
KM 8(1982) 

pag 65-87 

65 

PLOTTRI ANGLE ( A COMPUTER PROGRAM TO PLOT 

DIAGRAMS OF THREE- AND FOUR-COMPONENT MIXTURES 

G.A.M. Ellers* and R. van Splunter** 

SUMMARY 

In many experiments on the development of detergent products mixtures are 

involved in which the ratio of the components is varied. The results of 

such experiments can be visualised by plotting the response function. A 

computer program (PLOTTRIANGLE) has been written for the Calcomp graph 

plotter to plot contours of arbitrary response functions in three- and four- 

component systems. The theory underlying this program is described and its 

effect on various (test) functions is shown. Using a transformation and the 

computer program PLOTTRIANGLE, the program PLOTRECTANGLE was 

written to plot the contours of an arbitrary function of two variables. Both 

programs have been written in Fortran IV (G-level) and make use of the 

standard COMPLOT utility plotting subroutine package. 

1. INTRODUCTION 

A mixture experiment is an experiment in which the response is a function 

only of the proportions of the components present in the mixture and not a 

function of the total amount of the mixture (Cornell 1973). The components 

in an experiment are the chemical compounds (or mixtures of compounds) 

necessary to make all relevant compositions in the experiment. This is the 

technical definition of a mixture experiment that raises the question why we 

should use proportions as the "independent" variables to describe a response 
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surface. We can even go back further and pose the question why we are 

fitting. In this context, we quote from the discussion in Nelder (1966): 

"The choice of function for the fitting of a response surface raises a general 

question - why are we doing the fitting at all? Sometimes, it is hard to see 

any more justification than that the writer wishes to give an air of respecta¬ 

bility to his data. Needless to say, an ill-fitting surface is no compliment to 

an accurate set of data, and it is adding insult to injury when such a 

surface is justified, as sometimes happens, by the quotation of an R£ value, 

which can be useless as an indicator of goodness of fit. (One need go no 

further than the well-known example y = x£, x = 1(1 )n, for which the 

straight line fit has an R£ exceeding 0.93). With more justification, the 

analyser may claim that the fitted surface sums up the data in relatively 

few quantities (the parameter estimates and perhaps a measure of error), 

and allows for interpolation where required. Subject to the proviso that the 

surface used really does fit, so far as can be established from the data, 

this is fair enough. It is when we come to consider the combination of data 

that doubts begin to arise about the use of some arbitrary standard form of 

surface, such as ordinary polynomials. For if we are to 'make sense' of 

several sets of data and each set is summed up by a set of parameter 

estimates, then we must search for some pattern in these sets of estimates." 

We consider response surface fitting merely as an alternative for tables to 

describe experimental data. By taking the proportions as the "independent" 

variables, these variables are scaled equally. Further, the model should be 

chosen such that a sufficiently accurate description of the experimental data 

is possible. Sometimes, physical chemistry gives a theoretical relationship 

between the independent variables and the response. In most practical 

situations, however, it is impossible or it will require too much effort or 

time to derive such a relationship. Ordinary polynomials may be sufficient 

in most such cases, while alternative models as proposed by Becker (1968) 

can also be tried. John and Quenouille (1977, chapter 9) gave an excellent 

survey of experiments with mixtures while most literature on this subject 

can be found in Cornell (1979). The computer program described in this 

article may help the experimenter in presenting his data from well-designed 

mixture experiments. Hopefully, it will not be misused as a gum to glue 

experimental data which are gathered in some unsystematic way from data 

banks or other doubtful resources. 
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2. THEORY AND NOTATION 

We will represent the proportion of the i-th component X. in a k-component 

mixture by x-, so 

Xj £ 0, i = 1(1)k 

and 

k 
1 x. = 1 (or 100%) 
i=1 1 

[1] 

Xj may be either a mol or a weight fraction, but not a volume fraction 

because volume fractions are generally not additive. In this article, we will 

use percentages instead of proportions. 

On the basis'of Eq. [1],- the experimental space of a k-component mixture 

has the dimension (k-1). So the "independent" variables x. ("independent" 

in the sense of "describing" as is usual in regression) are linearly dependent. 

The response function in a k-mixture design is a function of x-, x^, 

thus 

response = f 

Scheffe (1958) has developed models for mixtures which are given in Gorman 

and Hinman (1962). Later, Becker (1968) proposed alternative models with 

additive properties which may be more suitable for certain cases. 

The experimental space of a three-component mixture is drawn in Fig. 1. 

For a three-component system, we can plot contours of f above the experi¬ 

mental plane from Fig. 1. For example, the contours of heights 4,000 (1,000) 

9,000 of the function f = X|2 + x?, + x2 are the circles shown in Fig. 2. 

The coordinates of an arbitrary point (x^, x^, x^) in Fig. 2 are found by 

projection parallel to the sides of the triangle as shown in Fig. 3; so the 

length of each side is 100%. 
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Fig. 1 The experimental space of a three-component mixture. 

Fig. 2 Contours of heights 4,000 (1,000) 9,000 of f = x| + +>^2. 
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Fig. 3 Determination of coordinates of (x1/X2,>‘3) by parallel projection. 

The perpendiculars of the triangle are called "the axes", see Fig. 4. 

x2 

Fig. 4 Axes of the triangle. 
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A different way, used in physical chemistry, to find the coordinates of a 

point (x., x^, x3) is by perpendicular projection on the sides as shown in 

Fig. 5; so the length of each axis is 100%. 

Fig. 5 Determination of (x^x^x^ by perpendicular projection. 

Contours which lie entirely within the triangle are called "closed contours"; 

the others will be called "open contours". As we can see from Fig. 2 there 

may be several open contours for the same height, all with starting/end 

points on the sides of the triangle. 

In a four-component mixture, the experimental space can be represented by 

the tetrahedron of Fig. 6. 

Fig. 6 Representation of experimental space in a four-component mixture. 
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Contours of the response function of a four-component mixture can be plot¬ 

ted by intersection df the tetrahedron and plotting contours of each slice. 

The computer program PLOTTRI ANGLE can plot contours of an arbitrary 

function of three- and four-component mixtures. The limitations are that for 

each height, only one closed contour (with highest value x^) is plotted if 

there are no open contour(s) of this height and that in the four-component 

case, intersections are only possible of the planes x^ = 0(10)90%. If neces¬ 

sary, these limitations may be avoided by transformation(s) of the components 

into "pseudo-components" as is done in section 6. 

3. METHOD TO FIND A CONTOUR 

The principle of the simplex method is used to draw the contours of a 

response function. This simplex method, described in Adby and Dempster 

(1974, chapter 3.2), is designed to find the optimum of a function of two 

(or more) variables by folding down a triangle. Because the experimental 

area is triangular, it can be ideally subdivided into a network of smaller 

triangles. For a three-component mixture, the triangle (experimental space) 

is subdivided into (1 + 3 + 5 + ... + 199) = 10,000 subtriangles with sides 

of 1% as shown in Fig. 7. 

Fig. 7 Subdivision of experimental space for a three-component mixture. 
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To find the contour(s) of some chosen height h, the next procedure is 

followed: 

a) consider all 297 subtriangles along the three sides of the triangle; 

b) select the subtriangles ABC with h oetween f(A) and f(B); these 

subtriangles contain a starting/end-point for an open contour of height 

h. The orientation of A, B and C is always clockwise, taking AB as 

the side we start from and moving in the direction of C (see Fig. 7); 

c) the starting/end-points are found by linear interpolation between A 

and B; 

d) in the first start triangle, we look whether the contour passes through 

AC or BC. This side becomes AB from the next subtriangle and we 

calculate the new point C; 

e) continuing in this way, we will end at a different starting/end-point 

(Fig. 8), which is scratched as starting point; 

f) start with the next starting/end-point which is not scratched at e); 

In this way, we will find all open contours for height h. Because of the 

practical considerations that open as well as closed contours for height h 

will hardly occur at the same time and that the admission of this case will 

require much more computer time and memory capacity, we only look for a 

closed contour for height h if no starting point for an open contour has 

been found. So, if no starting point of an open contour is found, one of a 

closed contour is looked for by searching the sides x^ = 99(-1)1 of the 

downwards directed subtriangles. 

Fig. 8 Method to find an open contour. 
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Special provisions must be made if a starting/end-point lies on a edge-point 

(A or B) or when the contour passes through C. In both cases, we look 

for a continuing point on the three triangles surrounding this point in the 

search direction (Fig. 9). 

Fig. 9 Continuation if a contour passes through an edgepoint. 

For a four-component mixture, it is possible to plot the intersections of the 

multiple-of-10% planes for the fourth component. To get an impression of 

the response in this case, one can reconstruct the tetrahedron, e.g. by 

drawing the piots on equidistant transparent sheets. 

4. TEST OF THE PROGRAM WITH EXAMPLES OF DIFFERENT RESPONSE 

FUNCTIONS 

The program is tested for several theoretical functions, which may cause 

difficulties or show the limitations of the program. These are plotted to give 

also an impression of the kind of response surfaces that are generated by 

the different functions. 

The function in Fig. 10 is constant (100) within the inner triangle and the 

contours are parallel to the sides. For even values of h, the contours lie on 

the sides of the subtriangles (pass through C). If the starting/end-points 

of the contour of height 100 are scratched as a starting point, only part of 

this triangle will be drawn. To overcome this difficulty, the starting/ 

end-points are not scratched if they are the edge-point of a subtriangle. 

(Check that tangents will only be drawn in these points). As a consequence, 

open contours with starting point as well as end-point on the edge of a 

subtriangle are drawn twice. 
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Fig. 10 f = minCx^, 100 - x^) + minCx^, 100 - X£) + minCx^, 100 - x^); 

h = 0(10)100. 

The contours of the function shown in Fig. 11 are closed and identical to 

the base triangle. The edges are sharp if h is integer and otherwise rounded. 

Special provisions have been made in the program to handle the sharp 

edges and to start if h is integer. 

Fig. 11 f = min(x.|, x.,, x^); h = 5,7.5,15,25.75,33. 
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The function in Fig. 12 shows the limitations of the program. For values of 

h < 1, the correct contours are not found because the subdivision in sub¬ 

triangles of 1% is too crude. 

Fig. 12 f = min(|x1-x2l, Ix^x^, |x2-x3l); h = 0.5, 1, 10, 20, 30. 

The contours of height 0 shown in Fig. 13 are the lines x^ = 100/3 which 

pass through the saddle point (100/3, 100/3, 100/3). In the neighbourhood 

of this saddle point, the contours are not drawn exactly. 

Fig. 13 f = (x1-100/3)(x2-100/3)(x3-100/3); h = - 5000(1000)5000. 
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Fig. 14 f = x1 + 0.95 x2 + 0.9 x3 + 0.0027 x^x^ + 0.0027 x^; 

h = 90(1)100. 

Fig. 15 f = 0.03376 x., + 0.0116 x2 - 0.3773 x3 + 0.0006628 x1x2 

+ 0.007202 x1x3 + 0.007638 x2x3 - 0.0001263 x1x2x3 

- 0.000003367 x.^ (x1-x2> - 0.00006295 x.^ (x^Xg) 

- 0.0000468 x2x3 (x2-x3); h = 0.7(0.1)2.5 and 1.75 
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In an example, derived from Gorman and Hinman (1962), the contour of 

height 95 starts in the edge-point (0,100,0) and passes through a saddle 

point (Fig. 14). 

Fig. 15 shows a function to simulate wood grains. The closed contour of 

height 1.75 is not drawn because there is an open contour of the same 

height. 

5. EXAMPLE OF A FOUR-COMPONENT DETERGENT MIXTURE 

The experimental area is the bounded region in the four-component system 

drawn in Fig. 16. 

comp. 4 

comp.1 

Fig. 16 Representation of experimental area in a four-component system 

The bounds are 40% § component 3 S 85% and component 4 s 30%. The mean 

detergency of six replicates (in blocks) for 32 points within this experi¬ 

mental region is given in Table 1. 
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Table 1 Mean detergency (D) of six replicates 

Components 

1 2 3 4 D 

60 

45 

30 

15 

0 

45 

30 

15 

0 

30 

15 

0 

15 

0 

45 

30 

15 

0 

30 

15 

15 

15 

0 

15 

0 

0 

30 

15 

0 

15 

0 

0 

0 

15 

30 

45 

60 

0 

15 

30 

45 

0 

15 

30 

0 

15 

0 

15 

30 

45 

0 

15 

15 

15 

30 

0 

15 

0 

0 

15 

30 

0 

15 

0 

40 0 12.60 

40 0 15.42 

40 0 12.82 

40 0 14.78 

40 0 15.13 

55 0 12.83 

55 0 12.83 

55 0 13.23 

55 0 11.20 

70 0 13.82 

70 0 11.10 

70 0 8.94 

85 0 10.10 

85 0 6.62 

40 15 15.73 

40 15 15.80 

40 15 18.00 

40 15 17.95 

55 15 15.17 

55 15 14.72 

55 15 15.26 

55 15 15.80 

55 15 14.02 

70 15 15.58 

70 15 13.03 

85 15 4.65 

40 30 18.92 

40 30 19.38 

40 30 18.33 

55 30 17.88 

55 30 15.35 

70 30 7.30 
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The mean detergency for each point has a standard error of s = 1.0. 

Sequential fitting of a linear, quadratic, restricted-cubic and cubic polynomial 

gives the analysis of variance. 

df SS MS 

Linear 

Quadratic 

Restricted-cubic 

Cubic 

Lack of fit 

3 265 88.3 

6 80 13.3 

4 18 4.5 

6 12 2.0 

12 16 1.3 

Total 

Error 

31 391 

147 160 1.0 

With = % component 1, = % component 2, x^ = % component 3 and x4 = 

% component.4, the fitted cubic polynomial is shown in Fig. 17. The term 

XgX^ (Xj-x^) is not present in the model because it depends linearly on the 

other 19 terms. Fig. 17 shows contours of the intersections component 4 = 

0, 10, 20 and 30%. To avoid extrapolation only the interior of the experi¬ 

mental area has been drawn. 

Fig. 17 f = 0.6421 x1 + 0.744 x2 - 0.0308 x3 - 0.3862 x4 - 0.001405 x.^ 

- 0.007265 x1x3 + 0.009982 x^4 - 0.009504 x2x3 + 0.008612 x2x4 

+ 0.01036 x3x4 ■- 0.0002093 x.^^ - 0.000299 x.jX^ 

- 0.00003999 x1x3x4 - 0.00002481 x2x3x4 + 0.00001983 x.^ 

(x1 - x2) - 0.0001403 x1x3 (x1 - x3) - 0.0002205 x^4 (x1 - x4) 

- 0.0001107 x2x3 (x2 - x3) - 0.00009661 x2x4 (x2 - x4); 

h = 7(1)19 
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6. SUGGESTIONS USING PLOTTRIANGLE 

A computer program to plot contours will often be used for the presentation 

of experimental results. The validity of a plot fully depends on the quality 

of the experimental data and the goodness-of-fit of the model to these data. 

Generally, the experimenter will take his experimental points equally divided 

over the region of interest. This may be the whole triangle or tetrahedron, 

but also parts of it. More points should be chosen in "difficult" regions, 

e.g. in regions where the response is expected to bend sharply possibly 

due to boundary effects. 

If a physical relationship between the response and the proportions is 

known, the analytical function describing this relationship will generate the 

response surface. Our practice, however, shows that in most cases, the 

experimenter cannot provide us with the relevant physical relationship. A 

linear or quadratic polynomial may describe the data satisfactorily in cases 

where the surface does not vary too much. However, one should be careful 

when applying these polynomials in the case of sharply bending or bounded 

surfaces (e.g. in the case of "saturation", see Nelder (1966)) and/or bounded 

accessible and relevant experimental regions (see Gorman and Hinman (1962)). 

Alternative models as proposed by Becker (1968) may be more appropriate to 

handle these cases. 

A necessary condition to get the correct impression of the shape of the 

response surface is to plot contours at equidistant values of the response 

function and not at selected values which result in equidistant contours in 

the diagram. As mentioned before, extrapolation outside the experimental 

area should be avoided. In this case of a bounded experimental region one 

can try to enlarge the plot by transformation. The same may help when 

plotting other than multiple-of-ten slices for x^. In the example of section 5 

the experimental area is bounded by 40 S x^ S 85. By the transformation 

x^ = * 100/60 0 S x' S 100 

xi = Xj * 100/60 0 S xj, « 100 

X3 = (x3 ' 40) * 100/60 
0 s x^ s 75 

x4 = x4 * 100/60 0 § xj, S 50 
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we enlarge this experimental area and are able to plot a more detailed 

picture of this area. Each lower bound can be handled in this way (see 

Kurotori (1966)), while other transformations can be found in Gorman 

(1970). If a contour of a certain height should cause difficulties in plotting 

one might try a change of the last decimal(s) of this height. 

7. PLOTRECTANGLE, A PRESENT BY TRANSFORMATION 

Using a transformation and the computer program PLOTTRI ANGLE, we have 

also written the computer program PLOTRECTANGLE to plot contours of an 

arbitrary function of two variables. Therefore we had to find a one-to-one 

transformation of a rectangle on the triangle which maps the sides of the 

rectangle on the sides of the triangle. For convenience, we take the 

coordinates y1 and y2 of the rectangle, also ranging from 0 to 100. So we 

have to find a one-to-one transformation T as represented in Fig. 18. 

Fig. 18 Transformation T of a square on a triangle 

The two dotted lines divide each figure into two symmetrical parts. It is 

obvious that a transformation T is sufficient, which represents the left 

upper part of the square on the left-hand side of the triangie and the right 

lower part of the square on the right-hand side of the triangle with the 

dotted lines on each other. Such a transformation T is given by 

if y1 J y2 (right lower part of the square): 

^y1'y2) (50 + y1/2 " y2' 50 " y1/2, y2) 
if y^ < y2 (left upper part of the square) 

^y1'y2^ + ^50 * '12^' 50 + V2'/2 ’ y1'V1) 
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with back transformation T : 

if x1 S x2 (left-hand side of the triangle): 

(x1,x2,x3) -» (x3, 100 - 2X.,) 

T'1 if x1 > x2 (right-hand side of the triangle): 

(x1(x2,x3) -* (100 - 2x2,x3) 

The subdivision of the triangle from Fig. 7 is transformed by T into the 

subdivision of the square from Fig. 19. 

Vi 

Fig. 19 Subdivision of, the square after back-transformation I 

This subdivision of the square is sufficiently uniform to guarantee that the 

transformation T will produce smooth contours. For arbitrary plot length L1 

and t2 of the y1 and y, axes respectively, the subdivision of Fig. 19 is 

linearly transformed into the subdivision of Fig. 20. 

The adequacy of this subdivision depends on the real (plotted) lengths L1 

and L2, the ratio and lhe function to be Piotted- lf tne ratio Li/L2 

lies between 0.5 and 2 and Lhe function has no narrow valley or mountain 

ridges, the subdivision of the rectangle (experimental space) will be suffi¬ 

cient to produce smooth contours in most practical cases. 
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i -Lj/lOO, i = 1(1)100 

i L|/50, i = 1(1)50 

j-L2/100 

j= 1(1)100 

Fig. 20 Subdivision of the rectangle 

The working of PLOTRECTANGLE is demonstrated by an experiment in 

which the detergency was measured from different compositions of two 

builders (Table 2). 

Table 2 Mean detergency (D) from ten replicates of 14 different compositions 

Builder 1 (%) Builder 2 (%) D 

0 

0 

0 

0 

15.0 

15.0 

15.0 

30.0 

30.0 

30.0 

7.5 

7.5 

22.5 

22.5 

8.0 

12.0 

16.0 

20.0 

8.0 

12.0 

16.0 

8.0 

12.0 

16.0 

10.0 

14.0 

10.0 

14.0 

17.47 

17.05 

16.83 

19.77 

23.58 

21.57 

22.0 

23.76 

23.64 

22.74 

19.22 

20.22 

22.36 

22.36 
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The standard error of these means was 0.6. Because the percentages of the 

two builders do not add up to the same amount for each composition, at 

least one more component must be varied. In this experiment, a filler was 

added up to a total of 53% in relation to the sum of the two builders and 

the filler. The remaining 47% was the same for all compositions. The 

experimental area can be drawn in a three-component diagram, for instance 

in the diagram builder 1 + builder 2 + filler = 50% shown in Fig. 21. 

Fig. 21 Plot of the data from Table 2 

In this picture, the experimental area is such a small part of the triangle 

that it was decided to switch to a rectangular system by ignoring the 

component filler. Fig. 22 is the plot of the means in the experimental area. 

20 

16 

%> builder 2 

19.8 

16.8 22.0 
20.2 

17.0 21.6 
19.2 

17.5_23.6 

0_ 15 

1 °/o builder 1 

22.4 

22.4 

22.7 

23.6 

23.8 

30 

Fig. 22 Plot of the means from Table 2 in a rectangular system 
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One should be careful when representing a three-component system in a 

two-component one. If, for instance, all contour lines are horizontal, this 

suggests that only the second component determines the system properties. 

However, an increase of the second component by 1% is identical with a 

decrease of a third component by 1%, which could be equally responsible for 

the effect. Therefore, the plots do not go beyond visualising the situation 

and predicting optimum conditions. They do not allow any interpretation 

(relating the results to physical/ chemical phenomena). Moreover, suggested 

optimum conditions always have to be verified in an additional experiment. 

It is advised to omit only those components which do not influence the 

observed variable as e.g. filler in our case. Contours parallel to builder 1 

+ builder 2 = constant are in such a case "interpreted" as an influence of 

the varying total amount of builder only. 

Successive fits of a linear, quadratic and cubic polynomial result in the 

quadratic model 

mean detergency = 22.62 - 0.53x^ - I.OSIx^ - O-OOG/x^Xg 

- O.OO/Sx^ + 0.0468x22 

in which x, = % builder 1 and x2 = % builder 2. The contours of this 

function are given in Fig. 23 where only the interior of the experimental 

area has been drawn to avoid extrapolation. 

°/o builder 2 

% builder 1 

Fig. 23 Contours of the quadratic model for the data of Table 2 
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