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Abstract: 

This paper applies the calculus of generalized inverses and 

matrix differentials to restricted maximum likelihood estimation. 

Some calculus results are derived for the first time. The ML 

estimation of a possibly singular multivariate normal serves as 

an example of tneir use. Applications are presented for a system 

of seemingly unrelated regressions and for the Linear Expenditure 

System. It is shown that commonly used iterative estimation 

schemes for these models coincide with a generalized method of 

scoring in the maximum likelihood framework. 
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THE USE OF GENERALIZED INVERSES IN RESTRICTED MAXIMUM LIKELIHOOD 1 

1. Introduction 

This paper recalls and derives results in matrix calculus and shows 

their usefulness in maximum likelihood estimation. The calculus 

results are in the field of Moore-Penrose inverses and Kronecker 

products (section 2), and matrix differentation (section 3) . 

The power of Moore-Penrose inverses in restricted maximum 

likelihood estimation is demonstrated in section 4. 

We then give some applications to well-known ML estimation problems. 

As a first example, section 5 shows how the symmetry restriction 

on the covariance matrix is easily incorporated in ML estimation 

of a multivariate normal distribution without using "elimination" 

or "duplication" matrices. The treatment of a singular multivariate 

normal rollows the same lines and produces an elegant generalization. 

For a (possibly nonlinear) Zellner-type seemingly unrelated 

regressions model, we readily obtain the asymptotic covariance 

matrix of the ML estimator and show that the usual numerical 

method of iterated (nonlinear) GLS coincides with the method 

of scoring (section 6). 

Allowing for a singular covariance structure, we can in the 

same rramework study the estimation of allocation models 

without the need to drop one equation from the system. 

Earlier versions of this paper were presented at the 1982 Econometric 
Society Winter Symposium in Chiasso and at the 1982 Econometric 
Society European Meeting in Dublin. The comments of H. Neudecker 
and of the editor and referee of KM are gratefully acknowledged. 
Any remaining errors are mine. I am indebted to Mischa Vinkestijn 
for the conscientious typing of the manuscript. 
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As an example, in section 7 we analyze the nonlinear estimation problem 

that arises in the Linear Expenditure System, and discuss some methods 

proposed for its solution. 

2 
2. Moore-Penrose inverses and Kronecker products 

The uec-operator transforms an arbitrary matrix into a column 

vector by stacking its columns. For conformable matrices A,B we have 

trace A'B = (vec A)'vec B (2.1) 

The Kronecker product of (m,n)-matrix A = (a_) and (p,q)-matrix B 

is the (mp,nq)-matrix A (5T) B = (a^B) . 

The important relation between vecs and Kronecker products is 

vec ABC = (C ® A) vec B (2.2) 

B = (b. .) is the (m,n)-matrix A B = (a. . b. .). 
ID iD ID 

The Schur product is commutative and for conformable a>b>c,d,E we have 

c'(a*b) = a'(b*c) = b'(c*a) (2.3) 

and 

(a*rb)'E(c*d) =a'(bc'*E)d (2.4) 

2 
Throughout this paper, lower case characters denote column vectors 

or scalars and upper case characters denote matrices; primes indicate 
transposition. 
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The Khatri-Rao product (Khatri and Rao (1968)^ of (m,n)-matrix 

A = (a, .. a ) and (p,n)-matrix B = (b. ... b ) is the 
In In 

(mp#n)-matrix A*'B = (a.(£)k>, ••• a (£)b). 
11 n ^ n 

It is related to the Schur product by 

(a'B)tfc' = a'(B^c1) (2.5) 

The commutation matrix K is the unique (mn.mn)-matrix which 
mn 

for arbitrary (m,n)-matrix A satisfies 

K vec A = vec A' (26) 
mn v ' 

This matrix is extensively studied in Magnus and Neudecker (1979). 

Its name is inspired by its effect on conformable Kronecker products: 

Kmn(A ® B)Kst = B ® A (2‘7) 

for (n,s)-matrix A and (m,t)-matrix B. 

2 2 
The (n ,n )-matrix K is also written K . It is symmetric and 

nn n 

orthogonal, which implies that 

*5 (I o - K ) and Ml o + K ) are symmetric and idempotent (2.8) 
n^ n nz n 

Furthermore, for (n,n)-matrix A we have 

K (A ® A) = (A @ A) K (2.9) 
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For arbitrary (111,11)-matrix A, any (n,m)-matrix X that satisfies 

AXA = A is a generalized inverse of A and denoted A . The 

Moore-Penrose inverse of A is the unique (n,m)-matrix A+ that 

satisfies 

(i) AA+A = A (iii) A+A is symmetric 

(2.10) 

(ii) A+AA+= A+ (iv) AA+ is symmetric 

The properties of A and A+ and related matrices have been 

studied by a great number of authors; we recall the following 

properties of the Moore-Penrose inverse (e.g. Boullion and Odell 

(1971) or Rao and Mitra (1971)): 

A+A = I iff A has full column rank (2.11) 

A+ = (A' A) "*"a 1 = A'(AA')+ (2.12) 

(AA1)+AA1 = AA+ and A'A(A1 A)+ = A+A (2.13) 

(A')+ = (A+) ' and (A+)+ = A (2.14) 

+ + + , _ . _ . 
rank A = rank A = rank A A = trace A A (2.15) 

AA+ projects on the column space of A (2.16) 

I - a+A projects on the kernel of A (2.17) 

+ + + + 
AA , A A, I—AA and I-A A are symmetric and 

idempotent (2.18) 

(GAH)+ = H(GAH)+G if G and H are symmetric and (2.19) 

idempotent 

the Euclidean distance || Ax - b || reaches its minimal 

value for x = A+b + (I-A+A)z, z an 

arbitrary vector; the system Ax=b is 

consistent iff AA+b = b 

(2.20) 
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As a new result, we prove 

THEOREM 2.1: For any («-matrix A we have 

= >s(I 9 + K ) [ t1 - AA+) ® (I - AA+)] n-41 n L n n 
(2.21) 

Proof: Omitting the indices on I and K, we define 

A - K \ 

and P >5(1 + K) [(I - AA+) (x) (I - AA+)J . 

V a' ®iy 

From (2.9), we have P = [(I-AA+) (3) (1 - AA+)J15(I + K) , 

and with this result one verifies that 

(a) RP = 0 and 

(b) P is idempotent and symmetric. 

In view of (2.17), this proves the theorem if 

(c) Rx = 0 implies Px = x. 

So let Rx = 0, and X be the (n,n)-matrix such that x = vec X. 

We obtain X = X' and XA = 0, to find 

Px = Pvec X = *5(1 + K) vec { (I - AA+)X(I - AA+); 

= *5(1 + K) vecX = x 

which proves (c). a 
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COROLLARY: All symmetric solutions X to the matrix equation XA = 0 

are given by 

vec X = >5(1 + K) [(I - AA+) ® (I - AA+)] z (2.22) 

2 
with z an arbitrary n -vector. 

3. Matrix differentials and derivatives 

A collection of appropriate propositions on matrix derivatives 

is provided in Dhrymes (1978). 

Mainly for notational convenience, we restate some important 

results using differentials in stead of derivatives. For a conti¬ 

nuously differentiable scalar function of a vector argument, the 

two are related by 

-rj— = a' iff df = a'dx for all dx (3.1) 

a2f 
3x3x' 

+ A') iff d2f = (dx)'A(dx) for all dx. (3.2) 

For details on matrix differentials and related results, see 

Neudecker (1967, 1969). 

If X and Y are conformable continuously differentiable matrix 

functions, we have 

d(XY) = (dX)Y + X(dY) (3.3) 

d trace X = trace dX (3.4) 

d vec X = vec dX (3.5) 



and at points where X is nonsingular 

d Injxl = trace X *dX (3.6) 

a x"1 = -x-1(ax)x_1 (3.7) 

For the special matrix products 0,% and 0 the analogon of 

(3.3) holds. 

A generalization of (3.7) to (m,n)-matrices X of locally constant 

rank3 was given by Golub and Pereyra (1973): 

dx+ = - X+(dX)X+ + (I - x+x) (dX') (XX')+ + (X'X) + (dX') (I - XX+) (3.8) 

A generalization of (3.6) to arbitrary (n^n)-matrices X is given 

in Theorem 3.1, which as far as we know is new. It is based on the 

singular value decomposition (e.g. Rao (1973, p. 42)): 

an arbitrary (m,n)-matrix A of rank r can always be written 

A = UAV where A is a diagonal (r,r)-matrix with positive diagonal 

elements, and (m,r)-matrix U and (n,r)-matrix V satisfy 

U'U = V'V = I . 
r 

One verifies that the diagonal elements of A (i.e. the singular 

values \equal the square roots of the r positive eigenvalues 

of AA' (or A1 A), while the columns of U are the corresponding 

orthonormal eigenvectors of AA' and the columns of V those 

of A1 A. 

The Moore-Penrose inverse of A = UAV is A+ = VA ^U', and we have 

AA+ = UU' and A+A = W'. 

3 The matrix function X(a) has locally constant rank ino^ if 
rank X(a) = rank X(cIq) for alia in some open neighbourhood 



-HEOREM 3.1= For any continuously differentiable !m,n)-matrix 

function X, we have at points where rank X = r: 

r +J (3.9) 
d loq H X (X) = trace X dX, 

i=l 1 

where X (X) denote the r largest singular values of X. 
i 

REMARK: In the sequel we will only need (3-9 -or square 

nonnegative definite matrices of constant rank, having a fixed 

kernel. For such matrices the proof of (3.9) can be derived in a 

straightforward manner from (3.6). However, the more general 

Theorem 3.1 may be of use in other applications. 

Proof (pf. Neudecker (1967)): Consider a point where rank X = r and all 

r nonzero eigenvalues of X'X are simple roots of its characteris 

tic polynomial- The coefficients of t-Vii Q nnlvnomial 

differentiable functions of the elements of X, and thus its simple 

roots and the associated eigenvectors of X'X are continuously 

differentiable functions in view of the Implicit Function Theorem. 

The same holds for eigenvectors of XX', and thus the matrices 

A, U and V of the singular value decomposition X = UAV are 

continuously differentiable at points where X'X has r simple 

nonzero roots. 

Moreover, in such points we have 

dA = d(U'XV) = (dO) 'XV + O' (dX) V + U'X(dV) (3.10) 

= (dU) 'UA + U' (dX) V + AV (dV) . 

The identity U'U = I implies that the diagonal elements of (dU)'U 

vanish, so (dU)'UA = 0. Similarly, AV(dV) = 0, and we find 
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r 

d log IT X. (X) - d log j A| = trace A 1 (dA) 

(3.11) 

Now consider the possibility of multiple roots. 

Because the coefficients of the characteristic polynomial of 

X'X are continuously differentiable functions, so are the 
2 2 

following expressions in its roots X ... A : 

2 2 2 
A.A. ... A . The identification of the r largest roots is 
12 n 

locally unambiguous. The stated expressions are continuously 

differentiable functions of the corresponding expressions in 

the n-r smallest and r largest roots respectively, and yield 

simple solutions in the latter. 

Thus, irrespective of multiple roots, the product of the 

r largest roots is a continuously differentiable function in 

points where rank X = r. So by a continuity argument, (3.9) 

also holds at points where multiple roots occur. 

4. Restricted maximum likelihood estimation 

Maximum Likelihood Estimation subject to equality restrictions 

was rigorously studied by Aitchison and Silvey (1958). They stated 

conditions both on the loglikelihood L (9) and the restrictions 

g(0) =0 for the existence of a consistent restricted ML estimator. 

They also discussed its asymptotic distribution and an iterative 

method to solve the first order equations. 

32l 
T 

Let Bt = - E —, denote the information matrix, and 

define B(0) = ^ Bt (9). The matrix of first order 

derivatives of the restrictions is denoted G(0) = ^q- g(Q). 

The true parameter vector 6^ is known to satisfy 9(®q) = 0- 
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The well-known result is that under suitable assumptions the vector 9 

4 
that solves the first order conditions 

(0) + X'G(§) = 0 and g(0) = 0 (4.1) 

is consistent and asymptotically normal with asymptotic covariance 

matrix equal to the NW submatrix of the inverted bordered asymptotic 

rB GX _1 
information matrix I Q J evaluated at 0^. 

Here we make all (regularity) assumptions given in Aitchison and 

Silvey (1958), except for two rank conditions they impose: 

1. iS Positive definite 

2. G^q) has full row rank. 

The first assumption was relaxed by Rothenberg (1973, p.22) who 

5 
showed that we only need 

1 . B(60) + G' (0o)G(eo) is positive definite 

This section will provide an elegant expression for the asymptotic 

covariance matrix of 0, and slightly relax assumption 2 to the 

assumption 

2* . G(00) has locally constant rank. 

4 
X denotes a vector of Lagrangian multipliers. 

5 n 
We need 1 for identification of the full parameter vector; if it 
is not satisfied, one may proceed as in Rao and Mitra (1971, p. 201- 
203) to obtain results for the estimable functions. 



equivalent with 

|| (§).[! - G+(6)G(@)] = 0 and g(@) = 0 (4.2) 

and under assumptions l*/2, the asymptotic covariance matrix 

of 0 equals 

[(I - G+G)B(I - G+G)] + evaluated at (4.3) 

Proof: The first equation of (4.1) admits of a solution for the vector 

X of Lagrangian multipliers iff the first equation of (4.2) 

is satisfied by 0 (cf. property (2.20) above). 

Rothenberg (1973) showed that on the assumptions 1^,2, the 

A 
asymptotic covariance matrix of 0 equals 

(B + G'G) 
-1 

(B + G,G)_1G,[G(B + G'G)_1G'] *G(B + G'G) 
, -1 

evaluated at 6 Q. One verifies that this expression equals the 

one stated above by checking the defining properties of the 

□ 
Moore-Penrose inverse. 

THEOREM 4.2: Assumption 2 may be replaced by 2 without affecting 

the results of Theorem 4.1. 

Proof: The derivation of (4.2) does not need assumption 2. Now 

suppose rank G(0q) = r* Then G(0^) contains r independent rows. 
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which may be taken to be the first r rows. As G(”) is continuous 

(one of the assumptions in Aitchison and Silvey (1953)), these rows 

Gr(6) are independent in some neighbourhood Uj of 6Q. As G(t) is of 

locally constant rank in 9^/ we have rank G(9) = r in some 

neighbourhood U2 of Qq. Thus in UnU2 the first r restrictions 

g (9) =0 are equivalent to the full set g(0) =0. 

Asymptotically# @ will fall in with unit probability. 

Thus its asymptotic covariance matrix equals 

[(I - Gr+Gr) B (I - Gr+Gr>] + evaluated at 0q if B 4- G^'G^ is 

positive definite. Because G G = G^_ G^ and G has the same 

kernel as G , Theorem 4.1 is not affected if assumption 2 is 
r7 

replaced by 2*'. Q 

If the restrictions g are linear (i.e. if G(0) is constant) we 

readily obtain an iterative scheme to find a numerical solution 

to the first order conditions (4.2). A generalization of the 

method of scoring (e.g. Rao (1973, p. 367)) yields: 

1) choose a starting value 9^ that satisfies gt^) =0 

2) calculate 02, 9^, ... through 

6k+l = 8k + ' G+G)BT(I " G+G);1+(Trj k = l,2, ... (4.4) 

where the RHS is evaluated in 6, . 
k 

Note that the linearity of g is required to ensure that = 0 

for k = 2,3, ... . 



5. ML estimation of the multivariate normal 

It has been stressed by various authors (e.g. Richard (1975), 

Balestra (1976), Magnus and Neudecker (1980)) that in estimating 

a covariance matrix one must take the symmetry restriction into 

account in order to obtain the correct asymptotic variance of the 

estimator. Consider a sample y^ ...y^ of the n-variate normal 

N(y, ft) with nonsingular ft. The symmetry restriction on ft can be 

6 
stated as 

(I - K) vec ft= 0 (5.1) 

In view of Theorem 4.2, we need not bother about the singularity 

of I - K. 

Subject to this linear restriction, we maximize the loglikelhood 

L = constant - ^T logjft! - h ^.(yt-h),ft ^ (yt~y) (5.2) 

Taking differentials, we obtain 

dL = -4 T trace 'wft 1 - ft |(yt-y) (yt-vi) 'S2 1 ] (dfl) 

(5.3) 

and 

(5.4) 

6 
We omit indices on I and K if their dimensions are unambiguous. 
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implying 

9l 

du | (y t-y) 'n (5.5) 

^L _ ^ Qvec 1 
8vec n_1 | ^(yt-y) <yt-y> 'n S]’ 

t n 

o yr n 1 go-1 

(5.6) 

(5.7) 

With G we have (I-G+G) 

4(I+K) J 

because of (2.8). Substitution into (4.2) and (4.3) now yields 

the familiar ML solution M := 

with asymptotic covariance matrix of 

n = 5r|(yt-y)(yt-y) 

\ 
1 given by 

nj 
' Q 

V 

0 

(i+k) (n$c) n ) 
(5.8) 

Use is made of the identity 

[mi+k) (« 1 g!sT1)mi+k)I+ = *!(i+k) («if n jijd+K) = !s;i+K)(n x n>. 

The result conforms to the formulae obtained by other authors, but in 

deriving (5.8) we did not need devices like "elimination" or 

"duplication" matrices. The derivation clearly sets out the method 

adopted in this paper for more complicated problems in Sections 6 and 7. 
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The present approach can easily incorporate the case of a singular 

covariance matrix Consider the case that fi looses m in rank, and 

the known kernel of is spanned by the columns of some (n,m)-matrix A. 

Instead of removing the singularity by discarding m elements of the 

sample vectors y^, one may wish to treat all elements of yfc symme¬ 

trically and impose the singularity of ft in estimation. 

The appropriate loglikelihood now reads (Rao (1973, p. 528)): 

n-m + 
L = constant -h T log (ft) - 'fi (5.9) 

where A (ft) denote the positive eigenvalues of ft = (I-AA+)ft (I-AA+) . 
i 

As ^ is symmetric and nonnegative definite, the A^ coincide with 

its singular values. 

Expression (5.9) should now be maximized subject to the symmetry 

and singularity restrictions on 

/ 1 K ) vec ^ = 0 
V a* ®iy 

Taking differentials, we obtain 

dL = -*2 T trace |&+ “ ^ ^ ^y^.-!1) (yt_y) ' 1 

+ £ (yt-M) '^+ (dy) 

(5.10) 

(5.11) 

7 
?? is used instead of in order to guarantee that L is continuously 

differentiable with respect to y, vec ft. We have 

dft+ =-ft+(dft)ft+. 
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and 

E d2L = -H T trace ?f (dQ) jf (dfl> - T(du) • ?;+(du) (5.12) 

Theorem 2.1 readily gives I-G G for this example, so we can proceed 

to substitute our results into (4.2) and (4.3) to obtain the 

ML solution 2 = and K ^ "(yt-£) (yt-p) ' with asymptotic 

ft A 
covariance matrix of | A j again given by (5.8), because Q = Q 

\ vec 

at the true paranoter values. 

6. Seemingly unrelated regressions 

Consider a possibly nonlinear seemingly unrelated regressions 

model 

y t = f t (+ u t (6.1) 

u^ i.i.d. and NtO,^) (6.2) 

where 'i' is a nonsingular (n,n)-matrix of contemporaneous 

covariances. 

We readily obtain the loglikelihood 

L = constant - ^T log ! 4M - ^ £(yt“ft(3))1^ (6.3) 
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Assume that ffc is twice continuously differentiable with 

9ft 
-^-3- = X. and define e^ = y.-f ^ (3) . Taking differentials, we obtain 
dpt t t t 

dL = -5 T trace [y1 - t'”1 ^ ^ e et' (dT) 

+ £ et' T'1 Xt(dS) (6.4) 

and 

E d2L = -5 T trace f _1 (df)'T1 (df) - (dg)x^. "f^ldg) (6.5) 

If the only restriction on the parameters is the symmetry of ^, 

• p ft the asymptotic covariance matrix for ... 
\vec T/ 

-1 -1 
Xt} 

0 
I 

(I+K) (’F ic V) j 

(6.6) 

which conforms to the result obtained by Magnus (1978) for the 

linear case. 

Applying the generalized method of scoring as developed in 

Section 4, we obtain the recursions 

sk+i = (ix; fklxt)’11 xt \lyt 

k+ 1 
— Zee ' evaluated in 8, 
T t t t k 

(6.7) 

(6.8) 



76 

These recursions describe the commonly used procedure known as 

iterated (nonlinear) GLS. 

7. Estimation of the Linear Expenditure System 

A seemingly unrelated regressions system with a singular covariance 

matrix ¥ arises in allocation models, where the disturbances are known 

to satisfy a linear (adding-up) restriction. The common estimation pro¬ 

cedure for such models is to drop one equation from the system and 

thus discard the adding-up restrictions. It is well-known (Barten 

(1969), Deaton (1975)) that in Maximum Likelihood Estimation of 

general nonlinear allocation models the choice of the equation to be 

dropped does not affect the results. 

With the approach developed in section 5 we are able to derive formulae 

for the Maximum Likelihood problem without dropping any of the equations 

from the system. In most cases, adding up will impose more restrictions on 

the parameters than symmetry and singularity of the covariance matrix. 

As an example, we consider in this section the estimation of a well- 

known non-linear allocation model, the Linear Expenditure System (LES). 

8 
In fact (6.7), (6.8) describe two independent iterative schemes, 

viz. the sequences ^, 63 / •••) ^d (£0^ ,'?3, ...). 

The starting values usually satisfy = I and = 3^ implying 

that the two schemes are numerically the same. 
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The Maximum Likelihood estimation of the LES was studied e.g. by 

9 
Parks (1971), Deaton (1975) and Ham (1978). The system reads, in obvious 

notation, 

3. (m jii ''jPjt' ( 7. 1) 

where i = 1, ... , n indexes commodities and t = 1, ... , T time. 

n n 

We have y. = ra , = 1 
i=l it t i=l i 

and E 
i=l uit so- 

Collect the y_ , p. and u. in n-vectors y , p and u and 
it rit it t t t 

define the parameter vectors b = (b ... b ) and c = (c ... c ). 
In In 

Using the Schur product X, the system (7.1) can now be written 

yt = (I - bs‘)c*pt + bmt + ufc (7.2) 

or equivalently 

ut = U - fas') (yfc - c^pt) (7.3) 

On the usual assumption that the u^ are i.i.d. and N(0, ^ ) 

with ¥ a covariance matrix of rank n-1 that satisfies s' 4* = 0, 

and writing $ = (I-ss+)^(I-ss+), we have the loglikelihood 

_ 

Deaton (1975) incorporates a trend in the 8.; for the sake 

of simplicity it is left out here. 1 
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n-1 

L = constant -li T log 

-H l(y.-c>p )'(I-sb')?+(I-bs') (y -c^o ) 
c t t t L. 

Taking differentials, we obtain 

dL = -h T trace ](d^) 

+ I ((yt-c*Pt) ' (I-sb') ^ (I-bs')} Pt' (dc) 

+ J(y -c*p )'(I-sb')f (db)s'(y.-exp ) 
t t t t t 

and 

E a2L = ->5 T trace f + (dH') y+ (d'i') 

- |(dc) ’ [ptPtl>c {(I-sb') t+(I-bs')}j (dc) 

- 2 ^!yt-c?ept)'s (db) ' {'l'+(I-bs')} 0 Pt' (dc) 
t 

- £(yt-c*pt)s(db) '^(dbls'(yt-c*pt) 

(7-4) 

(7.5) 

(7.6) 
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The restrictions on the parameters read 

(7.7) 

and thus in this case we have 

(7.8) 

Upon substitution into (4.3), we obtain the asymptotic covariance 

/ \ 

matrix of the ML estimator | c 
vec ? 

f * 0 ^ 

with H = 
/H 

11 12 

VH12 H22; 

the square matrix of order 2n 

formed by the (11,11)-blocks 
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H11 = Tt {s'(yt-c*?^}2 f+ 

H12 = T t 3 ' (y t'C*Pt> ■bS'^ ® 

a22 = i | PtPt' )r{(I-sb')4'+(I-bs')} 

Again, we may apply the generalized method of scoring to 

solve the ML estimation problem numerically. The recursion 

formula (4.4) specializes to 

S'(yt-Vpt)4,k (yt'VptA 

Pt*(I-sb^)4^ (I-bks')yty 

and 

\+i = l d-bs') (yt-ckypt) (yt-ckypt) • d-sb-i 

If, in (7.11), the off-diagonal blocks of are discarded, 

we obtain GLS-type recursions for b and c: 

k+1 
= r 2 ,-l l (s'<yt-ck*pt) } ] 1 (yt‘ckypt) (WV 

“k+l Jp. p. '^(I-ab.'(I-b s' Ept*(I-sbk',^k ( I-b, 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 
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These describe the original estimatLon procedure proposed by Stone 

(Parks (1971)/ Deaton (1975)). The alternative suggested by 

10 
Parks (1971) uses the full matrix in (7.H). 

Deaton (1975) developed a "ridge-walking algorithm”/ exploiting the fact 

that if c is fixed, the first order conditions are linear in b. This 

provides the possibility to concentrate b out of the loglikelihood 

by solving a linear system (yielding 7.13), and next apply the method 

of scoring to the concentrated loglikelihood. The resulting 

iterative scheme needs inversions of order n only. 

Note that concentrating out ^ does not yield any savings in the 

order of inversions, because the off-diagonal blocks in (7.9) are 

zero and its partitioned inverse led to (7.12). 

Finally, Ham (1978) suggests to maximize with numerical optimization 

routines (i.e. without analytically evaluated derivatives) the 

twice concentrated loglikelihood obtained after concentrating out f 

and b. If the dimensionality of the system is high, this might 

prove efficient in terms of computer time. However, in a recent 

study of Belsley (1980) the advantage of analytically computed 

derivatives in numerical optimization was found to be considerable. 

The nonlinear allocation model studied in Don (1982) is very 

similar to the LES. The numerical results reported there were 

obtained from an analogon of (7.11), (7.12). Some computer time 

+ 
was saved by using the same H^ -matrix in steps k, k+1 and 

k+2 for k = 6,9,12, ... 

That is, a similar but nonsingular matrix of order 2n-2. 
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8. Concluding remarks 

We have shown how the calculus of generalized inverses ana matrix 

differentials can be usefully applied to restricted maximum lixelmccc 

problems. The usual formulae need slight modifications to handle the 

cases of locally superfluous restrictions and singular parameter 

covariance matrix with known kernel. 

It is not claimed that any additional information can be drawn from 

these exercises in algebra, but I feel that there is some merit in 

treating all variables, parameters and restrictions in a symmetrical 

way. 

We found that several commonly used iterative schemes for well-known 

ML estimation problems actually coincide with a generalized method of 

scoring . This should not be understood as an unconditional recommen¬ 

dation for the use of scoring methods. In applying such iterative 

schemes, it is important to check whether the likelihood really does 

increase at each step of the iteration. If it does not, a change of 

step size direction or both is in order. Applying a linear search 

along the favoured direction in each step can be overdoing it: in most 

cases, the optimal step size is very close to unity. Changes of direc¬ 

tion are a succesful feature of the Marquardt method; see e.g. Bard 

(1974) for a discussion and further references. 
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