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SIMPLE RAND6MIZED RESPONSE PROCEDURES WITH BOUNDED RESPONDENT 

RISK FOR QUANTITATIVE DATA 

W. Albers ^ 

SUMMARY: Foa the case quantitative data we IntAoduee a elan oft 

nandomized Aesponbe pAoceduAeb which aAe 6-unple, have bounded Alik {oa 

the Aebpondent, and batlbiy a eeAtaln admit,blbltlty condition. We aCso 

Indicate how appAoxlmately optimal pAoceduAeb In thlt, clabb can be bound 

In a bimple way. 

1. Introduction 

Randomized response procedures (rrp's) were introduced by Warner (1965) 

to reduce respondent bias in surveys of human populations involving embar¬ 

rassing questions. Since then various types of rrp's have been proposed, 

among others by Greenberg et al. (1971) and by Warner (1971). Below we shall 

by way of introduction discuss two examples which will also be useful in 

the sequel. 

In this paper we consider the case of quantitative data. Let X denote 

the answer of an arbitrarily chosen respondent to a sensitive question, then 

we want to estimate u = EX. 

In this situation, Greenberg et al. (1971) suggest to select an unrelated 

and innocent question such that the range of its answer Z is approximately 

the same as that of X and moreover the distribution of Z is known. Then the 

respondent is asked to give not X but merely the randomized response 

Y = VX + (l-V)Z, (1.1) 

where V, X and Z are independent and P(V=1) = 1-P(V=0) = c. Hence the 

randomization in the response is due to the presence of V. If c is not too 

close to 1, it can be hoped that, while the respondent might refuse to 

give X or might lie about its value, he will not mind to give Y. 

(1) Mathematics Department, Twente University of Technology. 
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Then, if (Y,,...,YN) is a sample from Y and Y = we can use 

{Y - (l-c)EZ}/c as an estimator for u. This technique was used by Greenberg 

et al. on questions about the number of abortions and the level of income. 

Another very simple possibility is mentioned by Warner (1971): let 

Y = X + Z (1.2) 

where X and Z are independent and the distribution of Z is known. Clearly, 

(Y - EZ) is the corresponding estimator of y. 

Several authors, among others tanke (1976), Leysieffer and Warner 

(1976), Loynes (1976) and Anderson <1977), have pointed out that in com¬ 

paring various types of rrp's, the following problem arises: the procedures 

should not only be compared in terns of the variances of the corresponding 

estimators of y, but also with respect to the degrees of privacy they allow 

the respondent. In other words, both the risk for the statistician and that 

for the respondent must be taken into account. In section 2 we discuss how 

the risk for the respondent can be bounded, while in section 3 we give some 

results on the behaviour of the risk for the statistician under such a 

bound on the respondent risk. Section 4 is devoted to a study of a special 

class of rrp's, which are combinations of (1.1) and (1.2). We derive a very 

simple criterion to find procedures within this class which are approxi¬ 

mately optimal. Finally, in section 5 we give some numerical illustration 

and examples. 

2. Privacy protection 

First we consider the case where both the true answer X and the 

randomized response Y attain only a finite number of values, which we 

denote in increasing order by XQ,...,xn and yQ,...,ym, respectively. 

Following the approaches by the authors mentioned above, we propose to 

use the following bound for the risk of the respondent: for given constants 

R.. > 1 we require that 

P(X=x.|Y=y.) 
max0<jsm -P^x/ i-0,...,n. (2.1) 

Hence the respondent has to reveal his or her state only to some extent: if 

the answer Y = y^ is given, the probability of belonging to the category 

for which X = x^ is at most a factor larger than the corresponding a 

priori probability. 
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Since the respondent has to be protected against the worst that can happen, 

this has to hold for all responses y^. The obvious choice for the FL is 

of course = R for all i. However, this is by no means the only interes¬ 

ting possibility. For example, situations can occur where x.. becomes more 

(less) sensitive as i increases, which calls for a strictly decreasing 

(increasing) sequence of R/s. To the question which values of the R.. and 

in particular of R, occur in practice, we will come back in section 5. 

Denote the unknown P(X=x..) by it., and the known P(Y=yj. |X=xi.) by p^., 

i = 0,...,n, j = From Bayes'rule it follows that (2.1) is equi¬ 

valent to the condition that max.(p. ./£. p. .tt. ) £ R•, i = 0,...,n. (Here J K KJ K 1 
and in the sequel we use for notational convenience the convention that 

the first (second) index in p runs from 0 to n(m), unless stated other¬ 

wise). Since the are unknown this condition has to hold uniformly in 

(tq,. .. ,irn). Under these circumstances it is equivalent to the simpler 

condition 

Ki -j 

maxi 'R” s mlnkpkj’ J = (2.2) 

Hence, for each j, the design probabilities p^ should not exceed the 

minimal value min^Py by more than a factor . It is easy to verify 

that (2.2) coincides for m=n=l with the bound given by Leysieffer and 

Warner (1976). 

To conclude this section, we note that the above can be extended to 

the case of bounded continuous X and Y in a straightforward manner by re¬ 

placing the (conditional) probabilities by (conditional) densities and the 

R/s by a function R on the range of X. 

3. Optimality considerations 

We want to consider rrp's which are such that, just as in the examples 

(1.1) and (1.2), the parameter u = EX can be estimated using the mean Y 

of a sample (Yp-.-.Y^) from Y. Since the are unknown this requires EY 

to be a known function of y. A simple and intuitively appealing condition 

to ensure this is the requirement that for certain constants a / 0 and b 

E(Y|X) = aX + b. 

Then (Y-b)/a is an unbiased estimator of y with variance N”1 var(Y/a). 

(3.1) 
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Now we are interested in the following problem: suppose that we only 

consider rrp's which both satisfy (2.2) for certain and (3.1), i.e. rrp's 

which have a bounded respondent risk and allow estimation of y. What can 

then be done to make the risk for the statistician as small as possible? 

As concerns the way to measure this risk, in view of the above it 

seems reasonable to use N ^ var(Y/a). Hence we would like to minimize 

var(Y/a). Note that it follows from (3.1) that the correlation coefficient 

p(X,Y) satisfies p2(X,Y) = varX/var(Y/a), and also that var(Y/a) = 

varX + E{var(Y/a|X)}. Hence it is equivalent to try to maximize |p(X,Y)| 

or to minimize E{var(Y/a|X)}. 

A first observation we make is that only rrp's for which equality 

occurs in (2.2) for all j can be admissible. For, if this is not the case, 

a new rrp also satisfying (3.1) can be constructed for which equality does 

hold in (2.2) and which has a smaller variance than the original rrp (see 

Albers (1978) for a formal proof). This is intuitively clear: decreasing 

the risk for the statistician requires increasing the risk for the respon¬ 

dent, so the latter should really be made as large as is allowed under the 

given bound (also cf. a similar result by Loynes (1976)). 

This admissibility result can be used to show that for the case where 

X is dichotomous the rrp proposed by Leysieffer and Warner (1976), with Y 

also dichotomous, is optimal in the sense that var(Y/a) is minimal, uni¬ 

formly in (irg,^). The idea again is simple: for each value of Y either 

Pqj = RgPij or Pjj = Rip0j has t0 hold- Ttlen it; 15 optimal to take only one 
point of each type: taking more values of Y only increases the variance 

without reducing the respondent risk (for a formal proof see Albers (1978)). 

Unfortunately, if X attains more than two values, no rrp can be 

optimal uniformly in (uq,...,wn). To understand why this is so, consider 

for n=2 the limiting case where u^O. Then the rrp for the dichotomous case 

mentioned above is again optimal. But if e.g. Hq^^-^I/S, it is quite 

simple to construct a totally different rrp which is better in that case 

(see Albers (1978) for explicit examples), and hence no optimal rrp exists. 

Note that all these results again extend without difficulty to the continuous 

case. 

Since no uniform optimality is possible, it seems reasonable to. look 

for a class of rrp's which are attractive in certain respects and moreover 

satisfy the admissibility condition above. Then we can try to find optimal 

procedures within this class. This approach will be taken in the next section 
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4. A class of simple procedures 

To motivate the choice we are going to make we again take a look at 

condition (2.2). Let a, = min.p, . and let c = 1-Y.a.. Since T.p. . = 1 for 
J K KJ j J J 

0, the p^j have to be constant in k, all k, we have that c a 0. If c 

which means that the response Y does not depend at all on X. Clearly, it 

is no loss to exclude such procedures from consideration and hence we may 

assume c to be positive, flow (2.2) implies that the corresponding Y admits 

the following decomposition 

Y = VT + (l-V)Z, (4.1) 

where V, T and Z are independent, P(V=1) = 1-P(V=0) = c, P(T=y.|X=x.) = 

(pij- - a, )/c and P(Z=yj. |X=xi) = a,./(l-c), j = 0,...,m. Hence (4.1) makes 

transparent the price we have to pay for bounding the respondent risk: 

Y has to contain a component Z which is independent of X and thus means 

pure loss from the point of view of the statistician. 

As concerns T, the .idea is of course to choose it such that p(T,X) 

is large. At first sight the choice T = X, which obviously gives p(T,X) = 1, 

seems to be perfect and we shall begin by investigating this possibility. 

Comparing (1.1) and (4.1), we see that with T = X we are back at the un¬ 

related question procedure form section 1. Hence m = n, y^. = x^ and 

p,. = a, + S-.c, for i,j = 0,1,... ,n, where 6.. = 1 if i = j and <$,. = 0 
1J 

otherwise. Since equality has to hold in (2.2) for each j we obtain that 

Rjaj = aj + C w^lc^ leat^s t0 

Hj(Rj-l) 
(4.2) 

Hence for each choice of Rj, there exists a unique admissible unrelated 

question procedure. For n = 1 it is the uniformly optimal procedure men¬ 

tioned in the previous section. 

The results above seem quite nice and it looks as if we have found a 

satisfactory class of simple admissible procedures. However, from (4.2) it 

follows that c will typically tend to zero as n increases. Hence in the 

limit we will always get the answer to the unrelated question, which means 

that the procedure degenerates as n-w°. This shows that the choice T = X 

is not so perfect after all and that the resulting class of procedures is 

too small. 
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To see what goes wrong if T = X we note tiiat for this choice large values 

of P(T=yj|X=x.j) occur, which lead to large values of max^ (p.. yRi). In view 

of (2.2), this last fact in its turn leads to large a.- and therefore to small 

values of c = 1 - Ijaj- It follows that to increase c we have to reduce 

p(T,X). The problem now is to find the proper balance. Below we shall propose 

a class of rrp's for which this is achieved. 

We shall assume in the sequel that there exist constants g and h 0 

such that the values xi attained by X can be represented as x.. = g + ih, 

i = 0,1,...,n. In applications this will typically be the case. For sim¬ 

plicity and without loss of generality we assume that g = 0 and h = 1, which 

means that x^ = i, i = 0,1,....n. Then we shall consider rrp's for which 

T = X + Z^, where is uniform on {0,1,...,r-1) for some natural number r. 

In view of (4.1) this gives 

Y = V(X + Zr) + (l-V)Z, (4.3) 

where Y and Z have support {0,1,...,ml, with m = n+r-1. This procedure has 

the following attractive aspects: in the first place it is quite simple, 

being a combination of the procedures (1.1) and (1.2). Moreover, condition 

(3.1) is automatically satisfied. Finally, the question of finding the 

right balance is now reduced to that of choosing r appropriately. 

Before it makes sense to address this last point, however, we first 

have to demonstrate that the respondent risk can be bounded according to 

(2.2) for rrp's of the form (4.3). In the first place we note that it fol¬ 

lows from (4.3) that 

pij = aj + C£ij/r’ (4-4> 

where = 1 if 0 < j-i < r-1 and e^. = 0 otherwise. In view of (4.4), 

condition (2.2) is equivalent to ai + s FLa^ for all i and j. Now 

this last conditions holds, with equality for each j, if we choose 

c _r 

--liiy1’"1 ' 
(4.5) 

where = min{Ri|max(0,j-r+T) < i s min(j,n)} for j = 0,1,...,m. 

Hence for each r and each (Rg.Rp... ,Rn) there is exactly one admissible 

procedure of the form (4.3). 
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Moreover, from (4.5) it is clear that it will typically suffice to choose 

r such that r/n remains bounded away from 0 as n-w to ensure that c-AO , i.e. 

that the procedure does not degenerate. 

One may object that it does not seem justified to call the procedure 

above simple. But note that the complexity is only a natural consequence 

of allowing general choices for the . In the remainder we shall concen¬ 

trate on the special case were = R for all i, and then everything again 

is quite simple. For then the S^. are all equal to R too and therefore the 

a„ in (4.5) are also constant. Hence in this case Z from (4.3) is uniformly 

distributed on {0,1,....ml and c = r(R-l)/(rR+n). 

Now it is possible to indicate how r should be chosen. As we know from 

section 3, our objective is to minimize var(Y/c) or equivalently 

E{var(Y/c|X)}. For the case of general R^ we note that it follows from (4.3) 

that var(Y|X=i) = c(r^-l)/12 + (l-c)var Z + cfl^cjli + (r-l)/2 - EZ}^. 

Together with (4.5) this leads to an explicit expression for var(Y/cjX=i) 

in terms of r,n,i and the R^. For each given (ttq, ... ,Trn), we can then 

evaluate E{var(Y/c|X)} and obtain the optimal r numerically. To obtain an 

idea of how this optimal r depends on the other parameters, we shall con¬ 

sider the case where R. = R for all i in more detail. Using that Z is 

uniform and that c = r(R-l)/(rR+n) in this case and writing a =1/(R-1) 

and s = r/(r+n), we obtain after some algebra that then 

var{Y/(cn) |X=i} = ^ h2(s) + f + (^-|)2>--^(i+f)2 , (4.6) 
12n 

where h(s) = (a+s2)/{s(l-s)l. 

Since the it. are typically unknown, it is perhaps useful to note that 
1 2 (4.6) provides un upper bound for E{var(Y/c|X)} if we replace (i-n/2) 

2 by its maximal value n /4. Treating s for the moment as a continuous 

variable, we can try to minimize this upper bound, but even in this case 

the resulting expression is complicated and untransparent. Therefore we 
2 

prefer the following approximate method. We note that h decreases on 

(0,Sq) and increases on (Sg,l) where Sg = 1/(1+R’S). Moreover, a/s is 

decreasing on (0,1), while the last term in (4.6) rapidly becomes negli¬ 

gible as n increases. This suggests that in applying the corresponding 

procedure we should choose s at least as large as Sg. Note that this rule, 

besides being extremely simple, also has the advantage that its appli¬ 

cation requires no knowledge about the it... For s = Sg the expression in 

(4.6) reduces to 
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var{Y/(cn) |X=i} = -\-? + —l- {-L + (1 - i)2} 
3(Rz-iy (R*-l) 44 n 2 

12n2(R^-l)2 3(R^-1)2 

(4.7) 

Since s = r/(r+n), it follows from = 1/(1+R~2) that we should choose 

r a nR 5, e.g. 

r = - C-nR"^ , (4.8) 

where [y] denotes the integer part of y. Hence r simply is the smallest in¬ 

teger which isatleast as large as nR K At any rate, choices of r such that 

r < [nR should be avoided. In the next section we shall demonstrate that 

these rules work well already for small values of n. 

To conclude the present section we note that the rrp determined by (4.3) 

can easily be adapted to the continuous case. Since this is done in a 

completely analogous way, we shall only consider the case corresponding to 

the example with = R for all i. Let X be continuous with bounded support, 

for which we choose without loss of generality the interval (0,1). Replace 

Z(. and Z in (4.3) by tU^ and (l+t)!^, respectively, where and U2 are 

independent and uniform on (0,1) and t is a nonnegative constant. Note that 

t plays the same role as r/n in the discrete case. We get for example 

c = (R-l)t/(Rt+l), s = t/(l+t) and 

var(Y/c|X=x) = ^ h2(s) + f ^ , (4.9) 

which is nothing but the limit of the expression in (4.6) as n-**. 

5. Discussion and some numerical illustration 

In this section we shall investigate how the procedure from (4.3) can 

be applied in practice for the case where R^. = R for all i. For convenience 

we summarize the situation: Y = V(X+Zr) + (l-V)Z, where X, Zr> Z and V 

are independent, X has support {0,...,n}, Z^, is uniform on {0,...,r-l}, 

Z is uniform on {0,...,n+r-l} and P(V=1) = 1-P(V=0) = c = r(R-l)/(rR+n). 

For integer R the procedure can be performed as follows: let the respon¬ 

dent select at random a ball from an urn containing (rR+n) balls, numbered 

0,1....,rR+n-l. 
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Suppose i is his value of X and k is the number he draws. Then he should 

report (i+k)mod(n+r) if k < n+r and i+(k mod r) otherwise. This shows that 

a very simple device already enables us to perform the procedure. However, 

with this method it is probably quite complicated and laborious to ex¬ 

plain a respondent what exactly he is supposed to do. Therefore it seems 

worthwhile to use a slightly more sophisticated device: fill the urn with 

n+r red balls, numbered 0,1,...,n+r-l, add (R-l) white balls, each with 

number 0, add (R-l) white balls, each with number 1, etc., up to (R-l) 

white balls, each with number (r-l). Then we can simply instruct the 

respondent as follows: if he draws a red ball, he reports its number, 

regardless of his own value i of X. If he draws a white ball, then he adds 

its number to i and reports the result. 

Next we turn to the question which values of R should be considered. 

Bearing in mind that R is the maximal factor by which the a posteriori 

probability of each state is allowed to differ from the corresponding a 

priori probability, a region like 2 < R < 10 seems reasonable. Some 

additional justification for such a choice can be obtained by investigating 

the relation between R and c. It turns out (cf. e.g. Greenberg et al. 

(1971)) that in practice one selects c as far from $ as is possible, 

without creating suspicion in the respondent. Experience indicates that 

0.70 < c < 0.80 leads to satisfactory results. Now it follows from 

c = r(R-l)/(rR+n) that 

(5.1) 

For the simple case n = 1, it is optimal to use r = 1 (cf. section 3). Then 

(5.1) reduces to R = (l+c)/(l-c), which ranges from 3 to 9 as c increases 

from 0.5 to 0.8. 

Note that (5.1) once more illustrates that the unrelated question pro¬ 

cedure, for which r = 1, becomes unsuitable as n increases: for c between 

0.5 and 0.8, we will find that R lies between n+2 and 4n+5, which rapidly 

becomes intolerably large. 

The last point we have to deal with is how choosing for r the first 

integer > nR ^, as was suggested in (4.8), works out in practice. Two 

questions arise here: in the first place, how much do we loose by using 

the approximately optimal r from (4.8) rather than the exactly optimal 

r? And in the second place, how much do we gain by taking r as in (4.8) 

compared to the choice r = 1, which corresponds to the unrelated question 

procedure Y = VX + (l-V)Z commonly used in practice? 
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The criterion again is var(Y/c) = varX + E{var(Y/clX)}, or equivalently 

E{var(Y/c|X)} = ir.. var(Y/c|X=i), the amount by which the variance 

corresponding to the rrp exceeds the variance corresponding to the 

direct questioning method, due to the need for privacy protection. 

First we consider the questions above from an asymptotic point of 

view. As n-«”, we obtain the continuous cases treated at the end of the 

previous section. Then var(Y/c|X=x) is given in (4.9) as a function of s, 

where s = t/(l+t) and t plays the same role as r/n in the discrete case. 

It turns out that for the values of R mentioned above, the choice t = R'^ 

is quite satisfactory. For example, if x = J and R = 2,4, 7 or 10, the 

actual minimum of var(Y/c|X=x) falls below the value resulting from the 

choice t = R ^ only by 0, 1, 2 or 3% respectively. For x = 0 or x = 1 

rather than x = ^, these percentages are 2, 6, 10 and 15, respectively. 

Moreover, the value of t which minimizes var(Y/c|X=x) depends on x, and 

therefore a possible reduction of E{var(Y/cjX)>, even if the distribution 

of X would be known, will be quite small. Since the difference between the 

discrete and the continuous case essentially consists of the last term in 

(4.6), which already for small n is of little influence, the above suggests 

that only little is lost by using for r the simple choice from (4.8), even 

if the n. would be known. 

The answer to the second question is easy to give for n-*-. We already 

noted in section 3 that for r = 1 the procedure degenerates in the limit. 

This can also be seen from (4.6): for r = 1 and n-*», clearly s = r/(r+n)-*0 

and hence E{var(Y/(cn) |X)}-*». On the other hand, (4.7) shows that this last 

quantity remains bounded if we choose s = 1/(1+R~*). 

To see what happens for finite n, we present some examples below. 

From (4.6) it follows that 

E{var(Y/c|X)l = ^ h2(s) + | ^ ^ (i+|)2+ | d) (5.2) 

where s = r/(r+n), a = 1/(R-1), h(s) = (ct+s2)/{s(l-s)} and d = E(X-n/2)2. 

Note that about d we only know that 0 s d s n2/4. The expression in (5.2) 

has been evaluated for n = 3, 4 and 9, R = 2, 4, 7 and 10 and r = l,...,n. 

The results have been collected in Table 1. For each n and R considered, the 

value(s) of E{var(Y/c[X)} which is (are) minimal for some (all) de (0,n2/4) 

have been indicated by means of a "x“. The values which result from 

choosing r according to (4.8) have been indicated by means of a 
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Table 1. Values of E{var(Y/c|X)} 

10 

1 ; 

2 lx 

25 

18. 

3 !□ 19 

+ 4 d 

38+ 2.50 d 

50 + 2 d 

3.89 + 1. 

3.51+ 0. 

4.35 + 0. 

33 d 

83 d 

67 d 

x 1. 

a i, 
2, 

39 + 0. 

53 + 0. 

19 + 0. 

67 d 

42 d 

33 d 

0 0.80 + 0. 

x 1.02 + 0. 

1.61 + 0. 

44 d 

28 d 

22 d 

1 i 60 

2 : 36 

3 a 33. 

4 35. 

T 

+ 5 d 

+ 3 d 

33 + 2.33 d 

25 + 2 d 

8.89+1. 

a 6.33 + 

x 6.72 + 0. 

7.92 + 0. 

67 d 

d 

78 d 

67 d 

06 + 0. 

56 + 0. 

09 + 0. 

+ 0. 

83 d 

50 d 

39 d 

33 d 

1.73 + 0. 

1.63 + 0. 

2.15 + 0. 

2.95 + 0. 

56 d 

33 d 

26 d 

22 d 

1 

2 

3 

4 : 

5 ! 

6 ! 

907. 

359. 

241. 

198. 

180. 

173. 

7 0 172. 

8 ;X 175 

i 9 i 181 

5+10 d 

1 + 5.50 d 

6+4 d 

7 + 3.25 d 

5 + 2.80 d 

5 +2.50 d 

7 + 2.29 d 

8 + 2.13 d 

5+2 d 

119.2 +3. 

52.7 +1. 

i 38.6 +1. 

34.2 +1. 

[a 33.2 + 0. 

x 33.9 +0. 

35.6 +0. 

38.0 +0. 

41.0 +0. 

33 d 

83 d 

33 d 

08 d 

93 d 

83 d 

76 d 

71 d 

67 d 

36. 

18. 

14. 

B 13. 

x 14. 

15. 

16. 

18, 

20. 

+ 1. 

+ 0. 

+ 0. 

+ 0. 

+ 0. 

+ 0. 

.7 +0. 

.6 +0. 

.9 +0. 

67 d 

92 d 

67 d 

54 d 

47 d 

42 d 

38 d 

35 d 

33 d 

19.35 + 1 

10.25 + 0. 

8.61 + 0. 

8.58 + 0. 

9.25 + 0. 

10.35 + 0. 

11.78 + 0. 

13.49 + 0. 

15.46 + 0. 

11 d 

61 d 

44 d 

36 d 

31 d 

28 d 

25 d 

24 d 

22 d 

It turns out that the simple rule in (4.8) works remarkably well: 

it almost always leads to (one of) the minimal value(s) and differs from 

the minimum only slightly in the remaining cases. The results also clearly 

illustrate that the choice r = 1 becomes very undesirable as n increases. 
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