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Mixed model for binary observations 

* ** 

Vaclav Fidler and Nico J.D. Nagelkerke 

Summary 

The problem of testing the equality of two treatments on basis 

of replicated binary observations is considered. Models for replicated 

binary observations are proposed and used in construction of a mixed 

model for the given experimental design. Tests derived from versions 

of the mixed model are exemplified. 
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1. Introduction 

In a clinical trial the effects of two drugs are to be compared. 

Each drug is administered m times to each of n patients. After every 

administration the presence or absence of the drug effect is observed. 

Denote by the response ot the i-th patient (i = l,...,n) to the 

j-th presentation (i = l,...,m) of a drug k(k = 1,2); 

X-.. equals one if the drug effect is observed and zero in the opposite 
• J K 

case. In Table 1 results of a trial with n = 7 and m = 4 are summarized 

(replacing a subcript by a plus-sign means summation with respect to 

that subscript). 

Table 1. Results of drug comparison trial with n = 7, m = 4. 

patient 
i 

drug 1 

xi+l 

drug 2 

xi+2 

1 

2 

3 

4 

5 

6 

7 

4 

4 

4 

3 

2 

2 

1 

3 

L 

1 

0 

3 

1 

3 

7 

6 

5 

3 

4 

3 

4 

Let = (X^p Xp2>-*-» denote the observations from 

the i-th patient. The vectors X^ are to be considered as 

independently and identically distributed; order effects of drug 

administration are assumed to be absent. 

Let pk = = 1)- In this paper we derive tests of 

the nullhypothesis of no^difference between the two drugs, Hq: p^ = P2, 

against the alternative p^ > p^. 

In Section 3 we propose models for the above described experimental 

design and solve the testing problem within these models. The proposed 

models allow, in analogy with mixed models of analysis of variance, 

the components of X^j to be possibly dependent. The dependence structure 

is introduced by using models for dependent binary replications as 

proposed in Section 2. 



L. Mooels for dependent binary repi-icacions 

For the purpose of this section let X = Xm) be a random 

vector with zero-one components. The vector X is to be considered as 

a vector of replications so that the probability distribution of X 

should be invariant under permutations of the components of X. From 

this it follows that P(X = x) = P(X^ = Xm = xm) has to be 

constant for all vectors x with the same value of 2xi. 

Crowder (1978) used the beta-binomial distribution for modelling 

the variability among replications in a factorial design. When employed 

in the present context this distribution leads to 

r m-r 
H(y.tt + i-1) . n (y(1-1'') + i-1) 

P(X = x. Ex. = r) = i-m. 1- (1) 

n (y + i-1) 
1 

where y > 0 and 0 < it < 1 are the model parameters. 
We propose the following general model for the probability 

distribution of X 

m 
P(X = x, Ex. = r) = C.exo { E a .6(s,r)} (2) 

1 s=0 s 

where aQ = 0; 6(i,j) equals one if i = j and zero otherwise; c^,... 

are parameters of the model and C is a normalizing constant, 

m 
C = l/{ E A exp (a.)}. 

s=0 5 s 

The model is general , because tne number of model parameters equals to the 

number of possible outcomes of EX^. 

A more parsimonious version of (2) is given by 

P(X = x, Exi = r) = C.exp (a^r + h(r)} (3) 

wnere a-^ and a2 are parameters of tne model, C is a normalizing constant 

and h(.) is a suitably chosen non-linear function, for example 

h(EXi) (Tx.)(Ex.-l)/2 = EE XX 
i<j ^ 

(4) 

With n(.j defined by (4) the model (3) is equivalent to 
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P(* xm X..Xm ,) 
m1 1 m-1' 

m-1 
exp {x^oij + Qg E X.j)} 

.—j 

1 + exp{a^ + «2 E X.} 

a linear model for conditional probabilities on the logistic scale; 

note tnat this model is formally the multivariate normal density function 

with a binary argument vector. 

In Doth two-parameter models (1; and (3; the independence of 

vector components is controlled by one parameter. The components of 

X are independent if y -*- <» under (1) and if = 0 under (3); in that 

case is ZX.j binomially distributed. The marginal distributions obtained 

from any of the above models depend on m and are analytically complicated 

for models (2) and (3). The models (2; and (3) belong to the exponential 

family of distributions and allow simple sufficient statistics, unlike 

the model (1). For reasons of mathematical comfort we propose to use 

the models (2) and ^3) .for modelling the probability distribution 

of replicated binary observations. 

3. Mixed models for binary observations 

in analogy with standard mixed models a model for a probability 

distribution of the vector of Section 1 snouid include drug and 

patient effects. Random patient effects can be modelled by imposing 

one of the replication structures of section 2 on all 2.m components 

of tne vector The probability of observing a certain drug effect 

should be a monotone function of the "true" difference between the 

two drugs. These demands are met in following two models: 

2 m 2m 
5(X,n = x,,,) = C.exp { E E a .6(s, x ,) + E B .6(s, x^ ) + 

k=l s=0 s 1 K s=0 s 1 

i(g(xi+1) - g(xi+2))}, (5) 

p(x(i) = x{i)> = c-exp {.i/Vi+k+ Vi+k} + k=l 

+ 61xi++ + 32xi++ + a(g(xi+1) - g(xi+2)}. (6) 
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where C is a normalizing constant, a is a drug difference parameter, 

g(.) is a suitably chosen function defining the scale on which the 

drug difference enters the model, for example g(x) = x or g(x) = log(x+l) 

and {as), {Bs} are parameters controlling dependence among replications. 

The parameters {Bs) control dependence among all 2m observations from 

one patient and may be interpreted as due to random patient effects. 

The parameters {asl control dependence among m replications on each drug 

and thus represent patient-drug interactions. The model (5) employs 

the replication structure (2), the model that given by (3) and (4). 

The testing problem of bection 1 now becomes that of testing 

Hj.:a = 0 against H^a > 0. Writing down the probability function of 

the entire sample X(1j,..., standard theory (Lehmann (1959)) leads 

to the uniformly most powerful test among all unbiased tests. Let 

V = Z(g(xi+1) - g(Xi+2)), 

A = Z Z 6(s, X1+k), s = 0,1,..., m, 
5 k i 

Bs = £ «(s, Xi++), s 0,1,..., 2m, 

Z1 = x+++ = ZsAs ZsBs, 

Z2 ^ k Xi+k 

2 
Zs As* 

h -z xi++ = Ss\- 

Let v denote the value of V realized in the experiment. The 

critical level of significance obtained with the optimal test is 

determined as 

P(V > v|{As), {Bs}, a = 0) and 

P(V > vIZj, Z2, Z3, a = 0) 

under the model (b) respectively the model (6). To perform the test 

one has to find the number n of vectors x = {x. .^} with fixed observed 

values of statistics S used in conditioning and to determine the number 

ny s of the vectors x with fixed S and with V > v. Then 

P(V > v|S, a = 0) = nv.s/ns. 

consider tne models (5) and (6) with the parameters {as) 

respectively the parameter a2 set to zero. Tnese are models without 

patient-drug interactions. Under both these models the test of Hq is 

obtained in a similar way as above. The test under the reduced model 

(5) is readily performed. With the choice g(x) = x the conditional 

distribution of V is under HQ that of a sum of n independent hypergeometric 



random variables and can be approximated oy the normal distribution. 

Cox (1966) derived this test from fixed-effects logistic model. 

The model (5) contains under HQ 3m-l independent parameters, 

the reduced model (5) with {os} absent Zm independent parameters. 

As there are 2m binary observations from one patient the test of HQ 

is impossible with one patient only under the model (5). Under the 

reduced model (5) such test -the Fisher's exact test for a two by two 

table- is possible and its power can be made arbitrarily high by 

increasing the number of replications m. 

4. Numerical example 

In this section we apply tests derived in the preceding section to 

data of Table 1. The tests considered are those derived from the following 

models with g(x) = x: 

1. Keduced model (5), that is model (5) with {as> omitted. 

2. Reduced model (6), that is model (6) with cc, omitted. 

3. Model (5). 

4. Mode) (6). 

From Table 1 we find v = x.,, - x,,., = 8, z, = xJJL = 32, 

z2 = ZZx^ = 96, z3 = 2xi++ = 160, (Au,...,A4) = (1,3,4,3,3), 

(8^,...,Bg) = (0,0,0,2,2,1,1,1,0). Computations lead to critical levels 

of significance as summarized in lable 2. 

Table 2. lest results under different models 

model critical level of significance 

reduced (5) 

reduced (6) 

(5) 

(6) 

0.0142 (normal approx. 0.0164) 

0.0142 

0.1007 

0.0978 

Under the reduced model (5) only {Bs} are used in conditioning. 

Thus values of (x^++} are fixed to permutations of those in fable 1. 

The computations involve independent hypergeometric variables. Under 

the reduced model (6) values of {x.++} are restricted by fixed value 

of z, = £x. ,2. There are 112 distinct vectors {B } witn the given 

value z^. For each of tnese possibilities the calculations as under 

the reduced model (5) were performed and combined to the value given 



(the critical levels lie between 0.01407 and 0.01431). We remark 

that under the reduced model (5) the + Bg patients with either 

absence of any response or with complete response are not employed 

while they are employed under the reduced model (6). The enumerating 

algorithm is more involved under models (5) and (6). 

5. Discussion and conclusions 

For the testing problem of Section 1 soecific tests are derived in 

Section 3 and exemplified in Section 4. The tests are based on different 

specifications of proposed models for mixed-model experimental design 

with binary observations (other specifications and thus other tests 

being clearly possible). The exemplified tests correspond to mixed 

models (5) and (6) and to reduced models (5) and (6). Under the genuine 

mixed models (5) and (6) the test of Hq is impossible unless the data 

provide information on between patient variation. This type of models 

is clearly warranted if generalization to patient population is aimed 

at. The numerical example shows that if an unproper model is used the 

significance level can be substantially biased. This fact is 

of course known in the classical mixed model analysis of variance. 

Valid ad hoc tests for our problem are readily obtained. Examples 

are the permutational paired Student's t-test or the signed rank test, 

both applied to pairs (xi+1, i = n- These tests employ 

in general smaller (conditional) sample space than the tests derived 

under models (5) and (6) and are also bounded to be less powerful under 

these models. The computational burden of the tests derived in Section 

3 is however larger than that of the mentioned ad hoc tests. 

ihe type of models-proposed in Section 2 and 3 is flexible 

enough to be useful in some other experimental designs as well. Number 

of problems in constructing tractable models for binary observations 

however remains to be solved. For example one would like to have simple 

models allowing different numbers of dependent binary replications 

within each patient. 
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