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MOKKEN SCALING REVISITED 

Ivo W. Molenaar ' 

Sunmary 

Mokken (1971) has proposed a nonparametric latent trait model 

for unidimensional scaling of dichotomous items. The present paper 

reports on current research aimed at extension and refinement of 

this model. The case of three or more ordered answer categories per 

item is worked out in section 2. Some problems in Mokken's search 

procedure for tables with low expected frequencies are discussed 

in section 3. Statistical procedures for a detailed investigation 

of the monotonicity assumptions of the model are proposed in section 

4, including, their relation to goodness of fit tests for the Rasch 

model. The effects of conditioning on the observed item popularities 

are the subject of section 5. which is followed by a discussion 

(section 6). Because the research project is not yet finished, some 

of the material presented has a preliminary character. 

*) Vakgroep Statistiek en Meettheorie FSW, Oude Boteringestr. 23, 9712 GC 

Groningen. Thanks are due to Boomsma, Lewis, Van Schuur and Verbeek 

for comments on an earlier version and to ms. S. Kroonenberg for 

programming help. 
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1. Introduction 

Let a random sarcple of n persons answer k ^dichotomous items (X^=l 

or 0 if a person's answer to item i is positive or negative). Let all 

items measure one continuously distributed latent trait 6, and let 

the item curves P(X^=l|e) be non-decreasing and non-intersecting. For 

this situation Mokken (1971) has proposed a nonparametric model, based 

only on local independence and monotonicity, allowing a probabilistic 

extension of the Guttman scale in which all item curves would be unit 

step functions. We refer to Mokken (1971), Stokman & Van Schuur (1980), 

and Mokken & Lewis (1982) for a complete description of the model, which 

includes a variety of estimation, test and search procedures embedded 

in a computer program (STAR User's Manual, 1980). 

Within the assumptions the item curves may vary between two 

extremes: unit step functions in the deterministic Guttman model, and 

horizontal lines in the null model of stochastically independent answers 

(not only locally for persons with equal 0, but globally for all persons). 

When allowing some exceptions from the former, the procedures seek to 

safeguard against the latter: totally unrelated items do not measure the 

same trait and should be eliminated. 

With capitals denoting random variables, the four answer patterns 

for two items have the following probabilities and frequencies in the 

general model: 

probabilities frequencies 

Xj=° 

xr° Aij 

V1 Fij 

xj=1 
Bij 

Nij 

n-Nj 
N3 

n-N.j 

N. 
i 

The reason for the special notation and will be explained below. 

For tt^ < Tj, Mokken uses Loevinger's H as the population scalability 

coefficient for the item pair: 
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dgf 
i j 

ij i J phi 
^■(i-n .) - pfn^ 

for tt^ < iij. (1.1) 

In this notation the null case means ir^=n^iTj and H^j=0. The distribution 

of N--given N-=n. and N-=ni would then be hypergeometric (n,n-,(>•), and 

Mokken refers the normalized statistic 

* 

{ninj(n-ni)(n-nj)n'2(n-l)'1}J 
(1.2) 

to standard normal tables, which is an asymptotic (n-*°°) conditional test 

of the null hypothesis. 

At the other extreme, the Guttman case means n,-,=0, thus u. .=ir. and 
14 i j 

There are then no persons in the "error cell", scoring 1 on item 

i and 0 on the easier item j. The number of persons F^j actually observed in 

this error cell is thus a count of the number of violations of the Guttman 

property (notation F for "fault"). Such faults may be summed for a fixed 

person across item pairs for detection of outlying persons with unusual 

answer patterns (cf. Molenaar (1982a) for the Mokken, or Wright & Stone 

( 1979) for the Rasch model). In the Mokken procedures, F^ is summed across 

j for assessing the scalability of item i, and across all pairs i < j for 

assessing the overall scalability; in both cases a suitable normalization 

is added that need not concern us here. 

Inserting it. .=r ■-n ., into (1.1) one obtains 
i J i 14 

Hij 
1 - "a (1.3) 

showing the close relation of to the ratio., of actual error probability 

and null hypothesis error probability. 

Inserting sample fractions, this leads to the estimate 

Hij = ^ij^ij 

where 

e.jj = ni(n-nj)/n ("-j < nj) 

is the conditional null expectation of the error frequency. 

(1.4) 

(1.5) 
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To this very brief recapitulation of the existing publications on 

the Mokken model it should be added that its qualifications as a measurement 

model have been debated in the Tijdschrift voor Onderwijsresearch, see 

Molenaar (1982c) for references. The present paper, partly elicited by. 

this debate, contains four different amendments and extensions to the Mokken 

scaling theory and procedures. 
Section 2 points out that the limitation to dichotomous items is an 

undesirable restriction in the frequent applications to data with more than 

two answer categories. For all cases where such categories are ordered, it 

contains an extended model which allows the application of the Mokken 

principles without previous dichotomization of the answers. 

Section 3 signals that even for moderate or large sample size n, 

there may well be some item pairs for which at least one null-expected 

frequency in the 2x2 table is low. The estimate (1.4) is then un¬ 

reliable and the distribution of A*j (1.2) is far from normal. Amendmeni.s 

based on the exact distribution or the Poisson approximation are proposed. 

Section 4 reports on current research on the double monotony (non¬ 

decreasing and non-intersecting item curves) which is an essential 

assumption that can only be indirectly checked in the data matrix. 

Section 5 deals with a possible problem stemming from the application 

of the standard tools of normalization and conditioning to our scaling 

situation. If the statistical inference aims at describing the behavior 

in repeated samples of size n from a population with success probabilities 

. and jointly for the two items i and j, the 2x2 table should be 

described by a quadrinomial distribution of the four cell frequencies. 

Under the null hypothesis then has a binomial (n, itjiij) distribution 

rather than hypergeometric (n, n^, nj). Under any hypothesis, null or 

alternative, the conditioning on the marginals obscures that may 

be observed even when ^ < itj, especially when nj - is small. In such 

a sample the investigator would use the wrong error cell X^O, Xj=l 

rather than X^l, X.=0. This may lead to wrong inferences in the null case, 

and to overestimation of in alternative cases. Our addition of < nj 

to (1.1) and ni < n^ to (1.5) is not always correct; in a nonnegligible 

number of cases the sample ordering of items may contradict the population 

ordering and bias the inference. 
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2. Three or more ordered categories 

Suppose each of k items has three ordered answer categories! such 

as {disagree, neutral, agree} for an attitude item or {wrong, partially 

right, correct} for an achievement item (an extension to more than three 

categories, and to a different number of categories per item, will be 

dealt with at the end of this section). One could run a Mokken, Guttman 

or Rasch analysis after a dichotomization which assigns the middle 

category to one of the remaining categories. This means loss of infor¬ 

mation, fewer possible total score values for the measurement of persons, 

and possibly different results for different dichotomization decisions; 

examples are given in Molenaar (1982a. ). In Likert scaling, one 

would assign values 0,1,2 to the three categories. Gifi (1981) on the 

contrary assigns "best" category values according to a complicated least 

squares loss function, for which no inferential statistical procedures 

are known. The aim of this section is to explore how it can be ascertained 

whether the Likert scaling values are compatible with the assumptions 

of an extended Mokken model, and thus lead to a probabilistic ordering of 

items and persons on one latent continuum. 

It has long been recognized that each three-category item may be 

viewed as two consecutive "item steps": as a first step the subject 

might ascertain whether (s)he has enough of the latent trait to score 

at least a one, rather than zero. If and only if this is the case, the 

second item step is tried, in which it is established whether the trait 

value allows for a two rather than a one on the original item. This 

division into item steps is completely described for the Rasch model by 

Masters (1982), who also compares it to approaches based on category 

boundaries, e.g. Samejima (1969), Andrich (1978, 1979). 

Our aim is to call a set of multi category items a Mokken scale 

if and only if their dichotomous item steps forma Mokken scale. This 

demands an exact definition of such steps. Let the score X on a three 

category item be 0,1,2 with probabilities a,b,c respectively (a+b+c=l). 

The first item step score is 0 for X=0 and 1 for X >, 1. For the 
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second item step, one may either choose a conditional scoring Sg* which 

is treated as a missing value for persons failing the first step, or 

a cumulative scoring which is 0 for X .< 1 and 1 for X=2. Masters (1982) 

presumably aims at a Rasch model for and S2«, in which P(S2»=l)=b/b+c 

can be either smaller or larger than P(Si=l)=b+c. Here we shall use the 

cumulative scoring, in which the important relation X=S1+S2 holds for 

any subject. Note that there is a functional dependence between both item 

steps: S^O implies 82=0 and Sg^l implies S1=l. 

If one would treat k items with three ordered categories as 2k 

separate dichotomous item steps, a straightforward application of 

the Mokken procedures to these 2k "new items" is invalidated by this 

dependence. For any pair of two item steps from the same original item, 

the 2x2 table has a logically impossible error cell, and the null 

assumption of independence is meaningless. In the matrix of values 

for the 2k item steps, the entries for two steps from the same item 

are automatically equal to one. This would artificially inflate the 

H.j values per item step and the H value for the total scale. 

A better solution is illustrated in the following fictitious 3x3 table 

of two three category items (table 2.1). The easiest item step X^ >,1 is 

passed by 70 percent, next X^ >, 1 by 60 percent, next X^ >. 2 by 50 percent 

and finally Xj >, 2 by 30 percent. If all item steps possessed the 

Guttman property, subjects with a growing value of the latent trait would 

consecutively be in one of the five"perfect'cells joined by line segments. 

Each subject in one of the four remaining cells, marked by stars, has 

passed a certain item step but failed an easier one, and cannot be assigned 

without error to the joint representation of item steps and score patterns 

which is displayed in table 2.1b. The 20 persons with X^=0 and Xj=2, 

for example, have failed the easy step X^ >, 1, passed by 605,, but succeeded 

at the step 2 passed by 30%. With dichotomous items there would be 

three perfect patterns and only one error cell. Here, however, we extend the 

estimation of the Guttman conformity of the two items i and j, by summing 

across the error cells. Let F. • and e-• denote the observed and null-expected 
IJ 

total frequency of respondents in the four error cells. Then the proposed 

estimate of scalability per item pair is calculated as: 

10+10+20+10 _ , 50 
30+150+120+30 - 1 - ISSEJ (M) 
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Table 2.1a. Joint distribution of two three-category items, with expected 
numbers under independence in brackets, and cumulative percentages passing 
the step. Consecutive perfect patterns are joined by line segments and 
error cells are marked by a star. 

xr° 
Xj = l 

V2 

Xj=0 Xj=l Xj=2 

230(120)-100(160) *20(120) 

*10( 30) 80( 40) *10( 30) 
*10(150) 220(200) — 270(150) 

total 

400 

100 

500 

total 300 400 300 1000 

Cumulative 
percentage 
passed 

70% 30% 

cumul. percentage 
passed 

100% 

60% 
50% 

Table 2.1b. Joint representation of item steps and perfect Guttman patterns; 
comparison of observed freguency of such patterns to expected frequency under 
both the Guttman and the null model. 

pattern (X^,X^) 

observed 

Guttman exp. 

null exp. 

Xi 1 
Xj ^ 

4- ^ 
(0,0) , (0,1) , (1,1) 

-f- 
I (2.1) 

>2 

; (2.21 total perfect 

280 100 80 

300 100 100 

120 160 40 

220 

200 

200 

270 

300 

150 

950 

1000 

670 

Next, the item scalability Hi of item i and the overall scalability H 
in the pool of k Items are estimated by summing across item j and across 

all pairs i < j, as before. 
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The following instruction can be generally applied for a set of 

k items in which item i has m.+l ordered categories (m^ >.1): 

A) Divide each item into steps >, m (m=l,2J... ) 

B) For each item pair (i,j) put the m^+mj item steps in descending order 

of popularity and join the corresponding cells in their cross tabulation 

like in table 2.1 

C) If F^j and e^. denote the observed and null-expected frequency 

respectively summed across the remaining cells of the table, calculate 

Hij by (2.1). 

This instruction leads to the generalized concept of a Mokken scale 

for multicategory items, in which persons and item steps are ordered on 

the same continuum. The position of a person on this ordinal scale is 

the total number of item steps passed, and this is just the Likert score 

obtained by scoring X^O.l,... ,m^ for the categories of item i. A person 

with total score EX^Y should in most cases have passed the Y easiest item 

steps and failed the zm^-Y other item steps. The total number of violations 

F of this property should be lower than expected under independence of 

the items, as is expressed by H = 1-F/e in which e is the expected number 

summed across cells and across item pairs. 

The publications (e.g. Mokken, 1971, section 5.2) and the computer 

programs (STAR User's Manual, 1980) offer for dichotomous items the 

following six possibilities: 

1) the evaluation of a set of items as one scale; 

2) the construction of a scale from a given pool of items (search procedure); 

3) multiple scaling (the construction of a number of scales from a given 

pool of items); 

4) the extension of a given scale by means of a larger pool of items; 

5) the investigation of the double monotony or holomorphism of a set of 

i terns; 

6) the computation of reliability coefficients. 

For procedures 1) to 4) the multicategory case now presents no 

additional problems, except for the asymptotic null distribution of 

IFj used in the search procedure, discussed on the next page. Procedure 5 
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will be discussed insection4, in which its generalization to more than two 

categories will be straightforward . Mokken's estimates of the classical 

reliability coefficient (only a by-product of his model) will only oe 

applicable in the multicategory case after some modification not pursued in 

this paper. 
Mokken derives the asymptotic null distribution of H^j for the 

dichotomous case from the hypergeometric distribution of or 

see section 1. Now that F.■ becomes a sum across the m.m, error cells of 
1 J • J 

a (mi+l)x(m,+l) table with m^m^+l perfect patterns, its null distribution 

should be established, as it plays a role in the procedures l)to 4). The 

following tentative solutions are proposed: 

1) Asymptotically, the multinomial distribution of all entries becomes 

multinormal with the restriction of total sum equal to n. Conditioning 

on the marginals means imposing some more linear constraints on the 

entries, and the conditional mean and variance of F^j might be cal¬ 

culated using the estimated correlations between cell entries resulting 

from the constraints; this would give a normal approximation for F^j. 

2) The very fast computer program FISHER by Kroonenberg & Verbeek (1981) 

generates all r*c tables with given marginals and orders them by their 

Pearson x2 value; it has been modified into ordering by H^, leading 

to the exact distribution of this quantity given the marginals. A 

first try-out of the modified program shows that cases with a large 

n and/or more than three categories per item may produce more than 

107 tables. A favorable 3x3 case with n=679 had 5*105 tables and took 

7 CP seconds on the CDC Cyber 170/760. It may be desirable to first 

divide all observed frequencies by 2 or even 5, rounding upward 

for the error cells; significance in this smaller table is sufficient 

but not necessary for significance in the original table. 

3) As was remarked in section 1, it is dubious whether the conditioning 

on the marginals offers the best way for predicting the behavior of 

a Mokken scale in a future sample of resnondents. In the unconditional 

distribution, the notation <)>^ro=P(X^=m) enables us to state that F-j is 
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binomial (n,n) with, for the case of table 2.1, 

<P = + ♦ii+jo + fii*j2 + ^2^-0 • 

Note that the location of the error cells in the table varies with the 

item marginals. Inserting the estimated item marginals would lead to at 

least a rough binomial test for the observed fraction F^j/n in the 

combined error cells. See section 5 for more discussion. With one or more 

of these solutions implemented the ordered categories extension of the 

Mokken model seems to be ready for empirical try-outs and for implementation 

in the standard computer program. 

3. Small expected frequencies 

In this section we return to the original Mokken model for two 

categories. In the search procedure, a scale is stepwise built up from 

a given pool of items; at each stage a new item i added to an already 

formed subscale should have a positive with all items j in the 

subscale and a significantly positive with respect to this subscale. 

It will be demonstrated that both requirements are possibly too 

restrictive when cases with low expected frequencies are involved. 

Suppose that among several items administered to a sample of 

n=100 subjects there are two items with population value 11^=0.5 for 

which n.j=8 and ny-SO subjects give the positive answer. The estimated 

item popularities of 0.08 and 0.90 are somewhat extreme, but still 

realistic. As outlined in section 1, the null expected frequency 

in the error cell is e^j=n^(n-nj)/n=0.8. From the observed frequency 

F.j in this cell one calculates the estimate H<,-=l-F--/e-,-; note that 

it equals i for F^j^O, but is negative for any F^j >, 1. If H-j were zern 

then F^j would have a hypergeometric distribution in which one obtains 

P(Fij=0)=0.42, but of course it is no problem that a sample estimate 

then is negative for 58 percent of the samples. But if our true is 

0.5, the expected value of F.. under this alternative equals (1-H. .)e.-=0.4, 

and the exact distribution of F^- for the given marginals now is extended 
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hypergeometric, see Harkness (1965) or Molenaar (1982 b sec.4), with 

estimated odds ratio 0.4*82.4/(7.6*9.6), and RfF^O) is then calculated 

to be 0.66. Thus although the population value is 0.5, there is still 

a probability of 0.34 that its sample estimate is negative. In about one 

third of the samples the researcher would infer that the two items are 

negatively associated and thus may never be admitted to the same Mokken 

scale, even if their H with the remaining items were high. 

The problem is indeed caused by small e^j. An analysis for H^j=0.5, 

n.=19, n .-80 leads to e. ,=3.8 and a probability of 0.10 for F. . >, 4, 
1 J I J ' ^ . 

which is now the condition for a negative estimate of Similarly 

for 0^=26, n_:=70 one gets 6^=7.8 and a probability of only 0.02 for H.j < 0 

with H..=0.5J. Figure 3.1 gives detailed graphs of this probability 

for 0 < e- < 4 and four representative values of H,It is based on 
^ J ' ^ • L ■ 

the Poisson approximation to the exact distribution of F^-, which is 

very accurate for small expected values but may have an error of up to 

0.02 for ei ,■ close to 4. It should not be used for larger values. 

the null expectation e^- for four alternative values of the population 

value H.jj = H (Poisson approximation). 



156 

We conclude that though a Mokken scale demands a positive population value 

H.., requirement of positivity for its sample estimate is too restrictive 

for item pairs with low e^, say eij 4 10. The user of the Mokken computer 

programs should be given the opportunity, when such item pairs exist, to 
inspect the exact or approximate probabilities under meaningful 

alternatives like H^^O.3, 0.5 or 0.7, and to optionally override the 

strict requirement that two items with a negative estimate may never 

appear in the same scale. An additional advantage of requiring e^- > 10 is 

that ^-jj=l-Fij/e-jj th611 decreases by steps of less than 0.1 when F_=0,l,2,- 
We next turn to the related requirement that should be significantly 

positive for the first item pair admitted, and should be significantly 
positive with respect to the items already in the scale for adding 

item i to it. For protection of the total error rate of these tests, the 

individual significance levels take into account the total number of 

tests executed during the search process, as detailed by Mokken (1971, 

p.196-197). 
For an example of the influence of a low expected frequency we turn 

to the data in table 3.1 for nine items measuring pupils' self judgment 
on their academic achievement in high school, see Molenaar (1982a, 1983). 

Table 3.1 Observed frequencies Ni (italics, on the diagonal) and 

(lower triangle) for nine achievement items answered by 679 pupils; 

the upper triangle gives H.j for each pair. 
V21 V16 V35 V25 V3 V12 V36 V23 V13 

V21 
V16 

V35 

V25 

V3 
V12 

V36 

V23 

V13 

48 0.25 0.46 

15 57 0.16 

29 22 184 

24 27 80 

26 24 103 
27 22 96 

37 36 124 

46 51 137 

48 54 180 

0.31 0.34 0.37 

0.28 0.17 0.12 

0.22 0.37 0.31 

186 0.12 0.17 
72 206 0.52 

79 137 207 

114 103 117 

152 147 152 

185 203 206 

0.61 0.88 1.00 

0.38 0.71 0.15 

0.45 0.29 0.65 

0.35 0.50 0.91 

0.16 0.21 0.76 
0.27 0.27 0.92 

277 0.49 0.53 

226 4Z3 0.70 

269 425 637 
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The Mokken search procedure is supposed to start by selecting 

the two items with the highest H-j, provided that it differs signifi¬ 

cantly from zero. In this example the procedure skips the item pair 

V13, V21 with Hij=1.00 in favor of V12, V13 with H^'0.92, because 

by formula (1.1) the former has A*j=1.84 and the latter A*j=4.08. 

If a level a = 0.05 is used for the whole procedure, this first test 

is carried out at level a/^) = .0014, for which the normal deviate 

equals 2.99. The 2x2 table for V13 and V21 is given in Table 3.2 with 

the left tail of the exact hypergeometric (679, 42, 48) distribution 

for the number F. ■ in the error cell and its normal approximation from 

Aij- 
This shows not only the inadequacy of the normal approximation 

(notwithstanding the sample size of 679, due to extremely skewed dis¬ 

tributions), but it also exhibits that for the given marginals even 

the optimal result of 0 in the error cell does not meet significance 

level of a/tj)) = 0.0014 in the exact test. 

Table 3.2 The 2x2 table for V13 and V21 (expected numbers under 

independence in brackets) and left tail of exact and approximate null 

distribution of . 

V13=0 

V21=0 42(39) 

V21=l 0( 3) 

42 

V13=i 

589(592) 

48( 45) 

total 

631 

48 

637 679 

exact. 
F.j prob. 

0 0.042 

1 0.142 

2 0.232 

3 0.240 

^.4 0.345 

normal 
approx. H.■ 

0.033 1.00 

0.077 0.66 

0.163 0.33 

0.234 -0.01 

0.493 <;-0.35 

Stated otherwise, the null expectation of the error cell is only 

48*42/679 = 2.97. This makes it impossible to situate a rejection 

region of size .0014 in the left tail, due to the discreteness and 

skewness of the exact hypergeometric distribution. Such extreme cases 
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can be detected from the and A*j matrices optionally printed in 

Mokken's computer program; by using such an item pair as a forced 

start set for the search procedure one can override their omission 

based on a lack of significance "that they cannot really help". 

Moreover, if all items really form a scale, then item pairs left 

out for lack of significance at the first step will enter at later 

steps of the search procedure; the significance requirement is then put 

on the item scalability coefficient of a new item with regard to 

all items already in the scale, and this will nearly always involve 

larger expected frequencies and less skewed distributions. Nevertheless, 

the computer program might well print out a special warning in cases where 

the item with a higher H is skipped in favor of a lower but significant 

value, and allow the user the option to override this rule; For both effects 

of small expected freouencies, this section has produced some tentative 

solutions, of which the side effects ask for more study. 

4. The assumption of double monotony 

Let 1^(9) = P(Xi=l|e) be the trace line of the dichotomous item i. 

The Mokken model assumes that each ir^(e) is a nondecreasing function 

of e, and that the trace lines of different items do not intersect: 

(a) if e0 < Sj then 7r.(0o)s< ir^e^ for each i; 

(b) tt.| (0q) < rj(e0) for one value e0 implies ^ (9) < ^(0) for all 0. 

We have chosen this weak definition of double monotony, including 

equality, because we want to include perfect Guttman items as a limiting 

case. 
Note that (b) implies that the ordering of the items is specifically 

objective: in any group of persons, item i is not easier than item j* 

This property of the nonparametric Mokken model corresponds to the stronger 

requirement in the parametric Rasch model that the ratio of the item 

difficulties must be invariant across person groups. Thus empirical 

verification of the monotony assumptions can proceed among similar lines 

as the goodness-of-fit investigation .in the Rasch model. From the more 
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detailed discussion in Molenaar (1982c) we mention that the "splitter- 

item procedure" compares the order of all the other items in the two 

subgroups which have one particular item correct and wrong respectively, 

and is equivalent to the inspection of the P- and Pp-matrix already 

proposed by Mokken. An external splitting criterion like sex or age may 

also be used. Finally, in analogy with the Andersen test for the Rasch 

model, one may split into score groups using the internal criterion of total 

number of positive answers as an indicator of the latent trait . Score 

groups also lead to a check of the property (a) of monotonicity per 

trace line. If the number of items is small this check can be improved 

by deleting the item actually examined in the formation of score groups, 

just as item-rest-correlation is more adequate than item-test correlation. 

In all these instances, presented in more detail in Molenaar (1982c, 

1983), an observed order is compared to a predicted order. The observed 

order, however, is based on the doubly stochastic scaling model: firstly 

a sample of subjects is observed from a population for which scalability 

is desired, and secondly each subject v with latent trait value 9V plays 

for each of the k items an independent chance game, with success probability 

lri(0v) ^or itera- question arises whether discrepancies 
between observed and predicted order can be ascribed to these two chance 

mechanisms. Molenaar (1982c) shows how McNemar and Fisher exact tests 

can be applied to the various 2x2 tables arising from such order comparisons. 

The use of formal significance tests for such decisions poses a 

number of well known problems to which no fully satisfactory solution seems 

to exist. We mention first the choice of the null hypotheses: a liberal 

view would only reject the model when a violation cannot be ascribed 

to chance, a rigid view would require that each order relation is beyond 

doubt in the predicted direction. Next there is a combination of tests 

problem: each grouping of subjects leads to a multitude of dependent 

tests per item and per pair of groups, and moreover one may choose an 

almost infinite number of groupings. Unless we have a perfect Guttman 

scale, the worst of these groupings will surely exhibit violations. 

Research on theimplication of these dilemmas, for the Mokken monotonicity 
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investigation is now in progress. In our view it should ideally be 

based on a decision theoretic loss model, in which the damage of using 

a scale in which an assumption is violated should be compared to the 

damage of incorrectly rejecting a scale which has no substantial 

violations in the population. 

5. Conditioning on the marginals: the wrong error cell 

Choices between a conditional and an unconditional procedure for 

estimation and hypothesis testing have led to many debates among stat¬ 

isticians, in which different answers are given to questions like "what 

do you really want to know" and "how well does it work". For the 2x2 

table, and more generally therxc table, the received view seems to be 

that conditioning on the observed marginals is advisable when an analysis 

of (in)dependence is desired; see e.g. Lehmann (1959, sec. 4.6) and 

Bishop, Fienberg & Holland (1975, Ch.2). 

In the statistical analysis of the Mokken model this trend has been 

followed. But now an additional problem arises in passing from to H^., 

as was announced at the end of section 1. In the present section we shall 

assume throughout that < wj, and use the shorthand notation f for 

X. =0, writing e.g. ttjj for P(X.j=0, Xj = l). The population scalability value 

is given by (1.2). By straightforward algebra it can be rewritten as 

Hij = (lTij^j ' Wj)/{"i{1 ' V} * 
(5.1) 

in which one recognizes the Phi/ph^^ property. An obvious sample estimate 

is obtained by inserting sample fractions: multiplying above and below by 

n it becomes 

Nij^ - N 
N-(n - 

jjNij . 
NTTAi- 

Fij 
-U-I7F (5.2) 

Note that H- • as defined in section 1 is equal to K. . as long as N, < N., 
1 J - ' J * J 

but when N- > N- the denominator of H. • becomes N-(n - Ni)/nj ancj w. js 
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used instead of F.s = N.4 , because then the cell (7,j) is incorrectly 

taken to be the error cell. In those cases = cK^. with 

c = N-(n-N. )/{N .(n-N.,)} > 1. The distinction between ir. < rr. and 
' J J 1 ' J 

< PF seems to have been ignored by previous authors, although it may 

have been a reason to allow an ordering enforced by the user in the 
program MOKKEN TEST (STAP User's Manual, p. SCS 24). 

The probability of a wrong observed order is not always small. 
Computer calculations show that it equals 0.18 for a realistic example 

like n = 100, it.. = 0.45, Hj= 0.50, = 0.30, It decreases with 

increasing n, with increasing spacing itj - with (it^+ "j)/2 further 

from 0.5 and with increasing positive association between items i and j. 
Further computations will be reported in a later paper. 

Under the null model of independence, each conditional distribution 

of K.j has mean zero, because then E F^j = N^n-NjJ/n. This unbiased 
estimation of the true (which is zero) holds also for H^., even when 

the wrong error cell is used. As the significance test of = 0 is 

purely based on the expression (1.2) for which is symmetric in i and 

j,this conditional test remains valid in the samples in which > Nj 

was observed. 
The difference between based on the true error cell and H^. based 

on the sample error cell is more important under the alternative ^ 0. 

Here the absolute value of Hy is overestimated by a factor 
c=Hj(N-Nj)/{hj(n-N.j)} for all samples with N. > PL. Whether this is 

serious depends both on the frequency with which wrong orders are observed, 
and on the size of c. In the standard procedures 1) to 4) listed in section 

2 such estimates are used in checking whether observed H values exceed 

the lower bound supplied by the user (default 0.3) and in selecting the 

best item for extending a scale . They also occur in the non-null 

analysis leading to confidence bounds. In such applications, then,, the 

user should be cautioned that for item pairs with almost the same popu¬ 
larity a repetition in a next sample might exhibit a reversal of the item 
order, and that some error patterns may therefore not have been noticed 

as such. On the other hand for such an item pair will probably be close 
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to Nj, thus cwill not be too far from 1, and 

from . A further study on the results for the 

in progress. 

will not differ much 

non-null case is now 

6. Discussion 

The possibility of using more than two ordered answer categories 

seems promising. A word of warning should perhaps be given that it 

will increase the likelihood of bad fit, of low answer frequencies, and 

of almost equal popularities. It may occur, moreover, that some steps 

of an item fit very well into the model whereas others do not (e.g. 

a neutral category may cause problems). Nevertheless, the five items 

on pupils' relations to classmates described in Molenaar (1982a) provide 

an example of a good three-category Mokken scale. 

The analysis of small frequency cases in section 3 has led to some 

proposals for an improved computer program. Ideally each analysis could 

use the normal approximations when appropriate and pass to the exact 

discrete distributions when necessary. 

The proposed tests for the monotonicity requirements are another 

example of a step forward that is by no means the final step. Not only 

should a satisfactory combination procedure be added, but also it might 
be desirable to consider an extension of the model: for item pairs with 

almost the same popularity one could refrain from predicting their order 

and from counting inversions of the answer pattern within such pairs 

as errors. The resulting model for specifically objective partial order 

would do away with most of the "wrong order problem" discussed in section 5. 

In many respects, this progress report contains more problems than 

answers. It should be viewed as just a step on the road to a thorough 

statistical investigation of Mokken's nonparametric latent trait model, 

which has been successfully applied in a number of scaling problems, such 

as Mokken (1971) on political efficacy, Clason (1977) on sex role 

differencing, Stokman (1977) on voting by United Nations delegates and 
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De Vries-Griever c.s. (1982) on sleep quality. 
Our paper has stressed, more than Mokken himself, the probabilistic 

Guttman aspect and double monotony of a Mokken scale, which lead to a 

falsifiable measurement model. Examples of detailing H into an analysis 

of errors per pattern, as presented in Molenaar (1982a, 1983) are in 

line with this view of a Mokken scale as an instrument for a specifically 

objective joint ordering of persons and items (or item steps). 
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