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0. SUMMARY 

Cox's (1972) regression model for analyzing censored survival data, 

allowing for covariates, has enjoyed an enormous success among applied 

statisticians. It elegantly combines the advantage of both parametric and 

nonparametric approaches to statistical inference, and is beautifully ad¬ 

apted to the kind of data one will obtain in clinical cancer trials and 

other sources of survival data and lifetesting data. By incorporating 

time-varying, random, covariates it becomes a highly flexible tool for 

model building. 

Despite this its mathematical basis so far is almost entirely heuristic. 

Even just to intuitively motivate the estimators used, COX (1975) had to 

introduce a new principle for inference, based on the concept of partial 

likelihood. Many papers contain asymptotic results on the estimators (LIU 

& CROWLEY (1978), TSIATIS (1978a, 1978b, 1981a, 1981b), LINK (1979), BAILEY 

(1979), NAES (1981a, 198 lb), SEN( 1981)), all confirming Cox's conjectures, 

but all restricted to very special cases. Moreover, in all cases derivations 

are highly complex and technical. For instance, simple formulae for limit¬ 

ing variances appear as if by surprise after lengthy computations in the 

course of which complicated terms cancel one another out. 

The purpose of this paper is to discuss recent work by JOHANSEN (1981) 

and ANDERSEN & GILL (1982) which shows how a firm mathematical basis can be 

given to the model (in its fullest generality) from which for instance 

asymptotic properties can be derived in a completely natural way. The 

mathematics is based on the statistical theory of counting processes devel¬ 

oped by AALEN (1976, 1978). In brief the idea is as follows. The original 

hazard rate definition of the model of Cox can be directly interpreted as 

specifying the stochastic intensity of a multivariate counting process 

(counting occurrences of the event "death" for each of the individuals under 

observation)• This connects up immediately with modem martingale and 

stochastic integral theory, very powerful and deep mathematical tools which 

are on the other hand often no more than a mathematical formulation of many 

of the intuitive ideas one has for instance concerning what kinds of censor¬ 

ing may be allowed, what kinds of covariates, etc. NAES (1981a) and SEN (1981) 

use discrete time martingale theory in an i.i.d. set-up. However we feel, that 
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continuous time methods are more appropriate. 

After sketching this theory on an intuitive level, we indicate how it 

can be used to derive Cox's estimator as an ordinary maximum likelihood 

estimator (JOHANSEN, 1981), and how asymptotic properties of the estimator 

also follow simply from this formulation of the model (ANDERSEN & GILL, 

1982). 

1. INTRODUCTION 

Hopefully it will be possible to read this paper at several different 

levels. At the most obvious level, the paper summarizes some outstanding 

problems concerning Cox's regression model and indicates solutions to these 

problems which are further developed in ANDERSEN & GILL (1982) and JOHANSEN 

(1981). At the same time, the paper gives just a hint of how Cox's regres¬ 

sion model can be extended in many useful ways. Also, taking Cox's model as 

an example, the paper contains an introduction at a very intuitive level to 

the statistical theory of counting processes which is currently being used, 

following the work of AALEN (1976), to unify and extend many branches of 

nonparametric survival analysis. Finally, we hope the paper will encourage 

those analysing censored survival data to make use of the model. Even if a 

clinical cancer trial is designed to answer a simple yes/no question on the 

relative benefits of two treatments, there is no reason why after the trial 

the data should not be also analysed in a more exploratory fashion to look 

for variables or combinations of variables of prognostic importance and to 

quantify their simultaneous effects, or to look more closely at how a 

particular treatment influences survival (perhaps it only improves the 

hazard rate during the course of treatment, and has no lasting effect). 

Though the mathematics may at first sight seem formidable, we want 

to emphasize the fact that the methods used are a natural formalization of 

the heuristic derivations of, for instance, MANTEL (1966) page 169, or 

COX (1975) page 274. This is in contrast to the classical approach to 

survival analysis, which has been to solve its problems using classical 

tools derived for instance from classical nonparametric theory. To over¬ 

simplify, this has forced us to restrict attention to situations with 

independent and identically distributed observations and to special censor¬ 

ing models (random censorship for instance) and away from methods based on 

hazard rates and the development of a process as time moves forward. 
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A second point we want to emphasize is that though the mathematical 

presentation in this paper is entirely informal, everything we say can be 

made rigorous. 

We next briefly describe the structure of the paper. In the next section 

we give a specification of Cox's regression model in quite restrictive 

terms, just as it was first introduced. We also summarize the statistical 

procedures related to the model and give an indication of the controversy 

which has surrounded them. In Section 3 we give an equivalent reformulation 

of the model in terms of the intensities of counting processes and in 

Section 4 we describe the martingale theory which will solve many of our 

problems. In Section 5 and 6 we show how this theory can be used to derive 

asymptotic properties of the statistical procedures appropriate to the model, 

and we show that these procedures can be motivated by the classical maximum 

likelihood method without reference to partial likelihood. The last section 

contains some concluding remarks. We suggest that the less mathematically 

inclined reader should skip Sections 4 to 6. The statistician who wants to 

understand the general counting process approach used in such papers as 

AALEN (1978), AALEN, BORGAN, KEIDING & THORMANN (1980) or ANDERSEN, BORGAN, 

GILL 4 KEIDING (1982) could skip Sections 5 and 6 which are specific to the 

Cox model. 

2. FIRST SPECIFICATION OF THE MODEL 

We specify the model as follows. Let T^, i = l,...,n, be independent 

continuously distributed positive random variables representing the times 

of death of n individuals, each of whom can only be observed on a fixed 

time interval [0,c^] for certain censoring times c^, i * l,...,n. Suppose 

that individual i has hazard rate 

(2.1) A.(t) = Urn ip[T. S t+h|T. k t] 
1 h+0 

of the special form 

Ai^t) = lg(t)exp(SQZ^(t)) U.2) 
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where 8q is the transpose of a (column) vector 8q of P unknown coefficients, 

is a column vector of p possibly time varying covariates, and Xq is a 

fixed unknown "base-line" hazard rate for an individual with z = 0. The 

observations for the i-th individual consist of 

6. = I{1. S c.}, and 
i i r 

Z^t), t £ CO.X^. A C^. 

Here A denotes minimum and !{•} is the indicator random variable for the 

specified event. We are interested in estimation of, or hypothesis testing 

on, the parameter Bq, while Xq assumes the status of an infinite dimensional 

nuisance parameter. The model can thus be termed semi-parametric. 

For the interpretation of the model and for examples of how covariates 

z^ can be chosen, we refer to COX (1972), ANDERSEN & GILL (1982), MILLER, 

EFRON, BROWN & MOSES (1980), ANDERSEN (1981,1982), and KALBFLEISCH & 

PRENTICE (1980). 

Let 

R(t) = (i: s t and c^ a t} 

denote the risk set at time t, that is to say, the set of individuals i who 

are under observation at time t. Given that at time t one individual in R(t) 

is observed to die, the probability that it is precisely individual i can 

be calculated to be 

exp(BQZi(t)) 

> 

£jeR(t)eXp(60Zj(t)) 

a factor ^qCO has cancelled out in numerator and denominator. Because 

Aq is completely arbitrary, it seems reasonable that what is observed in 

the intervals of time between observed deaths does not contain any infer- 
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raation on Bq. Cox proposed therefore that statistical inference on 8q 

could be carried out by considering 

(2.3) L(e) - n 
i:T,Sc.V 

exp(8 (T^)) 

^eR(T.)eXp(6'Zj(Tj) 
} 

as a likelihood function for S, to which standard large sample maximum 

likelihood theory could be applied. Each term in this product is the probab¬ 

ility that at the time of an observed death, it is precisely individual 

i who is observed to die. 

Whether or not L(8) is some sort of likelihood function has given rise 

to much discussion in the literature. It certainly is not a conditional 

likelihood: i.e. a likelihood function for 8 based on the conditional dis¬ 

tribution of the data given some statistic. Nor is it generally a marginal 

likelihood : that is to say, a likelihood based on the marginal distribution 

of some reduction of the data. COX (1975) introduced the notion of parti'al 

likelihood to remedy this defect, and showed that L(8) is one (to date, the 

most important example of partial likelihood). 

Whatever sort of likelihood i(6) may be, it is still not clear that 

standard large sample maximum likelihood theory will lead to valid asymp¬ 

totic (i.e. in practice approximate) results for inference on 8q. Much 

effort has been spent in rigorously deriving the required asymptotics: all 

the work so far (using classical methods) is very complicated and restricted 

in scope but does give the hoped for results. In his partial likelihood 

paper, Cox gave a very brief sketch of how asymptotic results might be 

derived. Though it is not recognized as such, there is the germ of a martin¬ 

gale argument in this sketch, a fact which will turn out to be of great 

significance. 

Before taking this point further, let us mention a related class of 

problems concerning possible extensions to the model. Can we allow other 

types of censoring thau the "fixed censoring" specified above? Can we 

allow covariates to be random processes rather than fixed functions? (In 

this context it is fascinating that, by very curious choices of random 

covariates, one can derive all the well known non-parametric k-saraple tests 

for censored survival data as score test based on 1.(8) for the hypothesis 

Bq ~ 0; ®ee OAKES (1981) and LUSTBADER (1980).) Can we model more complicated 

situations with repeated events or events of different types (rather than 
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the single event "death") in the life of any individual? In all cases it is 

easy to write down analogues to L(B), but not obvious that it will still 

have the same properties. 

3. SECOND SPECIFICATION OF THE MODEL 

We are going to reformulate Coxfs regression model as a model for the 

random intensity of a multivariate counting process. So let us first discuss 

the meaning of these terms. A multivariate counting process 

N = {N^(t): 0 £ t < ®; i * l,...,n) 

is a stochastic process with n components which can be thought of as count¬ 

ing the occurrences (as time t proceeds) of n different types of event. We 

suppose these events occur singly. The realizations of each component 

N^(*), seen as functions of t, are integer valued step functions, zero at 

time zero, with jumps of size +1 only. We also suppose them to be right 

continuous so that N^(t) is the (random) number of events of type i in the 

time interval [0,t]. No two components jump at the same time. 

N. (t) 
i 

4 

3 

2 •"- 

1 9- 

Under regularity conditions which need not concern us, the process 

has an intensity process 

A = (A^(t): 0 s t < "; i = 

defined by 

(3.1) A.(t)dt = PUN. jumps in a time interval of length dt around 

time t |Ft_] 



where Fc_ denotes the past up to the beginning of the small time interval 

dt, i.e. everything that has happened till just before time t. Here we in¬ 

clude a complete specification of the paths Nj(*), j - l,...,n, on [0,t), 

as well as all other events implicitly or explicitly included in the model 

which can be thought of as having occurred before time t. 

Let us take as an example a very simple multivariate counting process, 

each component of which jumps at most once. In Cox's model of the previous 

section, define 

fLCt) = I{Ti S t, Ii < c.}. 

So N. jumps once, if at all, at the time TL S c. of individual i's observed 

death. What can be said about A.^ in this case? Given what has happened be¬ 

fore the time interval dt, we either know that individual i has died at the 

observed time less than t and less than the censoring time c., or that 

individual i was censored at time o < t, or that individual i is still 

alive and uncensored. In the first two cases, we know that either has 

made its only jump or will never jump, so that the probability of a jump in 

the interval dt is zero. In the last case, we know that 1\ e dt or T. > t 

so that by (2.1) the probability of a jump in the interval dt is A.(t)dt. 

Thus defining 

(3.2) 
Y.(t) I(Ti > t, Ci > t} 

f1 if individual i 

(0 otherwise 

is under observation just before 
time t 

we have by (2.2) and (3.1) 

A^(t)dt = Yi(t)A0(t)exp{B(Jzi(t)}dt. 

Note that given the past up to (but not including) the time t, Y.(t) and 

A^(t) are fixed or non-random. We say in such a case that Y. and A. are 

predictable. 1 1 

An obvious extension of Cox's regression model is now: N is a multi¬ 

variate counting process with intensity process A satisfying 
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(3.3) A^tOdt = Yi(t)A0(t)exp{6QZi(t)}dt 

Here we have replaced the fixed covariate z^(t) by the random covariate Z.(t). 

We do not any longer require each tT to make at most one jump, nor do we 

require to be of the special form given in (3.2). All we require is that: 

^i’ ^i’ ant* Zi are Processes .which can be observed; Y^ and are predictable 

(Y^(t) and Z^(t) are fixed given what has happened before time t). This 

condition is forced on us by the meaning of A^(t) as the intensity or rate 

with which jumps given the past. This also restricts Y^ to being nonnega- 

tive. 

Consider an example in which we wish to model the effects of a drug 

which is given to the treatment group over a possibly varying length of 

time; there is also a control group. We might want to investigate whether 

the drug has a different effect during treatment from its effect after treat¬ 

ment has ended. To this end we could define two components of Z^, say the 

first two, as follows: 

{1 during the treatment of a patient in the treatment 
group 

0 otherwise 

Zi2(t) 

I after treatment of a patient in the treatment 
group 

0 otherwise 

Hopefully the two corresponding components of $... are negative; if moreover 

the first component is significantly larger in absolute value than the 

second then the effect of the treatment apparently has declined after treat¬ 

ment has stopped. Many variations on this kind of model are possible and 

sensible. Note that we do not require the treatment period for each patient 

to be fixed beforehand; it may be adapted or curtailed by say the occurrence 

of side effects. One might even include the occurrence of side effects as 

yet another 0-1 component of Z^ The only restriction is that Z^(t) must 

indicate the status of the i'th patient just before time t. 

For an example in which the processes N^ may have several jumps, see 

ANDERSEN & GILL (1982). As to the almost arbitrary nature of the process 

Y^, note that we may now have patients for instance entering observation at 
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times t larger than the start time 0 (representing time of diagnosis, 

randomization, or operation), or patients may return to the study after 

a period during which they were lost to observation. 

Finally we rewrite (2.3) in the new notation. Our proposal is still 

estimate 80 by treating 

(3.4) 

as an ordinary likelihood function for Bq, and derive confidence intervals, 

significance tests, etc., using standard large sample likelihood theory. 

In formula (3.4), we mean by dN^t) the increment of 1^ over a small inter¬ 

val dt around the time t and the product over t is a product over disjoint 

intervals. So (3.4) reduces to a finite product over all i and t for which 

N. jumps at time t (dN^t) = 1); elsewhere dN^t) - 0. Let B be the value 

Of B maximizing L(8), and also define L(B,u) as the likelihood function based 

on the observations on the time interval [0,uj, in which the product over 

t a 0 in (3.4) is replaced by a product over t 2 0, t S u. 

4. SOME MARTINGALE THEORY 

A martingale M = (M(t):t > 0} is a stochastic process whose increment 

over an interval (u,v], given the past up to and including time u, has ex¬ 

pectation zero. In symbols, we have 

(4.1) ECM(v) - M(u)|Fu3 - 0 

for all 0 s u < V < ». Given Fu> M(u) is fixed. A great deal is known about 

martingales; for instance we have martingale transform theorems, which state 

that integrating a predictable process with respect to a martingale yields 

a new martingale, and we have martingale central limit theorems, which give 

conditions under which the whole process M is approximately normally distrib¬ 

uted, with independent increments (so looks like a Brownian motion, at least. 

in a suitable time scale). 

We will shortly sketch the ideas behind these two topics. First though 



97 

we rewrite the defining property (4.1) by taking the time instants u and v 

to be just before and just after the time instant t, to give 

(4.2) E[dM(t)|Ft_] - 0 

Let us relate this to the defining property (3.1) of the intensity of a 

counting process. Note that in a small time interval dt, either jumps 

once or does not jump at all. So the probability of a jump in that interval 

is close to the expected number of jumps in the interval. Thus (3.1) states 

A^(t)dt = E[dN^(t)|Ft_] 

or, defining dM^(t) = dN^(t) - A^(t)dt 

E[dMi(t)|Ft_] - 0. 

So (3.1) is equivalent to the assertion that defined by 

t 

(4.3) Mi(t) = Ni(t) - | Ai(s)ds 

0 

is a martingale. 

We need one more concept, that of the predictable variation process 

of a martingale M. That is a process <M> = (<M>(t):t S 0} defined by 

d<M>(t) = ECdM(t))2|Ft_] = var[dM(t)|Ft_], 

It is predictable and nondecreasing and can be thought of as the sum of 

conditional variances of the increments of M over small time intervals 

partitioning [0,t], each conditional variance being taken given what 

has happened up to the beginning of the corresponding interval. One can 

similarly define the predictable covariation process of two martingales, M 

and M' say; it is denoted by <M,M'>. 

We illustrate this concept with the counting process martingales M^, 

i = l,...,n, of (4.3). Given the past up to the beginning of an interval 

dt, dN^(t) is a zero-one variable. Its conditional expectation is A^(t)dt, 
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hence its conditional variance is A^(t)dt (l-A^(t)dt) ~ A^(t)dt. Thus we 

expect (and this turns out to be true) that 

t 

<Mi>(t) - | A^sids. 

0 

As to the predictable covariance between and , i # j, recall that we 

have supposed that and IT never jump simultaneously. Thus dNi(t)dNj(t) 

is always zero, and hence the conditional covariance between dl^Ct) and 

dN.(t) is -Ai(t)dt.Aj(t)dt S 0. Indeed, it is the case that 

<M^,Mj>(t) = 0 for all t and i ^ j. 

We now can discuss the results mentioned at the beginning of this sec¬ 

tion. Suppose M is a martingale and H is a predictable process. Define a 

process Mf * {MT(t): t ^ 00} by 

t 

M'(t) = | H(s)dM(s) 

0 

or equivalently dM’(t) = H(t)dM(t). Then M' is also a martingale; for we 

have 

E[dM’(t)|Ft_] » E[H(t)dM(t)|Ft_] 

= H(t)EIIdM(t) jFt_] (because H is predictable) 

= 0 (because M is a martingale). 

Furthermore <M’>(t) = f H(s)2dM(s); this follows because 
0 

vartdM'(t)|Ft_] ” var[H(t)dM(t)|Ft_] 

= H(t)2var[dM(t)|Ft_] 

= H(t)2d<M>(t). 
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A similar result holds for the predictable covariation process of the 

integrals of two predictable processes with respect to two martingales. 

Secondly we must mention martingale central limit theorems. A time 

transformed Brownian motion W = {W(t): t > 0} is a process with the follow¬ 

ing properties. The realizations W(*) are continuous functions, zero at time 

zero. For any t-,...,tn, W(tj),...,W(tn) is multivariate normally distributed 

with zero means and independent increments: thus for s < t, W(t)-W(s) is 

independent of W(s) (and in fact of W(u) for all u S s). 

By independence of increments, the conditional variance of dW(t) 

given the path of W on C0,t) does not depend on the past. Also the condition¬ 

al expectation is zero. Thus W is a continuous martingale with predictable 

variation process <W> equal to some deterministic function, A say. 

In fact these properties characterize the distribution of W (Gaussian). 

So it is not surprising that if a sequence of martingales , n = 1,2,..., 

is such that 

(1) the jumps of get smaller as n -»• “> (M^ becomes more nearly 

continuous), and 

(2) the predictable variation process of becomes deterministic, i.e. 

<M^n^>(t) ■+ A(t) in probability as n where A is a fixed function, 

then converges in distribution to W as n -»- <»; in particular M^n^(t) 

is asymptotically normally distributed with mean zero and variance A(t); 

and the increments of are asymptotically independent. 

A complete account of martingale and stochastic integral theory can 

be found in MEYER (1976). The links to counting processes are made in 

BREMAUD & JACOB (1977). The central limit theorem we have sketched above can 

be found in REB0LLED0 (1980); more sophisticated theorems Still can be 

found in LIPTSER & SHIRYAYEV (1980). For surveys aimed at applications 

in statistics see AALEN (1976, 1978) or GILL (1980). 

5. LARGE SAMPLE PROPERTIES OF 8 

It should be recalled that classically, asymptotic normality of a 

maximum likelihood estimator can be derived via a Taylor expansion of the 

first derivative of the log likelihood, evaluated at 6 = B, about the true 

value 6 = Bq. Writing DlogL(B) for the vector of partial derivatives 
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(3/38.) logL(B) evaluated at 8, then the key step is to show that 

n_iD logL(B0) is asymptotically multivariate normally distributed, with mean 

zero, and covariance matrix equal to the average Fisher information. In a 

classical set-up with independent and identically distributed observations 

from a density f(-;B0), this result follows from the central limit theorem, 

for n'^Dlog L(B0) turns out to be n times the sum of n random vectors, 

independent and identically distributed, with means zero and covariance 

matrices equal to the Fisher information matrix. 

We shall show that the same approach works here, if we simply use a 

martingale central limit theorem instead of a classical central limit theor¬ 

em. Recall that L(B,u) is the likelihood for 8 based on observation of N., 

Y. and Z., i - l,...,n, on the time interval [0,u], and define 

IT" ,Y.(t)Z.(t).exp(8'Z.(t)) 

E (t) - -i-- 
° il".1Yj(t)exp(8’zj(t)) 

Then we have from (3.4) 

(5.1) n ^Dlog L(Bq.u) 

= »■*! I (hM 
i-l t£u x 

T" , Y.(t)Z.(t)exp(8oZi(t)) 
1 3 -—- 

!•», ^(t)exp(B'Zj(t)) 

dNi(t) 

n"i(Zi(t) - E0(t))dNi(t) 

n"i(Zi(t) - E0(t))dM.(t) 

since dM^t) = dNi(t) - Ai(t)dt and 

= 0. 
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Now n 2(Zi(t) - E0(t)) is a vector of predictable processes (it only depends 

on the fixed parameter Bq and the predictable processes , j = l,...,n, 

so we see by the martingale transform theorem of Section 4 that 

n ‘Dlog L(BQ,t), considered as a stochastic process in t, is the sum of n 

(vector) martingales, hence also a martingale. It now remains to verify the 

conditions (1) and (2) of the martingale central limit theorem of Section 4 

to show that M^n^(t) = n ^D'logLCBg.t) is asymptotically normally distrib¬ 

uted. 

In fact, we need a vector version of that theorem (which does exist) 

unless the vectors B and Z^(t) are scalars. But for simplicity let us from 

now on suppose that this is the case. Also we did not state very precisely 

what we meant by the jumps of getting smaller as n ->■ “>. Let us consider 

then a special case in which it is clear that there will be no difficulties: 

that in which |Z^(t)| £ C < “ for all i and t for some constant C. (This 

condition is not necessary for our final result). In that case it is easily 

seen that the integrand Z.(t) Eg(t) in (5.1) is also bounded by C. Each 

M. only has jumps of size +1, coinciding with the jumps of N.. Since there 
( \ — 1 ^ 

are no multiple jumps, the jumps of M1' are bounded by n 2C, which tends 

to zero as n This deals with condition (1). 

As for condition (2), we must evaluate the process It is 

easy using the results of Section 4 and some simple algebra to show that 

t 

<M(n)>(t) 1 I (z- 
! n i=l 1 

(s) - Eq(s)) A^sjds 

f r I Z.(s)ZY.(s)exp(B^Z.(s)) 
\ n iil 1 1 0 1 

(n ,Z^(s)Y^(s) exp (BqZ^(s)))' 

n Ii=1Yi(s)exp(B^Z.(s)) 
A.(s)ds To 

Thus <M^n)>(t) can be expressed in terms of simple averages of 

Yi(s)Zi(s)rexp(8gZi(s)), r = 0,1, and 2. We would expect to be able to show 

that <M*'n^>(t) converges in probability to some constant if these averages 

converge in probability. This turns out to be the case; moreover, all the 
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other parts of the classical proof of asymptotic normality of g turn out 

also to go through under the same conditions (sometimes with 8q replaced 

by g close to Bq). In conclusion, it turns out that large sample maximum 

likelihood theory is valid for 6 if n is large enough that the averages 

— I°-l Yi(t)Zi/t)rexP(& Zj^t)), r » 0,1 and 2, are almost non-random for 

all t and for S close to gn. 
U ✓ x 

The martingale property of is implied in Cox's (1975) definition 

of partial likelihood, see page 274. There it is shown that each term in 

Dlog L(B0) has expectation zero given the preceding terms. So it does appear 

in more generality that the definition of partial likelihood contains 

enough structure to ensure that the large-sample properties of maximum 

likelihood estimation hold for it too (under similar regularity conditions). 

6. 6 AS A MAXIMUM LIKELIHOOD ESTIMATOR 

The result of Section 5 shows that B has the expected large sample 

properties, whatever sort of likelihood L(B) may be. These properties, and 

other statistical efficiency properties of this estimator which are begin¬ 

ning to appear in the literature, all point to a very close connection 

to classical likelihood theory. In this Section we sketch JOHANSEN'S (1981) 

proof that B is an ordinary maximum likelihood estimator for 6q, obtained 

by maximizing a joint likelihood for Bq and Ig* This proof depends on a 

result from martingale theory which we did not mention in Section 4, (to 

be found in BREMAUD & JACOB, 1977) which shows how in general a likelihood 

function can be written down based on observing a multivariate counting 

process. Here we need to make two assumptions. Firstly, Z^(t) and Y^(t) are 

only random through dependence on N.(s), j = l,...,n, s < t and through 

dependence on other events which can be considered as taking place at time 

t =* 0. Secondly, the distribution of these time zero events does not depend 

on the parameters 8n and An. 

Thus in computing a likelihood based on all that is observed 

(N . Y.. Z.; i “ 1.n) we may condition on what happens at time zero 
i l l 

and then look at the distribution of N^; i = l,...,n only; the rest of 

what is observed is now determined. It turns out that the likelihood func¬ 

tion may now be determined exactly as one would expect: compute the distri- 
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bution of dN^(t), i = I.. given the past up to time t; write down the 

corresponding density functions and mul tiply over t in order to obtain an un¬ 

conditional density for N. 

Now given the past, dN^(t), i = l,...,n, are approximately distributed 

as independent zero-one variables with expectations A^(t)dt. Equally well 

we can say that they are approximately distributed as Poisson variables with 

expectations A^(t)dt, Their joint probability density can be written down 

as a product of the distribution of the sum dN(t) = dN^t) (Poisson 

with expectation A(t)dt = A^(t)dt) and the conditional distribution 

given the sum, which is multinomial with parameters di5(t) and 
_ A(t)dt ’ 

i - 1,...,n. Thus we obtain the following joint likelihood for X and g: 

L(B,A) J(A(t)dt)dN(t)exp(-A(t)dt) 

(dN(t))J 

dN (t) 

dN,(t) dN ( 
n 

\ n /Y. (t)exp(B'Z. (t>) \ 

n ^-i- 
t)/i=1V'5;"=1Yj(t)exp(6'Z.(t)/ 

dN^ (t) 

which is proportional to 

n(A(t)dt)dN(t)exp(-A(t)dt).L(8) 
t 

in which of course A(t)dt = X(t)dt["=]Y.(tjexpCg'Z.Ct)) is considered as a 

function of X and 8, whose true values are Xg and gg. 

Let us for the moment try to maximize this function unthinkingly over 

the parameters 8 and X(t)dt, t S: 0. We will consider the sense of the 

conclusion afterwards. For any fixed 8, maximization over X(t)dt gives 

the equation 

n 

A(t)dt - X(t)dt ^ Yi(t)exp(8'Zi(t)) = dN(t) 

hence 

X(t)dt--_ . 

l^i(t)exp(B,Zi(t)) 

Denoting this X by XI 
1 p 

we obtain 
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UMIJ - n(dN(t))d”(t) exp (-dN(t)) . L(6). 
I o t 

Thus Cox's partial likelihood is in fact a partially maximized likelihood: 

L(B) = maxxL(B,X) (up to a constant of proportionality). The overall maxi¬ 

mum likelihood estimator of Xq is then given by 

X(t)|-dt 
_dN(t) 

^_|T^(t)exp(g'Z^(t)) 

Define H0(t) = X0(s)ds. Equivalently we can say that the maximum 

likelihood estimator of Hq is H defined by 

H(t) = --^4- 

J £"=1Y.(t)exp(B'Vt)) 

This takes us outside our original model in which must be a cont'Cnuou.s 

function. This is not surprising; by letting X peak more and more at jump 

times of N,,...,N and be zero elsewhere, we make the probability of the 
I n ~ 

observations all the larger. In fact maximum likelihood estimators with H 

continuous do not exist. We can better reformulate our problem and look 

for the maximum likelihood estimators of Bq end Hq without any restrictions 

on H. But what is the extended model which is implied by this problem? Look¬ 

ing back at the Poisson approximation we used, we see that the extended 

model is: for t at which Hq is continuous, nothing is changed (i.e. the 

model is the intensity specification (3,3) (with XQ(t)dt replaced by 

dHQ(t)). However for t at which Hq jumps, we are assuming that (given the 

past) dN^(t), i = l,...,n, are independent Poisson with parameters 

Yi(t)dH0(t)exp(BQZj.(t)). This extended model allows multiple jumps and 

may not seem very realistic. However this fact is not important as we are 

not proposing that it should be used for truly discrete data (for which one 

might have different N.'s jumping at the same time, but hardly ever arbi¬ 

trarily sized jumps of one N^). Rather we consider the extended method as 

a pure mathematical construct (though a very natural one) which allows us 

to consider 6 and H as joint maximum likelihood estimators of Bq and Hq. 

Hopefully in the future a large-sample theory of nonparametric maximum like¬ 

lihood estimation will be developed which will then cover this model too. 

Note that in this approach we do not introduce new parameters with each new 

observation non does the model depend on the observed data, unlike in pre- 
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vious attempts at a maximum likelihood interpretation of 8. 

Finally we should come back to the curious fact mentioned in Section 2 

that not only the log rank test but all other well known k-sample tests in 

survival analysis can be derived as score tests (i.e. tests based on 

Dlog L(g)|g=0) when covariates are specified appropriately in the Cox model. 

This fact can be explained as follows. Suppose we assume that in k groups 

we have survival distributions with densities f(t;9^), i = l,...,k. Thus we 

have k hazard rates A(t;0.) and by a Taylor expansion we can write 

log A(t;8^) ~ log\(t;8k) + (8^-8k)g(t;8k) for some function g. Therefore we 

have, close to the null hypothesis 0j =...=■ 0^, 

(6.1) A(t;0^) ~ Xq(t)exp((8^-0^)z(t)) 

where A^Ct) = A(t;8^) and z(t) = g(t;9^). So such a parametric model is 

close to the Cox model with a vector of k-1 covariates, such that for an 

individual in group i, the ith component of the covariate equals z(t), and 

the other components are zero. However z(t) is not known, but in such models 

it can be consistently estimated. It turns out (GILL, 1980) that each censor¬ 

ed data linear rank test is asymptotically optimal when testing exactly those 

parametric alternatives implied through (6.1) by its implicit choice of z(t). 

This supplies yet another example of how treating L(B) as a likelihood func¬ 

tion is not misleading since the resulting tests also enjoy the expected 

optimality properties. 

7. CONCLUSIONS 

It was the aim of the previous sections to show that the counting pro¬ 

cess and martingale approach to Cox's regression model is one which fits 

both practical and theoretical aspects of the model: i.e. it gives a frame¬ 

work in which one can go about constructing practically realistic models, 

and it supplies the mathematical tools for deriving the statistical proper¬ 

ties of the model. We claim that this is not only true for the Cox model 

but also for many other techniques in survival analysis. 

One problem has not been resolved. Large sample properties of 8 (Sec¬ 

tion 5) are easy to derive because of the martingale property of the deri¬ 

vative of the log (partial) likelihood. Thus the concept of partial likeli— 
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hood is important and useful, despite the fact that in Section 6 we saw 

that the concept was not needed to motivate the estimator 8. This fact 

also shows that other models too will be tractable with martingale techniques. 

The particular choice of expCB'Z^it)) as a way of parametrizing the effect 

of covariates on survival has mathematically speaking many advantages. How¬ 

ever it is practically speaking an arbitrary choice, and one might want to 

fit other forms of dependence. 
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