construction of a required chain has not 

to be finished completely. When six free cities are left at the moment of 

termination, we skip 6! = 720 tours at once. 

Lower bounds 

To illustrate the elimination of tours we give an example: 

Assume a 7-city problem with city 1 the starting and ending point. Suppose 

1-5-2-6 is the required chain with length 75 and 3, 4 and 7 are free cities. 

Suppose further that we know a tour with lenth 100, and that the shortest path 

from 6, over 3, 4 and 7, to city 1, (in any order) has at least length 30 (30 is 

a lower bound for the length of that path). In that case, any tour with 1-5-2-6 

must at least have length 105, so 1-5-2-6 can never be part of an optimal tour. 

So we skip the six tours 1-5-2-6-(3-4-7)-1 

1-5-2-6-(3-7-4)-1. 
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Adding the cities in numerical order, our next required chain will be 1-5-2-7. 

And after 1-5-2-7 has been evaluated completely, we will continue with 1-5-3, 

etc. 

We shall look for a method to calculate lower bounds for those 

shortest paths mentioned above. The computation of that path is nothing but 

solving a TSP over the free cities, with fixed beginning and ending point, so 

it is sufficient to consider lower bounds for the TSP with no required chain 

involved. Intuitively it is clear that the higher our lower bounds (the closer 

we approximate the optimal TSP value), the more tours can be skipped in the 

search procedure. 

We must realize that computation of lower bounds is only useful when 

they can be calculated much easier than the optimal value of the TSP itself. 

That this is possible will be clear in the following examples: 

Suppose we have n cities, with distances d_ (i,j = l,...,n), that are 

symmetric (d_ = d^). We take <2^ = «> (i = l,...,n), for edge i-i is not 

allowed. 

A possible lower bound for the optimal value of the TSP is n times the 

minimal number in the distance matrix, because every edge in a tour is at least as 

long as the minimum over all edges. As n2 distances must be called from memory, 

this lower bound is calculated in order n2 (i.e. the execution time for this 

bound increases quadratically with the number of cities). This is very fast 

compared to solving the TSP, but unfortunately this bound is bad. 

A better bound (not more complex than the first one) is the sum over all 

row-minima in the distance matrix. This bound takes into account that every 

city must be left exactly once in a tour, so the distances to the next cities 

are at least as long as the shortest distance in each row. 

1-trees 

In our program we use 1-tree lower bounds, developed by Held and Karp 
2 

in 1971. They can also be calculated in order n , and provide good results 

in practice. To describe what a 1-tree is, we give first two definitions: 
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1) A cycle is a chain of edges with the same beginning and ending point 

(figure 1). 

A cycle containing all cities is a tour. 

figure 1 : a cycle 

2) A tree on n cities is a set of n-1 edges without any cycle (figure 2). 

a tree a tree 

figure 2 

not a tree 

Now we give an arbitrary city number 1, without loss of generality. 

fl 1.~tree is a tree on a11 cities but city 1, together with two edges incident 

to city 1. A minimal 1-tree is a 1-tree with minimal total length (figure 3). 

I : a 1-tree II : a minimal 1-tree III : a 1-tree and tour 

figure 3 
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A 1-tree has (n-2) + 2 = n edges and it contains exactly one cycle, 

because it has one edge more than a tree. 

For a given 1-tree the degree of a city is the number of edges incident 

to this city. In figure 31 the degrees are three for city 4, one for city 5 and 

two for city 2. 

Obviously every TSP tour is a 1-tree (with degree = 2 for every city), 

but not every 1-tree is a tour. Therefore the minimum over all 1-trees is at 

most equal to the minimum over all TSP tours, and so the length of a minimal 

1-tree is a lower bound for the optimal TSP solution. 

A minimal 1-tree is easily constructed: 

1) Choose an arbitrary city 1) as initial tree. 

2) Extend the tree with a city 1), not yet part of the tree, that will 

increase the length of the tree as little as possible; connect this city 

with the shortest edge to the tree so far constructed. 

3) Repeat rule 2 until all cities are part of the tree. 

4) Add the shortest two edges incident to city 1. 

In figure 4, city 2 is the initial tree. The shortest extension is 5-2. 

Then we add successively 3-5, 4-3, and 6-5. We complete the minimal 1-tree with 

1-2 and 1-5. 

One can prove that this algorithm is correct, see e.g. Dijkstra, A 

note on two problems in connexion with graphs. 
2 

6 

figure 4 : a minimal 1-tree 

A minimal 1-tree having degree = 2 for every city is an optimal TSP tour, 

because there are no shorter 1-trees, and thus no shorter tours. 
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In the search procedure we calculate lower bounds for the minimum of all 

tours, containing a given required chain, by constructing a minimal 1-tree on 

the free cities, where we use the required chain as a generalized city 1. 

Weights 

So we want a minimal 1-tree that is also a tour. To try for this, we use 

a simple principle. 

Suppose we have n real numbers tt . ,11^, . . . ,tt , with it. tt + . . . + tt =0. 
^ 1 2 n 1 2 n 

We w'll call tt. the weight of city i. If we change all distances according to 

d' = d + tt + tt (to every distance we add the weights of both related cities) , 
i} ij 1 } 

we seem to have a different TSP. But because a tour passes through each city 

exactly once, every weight will be added twice to the length of the tour. We 

know that tt + tt + . . . + n = 0 , so the length of any tour remains the same, and 
1 ^ n 

the shortest tour remains the shortest. However, which 1-tree is minimal depends 

in general on the weight set, as in the tree the degree of every city is not 

always two. 

In order to obtain a minimal 1-tree with every degree equals two, we give 

cities with degree = 1 encouragements, and cities with degree >2 penalties by 

giving them negative, resp. positive weights. We use the formula 17^=0 (degree^ 

-2), i = l,2,...,n , with c a positive constant, so it + tt + ... + tt will remain 
1 z n 

zero. We now hope that the minimal 1-tree looks more like a tour. It will be 

intuitively clear that better (= higher) lower bounds can be expected when this 

does occur. 

We repeat the process many times, letting c decrease to zero. In most 

cases this method provides a lower bound close or equal to the optimal TSP value 

and often an (optimal) tour. 

Upper bounds 

Values that are definitely larger than the TSP solution are called upper 

bounds. Obviously the length of any tour is an upper bound, because every tour 

is at least as long as a shortest one. The method to skip tours during the 

search process will clearly work better with sharper (= smaller) upper bounds. 

Out of every minimal 1-tree, we can easily construct a tour: 

1) Consider the unique cycle in the minimal 1-tree. 

2) Extend the cycle by connecting a city with degree = 1 directly to the cycle, 

and by deleting the edge on the cycle just after the connection. 

3) Repeat rule 2 until the cycle contains all cities and has become a TSP tour. 
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For example: In figure 5 we start with the cycle 1-5-3-1. After adding 

5-4 and deleting 5-3, we get the cycle 1-5-4-6-3-1 (figure 5^). After adding 4-2 

and deleting 4-6, we get the tour 1-5-4-2-6-3-1. 

figure 5 : constructing a tour out of a 1-tree 

In order to obtain a fast search procedure, it is very important to check 

"good" tours first, because "bad" tours will then be recognized sooner. There¬ 

fore we order our cities according to the tour given by the sharpest upper 

bound found in the iteration procedure. 

An easy check 

In figure 6 we have the required chain 1-8-2-5, and a minimal 1-tree. 

Now we add 5-6 to the required chain. Before calculating a new minimal 1-tree, 

we get an easy (less sharp) lower bound by adding 5-6 (of course), deleting 

5-4 (degree of city 5 must be two), and by replacing 1-3 by 1-4 if d14<dl3- 

This is true because the constraint "degree of city 6 is two", has been deleted. 

When 1-8-2-5-6 is skipped by this lower bound, we don't have to compute 

the new minimal 1-tree, saving a lot of time. 

figure 6 : a minimal 1-tree with a required chain 
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Computational results 

We ran the program of Parry and Pfeffer (PPP for short) and our program 

on an Apple II Europlus computer. Results from a Cyber 750 were used to obtain 

proper estimates of long execution times on the Apple (this Cyber runs 1200- 

1600(!) times faster than our Apple). 

Parry and Pfeffer's 12-city problem (12 American cities) would have 

taken at least li hour, solving it by PPP on the Apple, while our program used 

only 2 minutes 19 seconds. Furthermore we loaded a number of problems with 

randomly chosen co-ordinates. On four 10-city problems PPP's execution times 

varied from 1 to 9 hours (I), while our program solved them in 1 to li minute. 

Four 15-city problems were solved by our program in 3 to 6 minutes, and 

some 19- and 20—city problems in 11 to 26 minutes. A well known 33—city problem 

of Karg and Thompson (33 American cities) was solved by our program in only 53 

minutes, while a similar 42-city problem took 5i hour. 

We did not solve these 15-city and larger problems with PPP, not even on 

the Cyber, because it should take too much computer time. 

In our program we used integer-type variables for those marked in the 

variable list. 6KByte was needed to store the program in the Apple II, which 

means that even a 16K computer can manage problems of about 30 to 40 cities. 

Conclusions 

The program in this article solves TSP's much faster than that of Parry 

and Pfeffer. Using a microcomputer, this can save many hours of waiting. 

Much more sophisticated and larger programs have been developed to solve 

TSP's. They are written in higher programming languages and they can deal with 

larger problems than those mentioned above. For example, Volgenant and Jonker 

developed a Pascal program that solved a 120-city problem of Grotschel (120 

German cities) in 181 seconds on their Cyber. 

From this we see that, in spite of the tremendous number of possible 

tours, very large TSP problems can be solved in a short time. 
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Array variables used in the program (*-marked.if integer) 

CH 

D 

*DG 

,M,S 

*K 

N$ 

*R 

In a minimal 1-tree computation, A(j) stores the minimal distance from 

city j to the tree, so far constructed. 

In the upper bound computation: 

{1, if city j is part of the unique cycle, 

0, otherwise. 

C stores the tour belonging to the sharpest upper bound found in the 

iteration block. 

CH(H) stores the length of the required chain on depth H. 

D is a 2-dimensional array to store the distance matrix, 

f-l, if city j is part of the required chain, 

degree of city j, otherwise. 

Calculating 1-trees, M(j) and S(j) give the minimal and subminimal 

distances of the last (j=l) resp. the first (j=2) city on the required 

chain to the tree. IM(j) and JS(j) are the corresponding cities on the 

tree, for which those minima and subminima aie reached. 

K(j) stores the number of the city on the required chain. 

N$ is an array to store the names of the cities. 

R(j) stores the city on the tree, for which A(j) is minimal. When the 

computation of the 1-tree is finished, R(j) will be the city, a-ssigned to 

DG(j) J-1’ 
ll + 

*T 

TL 

W 

city j in the 1-tree. 

T stores the shortest known tour. 

TL is an array for the easy check in the search procedure. In the example 

(figure 6), TL(4) = length minimal 1-tree - d(5,4) + min{0,d(l,4) -d(l,3)}. 

W(j) stores the weight for city j. 
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Most important real and integer (*-marked) variables used in the program 

*A,B 

*BT 

*C1,C2 I 

F 

*HE 

*it ; 

*K 

MD 

NTT, ML 

*N 

*P1,P2 

*P3 

*R 

S 

T 

UT,U 

V 

Stores the next to last resp. the last city on the required chain. 

Connection point of B with the minimal tree. 

Calculating 1-trees, C2 is the last city added to the tree, and Cl the 

city that is added next. 

Last city on the tour (and first city on the required chain). 

Used to calculate TL(j). In the example of figure 6 

F = d(5,4) - min{0,d(l,4) - d(l,3)}. 

Depth in the search procedure (= number of cities on the required chain). 

Used to distinguish between the first and the last city on the required 

chain. 

After the input block: a variable city number. 

Maximal number of iterations in the iteration block. 

K=N, if the starting and ending point are the same; K = N-l, otherwise. 

Minimal distance from any city outside the tree to that tree. 

Stores the length of a minimal 1-tree, resp. the best lower bound found 

thus far. 

Number of cities specified by the user. 

Used in the upper bound computation: Pi is a city with degree = 1; P3 is 

the connection point of the cycle with the path from Pi to the cycle; P2 

is the city on the cycle before P3. 

R=1, if the optimal TSP value is found in the iteration block; R=0, 

otherwise. 

S=CH(H), at the actual depth. 

Tolerance value for the real numbers to test inequalities. 

Stores the length of the upper bound, derived from a 1-tree, resp. the 

best upper bound found thus far. 

is a precision, specified by the user; two tours of different length will 

differ at least V. 
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Listing 1 : The traveling salesman program in Apple Basic. 

oooio Input "hou many destinations ";n 
00020 IF N>=4 THEN 00040 
00030 PRINT "THE NUMBER OF CITIES MUST EXCEED 3" : GOTO 00010 
00040 DIM D<N,N>,T<N + 1>,C(N+1>,K<N + 1>,R(N>,A(N),CH< N>,U(N+1>,P. CN) 
00050 DIM DG(N+1>,in<2>,JS<2>,n<2>,S<2>,TL(N>,N*<N> 
00060 PRINT "INPUT THE NUMBER OF DECIMALS YOU WANT YOUR EDGES TO HAVE "S 
00070 PRINT "(0 >IF THEY ARE INTEGER,AND MAXIMAL 3).NOTICE THAT MORE "i 
00080 PRINT "DECIMALS PROVIDE LONGER EXECUTION TIMES IN GENERAL!" 
00090 INPUT G 
00100 IF GOO AND GOl AND G<>2 AND G<>3 THEN 00060 
00110 V=10**G : T=0.001/V 
00120 REM INPUT INSTRUCTIONS FOR GENERATING DISTANCE-MATRIX. 
00130 PRINT "METHOD 1 IF YOU WANT TO INPUT CITIES USING X-Y COORDINATES. 
00140 PRINT "METHOD 2 IF YOU WANT TO INPUT A DISTANCE-TABLE." 
00150 INPUT "METHOD 1 OR 2? "Ill 
00160 IF IlOl AND 1102 THEN 00150 
00170 REM CONSTRUCT INPUT TABLE. 
00180 PRINT "YOUR BEGINNING LOCATION IS NUMBER 1" 
00190 PRINT "INPUT THE NUMBER OF YOUR ENDING CITYd OR ";N;">"; 
00200 INPUT E 
00210 IF EOl AND EON THEN 00190 
00220 K=N-1 
00230 IF E=1 THEN K=N 
00240 PRINT "INPUT THE NAMES (AND COORDINATES) OF YOUR CITIES " 
00250 FOR 1=1 TO N 
00260 GOSUB 01870 
00270 NEXT I 
00280 IF 11=2 THEN 00450 
00290 REM DISPLAY INPUT TABLE 
00300 PRINT 
00310 PRINT TAB(15):"INPUT DATA TO BE USED" 
00320 PRINT TAB<3> J"DESTINATION")TAB(20))"X-COORD."!TAB(30);“Y-COORD." 
00330 FOR 1=1 TO N 
00340 PRINT I ;" = ";Nt(I>;TAB(20>;CH(I);TAB(30);A(I> 
00350 NEXT I 
00360 REM EDIT MODE FOR EDITING INPUT DATA 
00370 INPUT "DO YOU WANT TO EDIT ANY (Y/N) ")Qt 
00380 IF 0*="N" THEN 00460 
00390 PRINT'.PRINT "TYPE 0 TO END EDITING WHEN ASKED ’WHICH ONE' " 
00400 PRINT : INPUT "WHICH ONE ";I 
00410 IF 1=0 THEN 00290 
00420 IF Id OR I>N THEN 00400 
00430 GOSUB 01870 
00440 GOTO 00400 
00450 REM CONSTRUCT INTER-DESTINATION TABLE 
00460 IF 11=2 THEN PRINT “CONSTRUCT INTER-DESTINATION TABLE" 
00470 FOR 1=2 TO N 
00480 FOR J=1 TO 1-1 
00490 IF 11=1 THEN 00520 
00500 PRINT "EDGE";i;"-";js“ = "; 
00510 INPUT Z s GOTO 00540 
00520 X=ABS(CH(I)-CH(J>> : Y=ABS(A(I>-A<J)> 
00530 Z=(INT(V*(SGR(X*X+Y*Y))+0.5>)/V 



151 

10540 D(XrJ)=Z D(J,I)=Z 
10550 NEXT J 
10560 NEXT I 
10570 PRINT 
10580 PRINT "DO YOU WANT TO EDIT OR EXAMINE THE DISTANCE-TABLE (Y/N) "! 

10590 INPUT Q* 
10600 IF Qt="N" THEN 00880 
10610 PRINT : PRINT TAB< 14) J "*■*** DISTANCE-TABLE **»*" 
10670 PRINT "<VALUES ROUNDED TO NEAREST INTEGER)" 
10630 FOR 1 = 1 TO N 
10640 PRINT TAB(4*1);11 
10650 NEXT I 
10660 FOR 1=1 TO N 
10670 PRINT:PRINT I: T AB(3)!"!"J 
10680 FOR J=1 TO N 
10690 PRINT INMDl I - J)+0.5> ;TAB<4*J+4> J 
10700 NEXT J 
10710 NEXT I 
10720 REM EDIT MODE FOR EDITING DISTANCE-TABLE 
10730 PR I NT:INPUT "DO YOU WANT TO EDIT ANY UALUES (Y/N) ";Qt 
10740 IF Q$="N" THEN 00880 
10750 PRINT:PRINT "TO ALTER . USE FORMAT:FROM,TO,NEW DISTANCE" 
10760 PRINT "FOR EXAMPLE»2»4»512 ALTER THE DISTANCE FROM CITY 2 ") 
10770 PRINT "TO CITY 4 TO 512 . DISTANCE FROM CITY 4 TO CITY 2 IS ALSO 
10780 PRINT “CHANGED . INPUT 0,0,0 TO LEAVE EDIT MODE." 
10790 PRINT : PRINT 
10800 1 = 1 
10810 PRINT I;" . ”;"FROM,TO,DIST= "! 
10820 INPUT M,L,D1 
10830 IF M=0 THEN 00610 
10840 IF M = L OR M>N OR L<1 OR L>N THEN PRINT "ILLEGAL INPUT":GOTO 00810 
10850 D(M,L)=D1 : D(L,M)=D1 
10860 
10870 
10880 
10890 
10900 
)0910 

1 = 1 + 1 
GOTO 00810 
REM CALCULATE TOTAL POSSIBILITIES FOR TRIP 
Z = 1 
FOR 1=2 TO K-l 
Z = Z*I 

10920 NEXT I 
10930 PRINT "TOTAL POSSIBILITIES FOR 
10940 C(l)=l : C(K+l)=E 
10950 V= 1 /V-T 
10960 M=32000:U=M:ML=-M 
10970 REM TO FIND SHARP LOWER BOUNDS 
10980 PRINT "THE ITERATION PROCEDURE 
10990 B=1:H=1:R=0 
11000 IT=3*K 
11010 FOR L=1 TO IT 
11020 OOSUB 01980 
11030 IF MT>U-V THEN R=1:L=IT+1:GOTO 
11040 IF MT>ML + T THEN ML = MT 
11050 GOSUB 02370 
11060 IF UT>U-T THEN OHIO 

TRIP ":Z 

. START ITERATION PROCEDURE 
IS AT WORK AT THE MOMENT" 

01130 
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01070 U=UT : 11=1 
01030 FOR 1=2 TO K 
01090 11 = R<11) : C<I) = I1 
01100 NEXT I 
OHIO IF m.>U~V THEN R=1 :l.= IT + l :GOTO 01130 
01120 IF LOIT THEN 00303 01740 
01130 NEXT L 
01140 FOR 1=1 TO N 
01150 T CI> = I : K(I) = 1 
01160 NEXT I 
01170 IF R=1 THEN 01660 
01180 REM CALCULATE SHORTEST TRIP IN THE SEARCH PROCEDURE 
01190 PRINT "THE SEARCH PROCEDURE IS AT WORK AT THE NONENT" 
01200 TL(1)=MT“F 
01210 REM RESEQUENCE THE CITIES 
01220 FOR 1=2 TO N 
01230 FOR J=1 TO 1-1 
01240 A = CU):B=C(J> 
01250 IF A>B THEN EX=A;A=8:B=EX 
01260 D(Ij J)= D(A > B > 
01270 NEXT J 
01280 NEXT I 
01290 FOR 1=1 TO N-l 
01300 FOR J=I+1 TO N 
01310 D(I,J)=D<J,I> 
01320 NEXT J 
01330 NEXT I 
01340 CH<1>=0:8=1 
01350 REM SEARCH PROCEDURE 
01360 A=B : 8=1 : H=H+1 
01370 DG(8) = 1 
01380 IF B=K THEN 01440 
01390 0=8 
01400 FOR 1=8+1 TO K 
01410 IF OG(I)>0 THEN 8=I:K<H>=8:DG<8> = -1:I = K +1 
01420 NEXT I 
01430 IF 008 THEN 01480 
01440 H=H-1 
01450 IF H=1 THEN 01660 
01460 8=A : A=K<H-1> : GOTO 01370 
01470 REM GENERAL CHECK 
01480 S=CH(H-1)+D(A»B) : CH(H)=S 
01490 IF S+TL(H-l>>U-V THEN 01370 
01500 GOSUB 01980 
01510 TL(H)=MT~F : MT=MT+S 
01520 IF MT>U-U THEN 01370 
01530 GOSUB 02370 
01540 IF UT<U-T THEN U=UT 
01550 IF MT<U~V THEN 01360 
01560 REM STORE THE BETTER TOUR 
01570 FOR 1=2 TO H 
01580 T(I)=K(I> 
01590 NEXT I 



H600 11 = 1} 
11610 FOR I=H+1 TO K 
11620 11 =R(II) : T(I> =11 
11630 NFXT I 
11640 GOTO 01370 
11650 PEP! OF'TIPIAI TOUR FOUND . DISPLAY RESULTS. 
11660 PRINT: F'R I NT "0PTIP1AL TOUR 
11670 FOR 1=1 TO K 
11680 PRINT I,N*(C(T(I))) 
11690 NEXT I 
11700 PRINT K +1 . Nt (t") 
11710 PRINT "THE LENGTH OF THE SHORTEST TRIP IS ":U 
11720 GOTO 02550 
11730 REP! SUBROUTINE 1 TO CHANGE DISTANCE P1ATRIX BY WEIGHTS 
117 40 3 = < IT-L + 1 >*< IT--L + 1 >*nT/IT/I T/50 
11750 FOR 1=2 TO K 
11760 U<I>=Z*<DG<I>-3> 
11770 NEXT 1 
11780 W(11=0 : W(K+11=0 
11790 FOR 1=1 TO N-l 
11800 X=U(I> 
11810 FOR J=I+1 TO N 
11820 Y=W < J1 : Z=D(I.J)+X + Y 
11830 D(I> J) = Z : D<J.I)=Z 
11840 NEXT J 
11850 NEXT I 
31860 RETURN 
11870 REP! SUBROUTINE 2 TO INPUT CITY NAPIE (AND COORDINATES) 
31880 PRINT:PRINT I;"."! 
11890 PRINT TAB(5) 1 “NAPIE OF CITY "1 
11900 INPUT N»(I) 
11910 IF 11=2 THEN RETURN 
11920 PRINT T AB(51J"X-COORD I NATE 
11930 INPUT CH(I> 
11940 PRINT TAB(5):"Y-COORDINATE "5 
11950 INPUT Ad) 
01960 RETURN 
01970 REP! SUBROUTINE 3 TO CALCULATE A 1-TREE 
11980 FOR 1=2 TO K 
11990 IF 0G < I ) > = 0 THEN D6 ( I ) = 1 : A (I ) =P\ 
12000 NEXT I 
32010 HE=B 
12020 FOR J=1 TO 2 
12030 PUJ)=PI : S(J) = P! 
02040 FOR 1=2 TO K 
12050 IF DGCIXO THEN 02100 
02060 Z=D(HE.I> 
02070 IF Z>S(J)-T THEN 02)00 
02080 IF Z>n<J)-T THEN S<J)=Z:JS(J)=1:GOTO 02100 
02090 S< J)=PU J) s JS( J) = IPU J) SPK J)=Z: IP!< J) = I 
02100 NEXT I 
12110 IF B = E THEN PI<2> =S< 1) : IP!<2) = JS(1) : J=3 
02120 HE=E 



ooooccoooooooooocooooooooooociooooooooocoooo 
ro w t-j N» ns rJ ro w ro N) ro ro ro w ro w ro M po ro ro ro ro ro ro ro r-j ro ro ro ro N) ro ro ro ro ro N) ro ro ro ro ro 

cn ct cn cn c/i cr jv > > >• 4^ ^ -f' ^ js 04 w «>j w w w w oj w w ro ro w ro pj ro ro ro ro ro ^ ^ ^ i-* ^ 
cn^04r0>--O'000'sJ0'ai>wr0i-O'0C0'OCK(.n^.0Jr0^o>0C0sj!>cn^0JpJ^ON0C0vjCNC.n^0J 

COOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOCOO 

f—i -n —w i_i ^ • ._i -n i__i -n i_< “n w—i m rr? to T! n ^ m ■*>* ,_. *_i i ,_> -n -» t' ^ ^ -«i —* -n —» -i- ._. m ^ z »-! 33 
z m m "n ^ 

o -h x T> 
c H c ro 

33 ~ 
Z >H V ii 

C -n 
I 

N.* *h 13 
ii “n ro 

ZD 
-H o -n 

33 
»-i •-* 133 CO »-< O •-< 

!-*►-» /-» « O H-i 1-* 
A “U CO ^ II A 

v *« w ^ ro v 
m 

z c 
m -h 

z n_ 

33 -1 
m + 

—I M 
c 

33 
Z 

CO c z 
— -i rn 

M 11 x 
h-* 3 -H 

'w' -< 
II *-< 

"0 13 
to OJ >-< 

^ »-J- 
I -H II 

O X 33 
m ^ 

x z 
w •- 

- c ^ 
t? ro 

N3 ^ 
CC 

o 

n 1 
o ■ V o —I 

ro x i 

cc -n 33 
^ o m 

^ 33 3 

!! Hi to 
one 

ro co 
33 

•h o 
o c 

o 
PO 1 

1-* 33 
II 

33 CO 

W 1 

II 

LH 
W 

33 O Z 
mom 

-H ^ X 
e 33 ~i 

33 — 
Z CO 

II 
o 

C3 

o 
1> 

o o z 
co po m 

11 : 
33 o - 

ro « < 
ro 3 

•w- —I 
I! 

!! 3 
O -I 

CO + 
-v 3 

33 C3 

n o 
PO co 

*-h »-i ro 
m m 11 

o 
3> Nl 

^ A t_ 
t_ 3> 

-w- ~ ro 

■H X 
x m 

3 - 
o 1 

11 ' 
3> 

3 m m »-i m 
o co o n m 11 

33 ii 33 m o 
3 + m ~ 

t_ »-( o a m 
11 11 ~ a - 

po x cc co 
+ - -h ro 

-1 po co x ^ 
o ■h m 1 

-« ^ z o 
x o ^ 

m m 
x n - 

o co 

II X 
3 ~ 

— II 

3 *-< X 
m m 

x 11 
m 3 ro 

: 
03 ^ 1 

O 
ro 

3 *-* 

ro « 
^ O' 

ro 
<« 11 

1 co 3 
• —< ^ 

11 po 

X CO 
m ^ 

•w PO 

3 

3 PO 

X 
m co 

~ ~ ~ z 
co 33 11 ^ 

w ^ C. w O 

O CO + PO 

CO 
o 

z 

c 

II II 
c_ o 

ro 

o 
CO 

CO 
ro 

co 
PO 

o 
o 

cc 
o 

c 
z 

CO 

33 
m 



155 

Listing 2 : Run of the traveling salesman program on the 12 city problem of 
Parry and Pfeffer. The execution time is 2 minutes 19 secs on an Apple II . 

HOW MANY DC. 1)11NA1 IONS 7 12 

!Nf'UY *1 Ml NUM'.f:F< OF DECIMALS YOU WANT YOUK 
(0,[|- IHEY ARE INTEGER • AND MAXIMAL D.NOTI 
DECIMALS PROVIDE LONGER EXECUTION TIMES IN 

EDGES TO MAVL 
CE THAI MORE 
GE NE RAL 1 

1 

METHOD 1 IE YOU WANT 
METHOD 2 IE YOU WANT 
METHOD 1 OR ? ? 1 

10 INPUT CITIES USING X-Y COORDINATES 
TO INPUT A DISTANCE TABLE. 

YOUR BEGINNING LOCATION IS NUMBER 1 „ . „ . 
INPUT THE NUMBER OE YOUR ENDING CITYCl OR 12 > 1 

INPUT THE NAMES (AND COORDINATES) OF YOUR CITIES 

1 . NAME OE CITY ?peoria 

X-COORDINATE 7-93.6 

Y-COORDINATE 7-87.3 

2 . NAME OF CITY YchicaSo 

X-COORDINATE 70 

Y-COORDINATE 70 

3 . NAME OF CITY ?b*ll*vilt* 

X-COORDINATE 7-116.6 

Y-COORDINATE 7-236.6 

6 . NAME OF CITY Ycarbondal* 

X-COORDINATE 7-76.9 

Y-COORDINATE 7-286.9 

. NAME OF CITY ?rockford 
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X-COOKDINAU' 7-66.S' 

Y-COOKOINAU ? 2 0 . 

6 . NArtt OF CITY ?<J*catur 

X-COOFDItlAlt 7-61.7 

Y-COOKDXNA1E 7--145.4 

7 . NAME OF CITY ?wauke9*n 

X-COORDINATE ?-6.5 

Y--COOROINA1E ?26.2 

8 . NAME OF CITY ?charapaisn 

X-COORDINATE 7-19.7 

Y-COORDINATE 7-124.4 

9 . NAME OF CITY ?d*katb 

X-COORDINATE 7-57.9 

Y-COORDINATE 7-4.0 

10 .NAME OF CITY ?spr i nsJf i eld 

X-COORDINATE 7-94.3 

Y-COORDINATE 7-151.0 

11 .NAME OF CITY ?kankakee 

X-COORDINATE 7-4.1 

Y-COORDINATE 7-58.9 



\:> . N A nt‘ OF CITY ? aurora 

X-COOKOINAU ? - 31.1 

y-cookdinau' 

INPUT DATA TO 
DESTINATION XCOORD. 

1 .PEORIA -93.6 
2 .CHICAGO 0 
3 .BELLEVILLE -116.A 
A .CARBONDALE --76.9 
?, .POCKFORD -66.9 
6 .DECATUR -61.7 
7 .UAUKEGEN -6.D 
8 .CHAMPAIGN -19.7 
9 .DEKALB -S7.9 
10 .SPRINGFIELD -9A.3 

BE USED 
Y -COORD. 
87.3 
0 

-73A.6 
-286.9 
20.5 

-1A 5 . A 
26.2 
-12 A . A 
-A 
-151 

u .KANKAKEE “A.l -58.9 
12 .AURORA -31.1 -13.8 

DO YOU WANT TO EDIT ANY (Y/N) ? * 

TYPE 0 TO END EDITING WHEN ASKED ’WHICH ONE’ 

WHICH ONE ?7 

7 . NAME OF CITY TwaukatJan 

X-COORDINATE 7-6.5 

Y-COORDINATE 726.2 

WHICH ONE 70 

DESTINATION 
1 .PEORIA 
2 .CHICAGO 
3 .BELLEVILLE 
A .CARBONDALE 
5 .ROCKFORD 

INPUT DATA TO 
X-COORD. 
-93.6 
0 
-11 A . A 
-76.9 
-66.9 

BE USED 
Y-COORD 
-87.3 
0 

-23A.6 
-286.9 
20.5 

6 .DECATUR -61.7 
7 .WAUKEGAN "6.5 
8 .CHAMPAIGN -19.7 
9 .DEKALB -57.9 
10 .SPRINGFIELD -9A.3 
11 .KANKAKEE "A.l 
12 .AURORA -31.1 

DO YOU WANT TO EDIT ANY <Y/N) 

-1A5.A 
26.2 
-12A.A 
•A 
-151 
-58.9 
-13.8 
? n 
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00 you WANT TO EDIT OR E XAM INE THE 0!STANCE - TABLE <T/N> 

THE^l TERAT lON^ PROCEDURE" AT UOR^A^THE HONENT 

OPT I 
1 

2 
3 
A 
5 
6 
7 
B 
9 
10 
1 1 
12 
13 

THE 

HAL TOUR 

LENGTH OF 

PEORIA 
SPRINGFIELD 
BELLEVILLE 
CARBONDALE 
DECATUR 
CHArtPAIGN 
KANKAKEE 
AURORA 
CHICAGO 
WAUKEGAN 
ROCKFORD 
DEKALB 
PEORIA 

THE SHORTEST TRIP IS 761.7 

figure 7 : Optimal tour for Parry and Pfeffer*s 12-city problem 


