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Abstract. For the single-machine multi-product lot-size scheduling problem 

very good solutions can be obtained in a very simple way, if the products 

belong to two homogeneous groups. In this paper it is investigated how, in 

the general case, the products can be clustered in two groups and how good 

the solutions are if these groups are treated as homogeneous. 

0. Introduction 

The problem of planning the production of several products with constant de¬ 

mands on a single machine has attracted a lot of attention over the years, 

see e.g. the review paper by Elmaghraby [41. One of the attractive aspects 

of the problem is the combination of a continuous optimization problem (the 

lot sizes) and a discrete optimization problem (the scheduling). Although the 

problem is simply stated, its solution is rather complicated as can be seen 

for instance in Elmaghraby's paper or in more recent papers as the one by 

Axsater Cl). However, if the products belong to two homogeneous groups, then 

it is very simple to construct rather good solutions, see Hendriks/Wessels 

[5] and Wessels/Thijssen [71. We say that a set of products forms a homoge¬ 

neous group, if all products have the same parameters (demand rate, inventory 

rate etc.). In fact, also for the case of three or more homogeneous groups 

of products the problem simplifies, but the situation of two groups is parti- 
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cularly interesting, since it can be analyzed completely. 

Knowing this, a sensible approach for the general problem is to design some 

sort of clustering procedure which separates the products into two groups 

which are treated as homogeneous groups. Such a clustering procedure and the 

quality of the resulting production schemes form the subject of this paper. 

Of course, it is not to be expected that all problems can be solved satisfac¬ 

torily in this way. However, one may hope that the approach works for a large 

class of problems. In fact, if the approach leads to a solution with average 

costs differing much from a theoretical underbound, then it is still suffi¬ 

ciently early to try a more complicated solution technique, since our approach 

leads to a technique which is executed without much work. 

In Section 1 we will present the model and some preliminaries. The clustering 

procedure is developed in Section 2. The remaining sections are devoted to 

the analysis of the quality of. the production schemes as designed via our 

approach. 

1. The model and some preliminaries 

N products, indexed by i = 1,...,N, have to be produced on one machine, which 

can only be manufacturing one product at each time instant. The purpose is 

to find a production schedule with minimal average costs per time unit over 

an infinite time horizon. This production schedule has to take into account 

the following features for product i e L = {!,...,N} : 

^ a constant and deterministic demand rate d_^; 

= a constant and deterministic production rate p^ for the time intervals 

in which product i is manufactured; 
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; a required service level i.e. at least during a fraction Bi of time 

the stock of product i must be nonnegative; 

= fixed starting costs F. for each time interval the machine is manufactu- 

ring product i; 

= holding cost rate h^. 

In the analysis the following quantities play a role: 

= P_ = d./p., the Utilization rate for product i; 

E p = f P-. the machine utilization rate, which is supposed to be less 

i= 1 1 
than 1; 

= a. = ^(1 -p.)h.d.B?; for a production cycle for product i of T time units, with 

service level 3^ the stock-holding costs per time unit are cuT. 

In fact we will only consider the holding costs per time unit a/I, hence also 

other models with average holding costs proportional to the product cycle 

time are covered. 

Set-up times will not be included, since difficulties caused by the set-up 

times can always be solved afterwards at a minor cost increase (see C71). 

For each product it is clear that it would be best to produce it with a cycle¬ 

time T. which minimizes 
i 

F. 

T 
+ u.T . 
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Hence 

Vi- with average costs 

This is the classical Camp or Wilson rule. 

The ideal production schedule for the range of N products would therefore re¬ 

quire an average costs of 

K = l K. = 2 l ■ 

ieL ieL 

If all the T^ would be equal, then it is simple to realize a production 

schedule with average costs K. 

If the T. are not equal a first attempt to find a good production schedule 

would be to use the same cycle time TL for all products. The best choice for 

Tl would be the value of T which minimizes 

with 

F. 
y + ot.T 

.L X 1 
ieL 

~ + “lt ’ 

I V 2 “i • ieL ieL 

So 

r ^ 
T = \ — with average costs K. 2Vf 

L L 

This is the well-known rotation scheme. 
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It will be clear that this rotational production scheme is not always very 

good. However, if the T. lie not far apart, then the scheme works quite well, 

since the costs for a product are not very sensitive to small deviations of 

the cycle time. In fact the average costs for product i with a cycle time yT 

are 

F. 
i 

a.yT. a y/F .a. = -y 
1 i i 2 (Y 

-)K, 

In this formula yCy + changes only slowly for y around 1 . 

Therefore we try a slightly more sophisticated type of scheme which has been 

called repetitive production scheme [5] . For this scheme, two clusters of 

products are determined and both clusters get their own cycle times with 

the only provision that one is a multiple of the other. 

Suppose for a moment that we have split up the set L = {1,2,...,N} into two 

subsets I and J. Then the problem remains to determine the cycle times T and 

kT for I and J respectively (here we have supposed, without loss of genera¬ 

lity, that J deserves to have the larger cycle time). For given T and k the 

average costs are 

Fi fj 
- + “lT + kT + alkT 

(aI + kaj)! 

where 

etc. 
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For fixed k we find - as before - the optimal value of T: 

T__(k) = V -r-;-with average costs K (k) = 2 
IJ ai + ^aj 

V/(Fi + T')(<VknJ) 

KIJ(k)= 2k_i V[(k - OFj + FL][aL + (k - l)aj] 

-i . r = K^k 5 V t (k Dfj. + l][(k - DAj + l] , 

where 

f 
I 

The optimal k, for fixed clustering, can be determined by considering th* 

inequality 

Ku(k) < KlJ(k + 1) 

or 

i [(k-DfjH-lHCk- OAJ+ l] s ^ [kfI+ i][kAJ+ 1] . 

This inequality is equivalent to 

k(k + 1) 2 
(1 - fjlO Aj) 

fIAJ 

44 fr_A 
fIAJ " ' 
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So, k is optimal if it satisfies 

k(k - 1) £ < k(k + 1) . 

Roughly the optimal k is the ratio of Tj and T^, the optimal rotation cycle 

times for the sets of products J and I respectively. 

Before going into the details of choosing the clusters, some remarks will be 

made about the realization of a production scheme for two clusters with cycle 

times T and kT. 

The cluster J has to be split up further into k subsets and then the produc¬ 

tion is scheduled in such a way that in each cycle of length T the whole 

cluster I is produced together with one of the subsets of J. See Fig. 1 for 

a 2-repetitive production scheme for the case I = {1,2,3} , J = {4,5,6,7} . 

Fig. 1: a 2-repetitive scheme for 7 products 

The only problem might be that the subsets don't require equal production 

times. This might have as consequence that for some of the cycles T there is 

not sufficient time to produce the set of products I and the appropriate sub¬ 

set of J, whereas other cycles T have spare production time. Of course the 



first objective when splitting J in k subsets should be to determine the sub¬ 

sets in such a way that they require nearly equal production times. Particu¬ 

larly in cases where the utilization rate is very close to 1, this may not 

be sufficient. If there remains a fitting problem, then that can be solved 

by minor changes in the scheme, like bringing one product to the other clus¬ 

ter or adapting part of the cycle time (compare [5]). Since these types of 

changes are simple to construct and usually only require a very small extra 

cost, this point will not be worked out here in detail. We will suppose 

further that any relevant k-repetitive scheme can be realized for any rele¬ 

vant clustering. 

2. The clustering procedure 

In the preceding section we have seen how an optimal repetitive scheme is 

determined for a given clustering I,J. Now the only problem remaining is to 

find a good - preferably the best - clustering. 

The natural procedure would be to order the products according to their camp 

cycle times T^ and to determine a clustering by a caesura. Regrettably, the 

average costs do not behave nice as a function of the caesura (neither for 

fixed k, nor for optimal k at given caesura). It is even not necessary that 

such a type of clustering is optimal as may be shown by a counter example. 

For the case with equal fixed costs for all products, it can easily be proved 

that making a caesura in the ordered set of a*5 gives an optimal clustering. 

Even in that case the average costs for fixed or for optimal k do not depend 

necessarily in a unimodal way on the caesura. However, the computations are 

rather simple, hence by varying the caesura in the set of camp cycle times one 

obtains an efficient procedure for finding a relatively good clustering: 
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1. Order the products in such a way that -r— ^ - ; 

2. Compute for each clustering I = (l,J = + 1 ,... ,N) the 

value of k with 

(k - l)k < < k(k + 1) 
hj 

and for this value of k 

CJl = ^ ^(k ' 1)fx + ’^(k ■ 1)AJ + 5 

3. Choose an i which minimizes (C^,^ = 1,...,N - 1} ; 

Choose the I,J belonging to the minimizing Z as clustering. 

Summarizing: the clustering obtained in this way is optimal in the case of 

equal set-up costs, however, in the general case it may be suboptimal. 

The following approach is even simpler. In the preceding procedure we try 

to minimize 

i [(k - l)fI + !][(k - 1)Aj + l] 

over k and over the partitioning I,J. Or, we try to minimize 

^ [(k - 1)2£iaj + (k - DCfj + Aj) + l] . 

At least for relatively small values of k, the second term is the most impor¬ 

tant (f^Aj are at most 1). Therefore, a sensible partitioning might be ob- 
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tained by minimizing fj. + A^. This idea leads to the following procedure. 

1. the products with ^ form set I; 

2. the products with fj > A^ form set J; 

3. choose the value of k such that 

^ J^T 
(k - l)k S ~~ < k(k + 1) . 

fiAj 

So, in the latter procedure the caesura in the set L is determined by the 

value 1 for f^/A^, i.e. I contains the products with ^ 1 and J those 

with f. /A. > 1. 
i i 

The last procedure is very simple to execute and therefore it is always worth¬ 

while to try it before embarking on more elaborate procedures. If the value 

of K^jCk) which follows from this or any procedure is only slightly higher 

than K, then it is not worthwhile to investigate further. If it is much higher, 

then the clustering often provides hints for improvements. 

In the subsequent sections the last and simplest procedure will be evaluated 

in different ways. One should keep in mind, that the first procedure is at 

least as good and often better and one should keep in mind that one may not 

expect that partitioning in two pseudo-homogeneous groups is efficient for 

all cases. 
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3. Worst-case analysis 

Since we are not able to compare the effectiveness of optimal schemes and 

schemes as computed with our procedure, we will replace in the comparison 

the optimal average costs by K, a lower bound. 

Therefore, we are interested in 

K~'k k'5 [(k - l)fT + l]'[(k - 1)At + l]^ = 
L 1 J 

= [ I /rrr'k'5 [(k - i)fI + i]i [(k - i)Aj + i]J 
lei 

with f ,A > 0, I £. = 1, I A = 1 and k,I,J 
J>eL ^ ieh ^ 

satisfying 

InJ=0, luJ 

i € I =» f^ ^ , 

j e J => f. ^ A. , 
J J J 

fjAi 
(k - l)k s < k(k + 1) • 

J 

L 

Note that for reasons of/symmetry products with f^ - A^ may be put either in 

I or in J. 

After the transformation 

we are interested in the behaviour of 
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(*) [ i x^r'k-i [(k -1) i + i]i t(k -1) x Yj + i]J 
H£L iel j£j 

with 

\’yi ~ °’ 

satisfying 

X 
leL 

X y, = ! and k,I,J 
i£L 

I = {i | x. < 

J = {j | Xj a y^} , I n J = 0, I u J = L 

r 2 r 2 
) x. ) y- 
,T J ,',T 1 

(k - l)k < 
ieJ J i£l 

X 4 X Yj 
i£l J£J J 

< k(k + 1) . 

This form can easily be maximized as a function of the parameters if the con 

ditions are further strengthened by fixing 

t= X 
jeJ 

and r = ^-i 
i£l 

X * X Y 
iel jeJ J 

This leads to the maximization problem 

[ X x^yj-'k^ I'g-^rr+ 1]i [(k -1)6 + l]i 

with xgt>yz - I xp " ^ ^2. ^ * 
£cL ^eL 

1 - t r 2 r 2 
.1 yj = t’ X xi ■ 1 + t(r - 1) 
jeJ J iel 
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and k,I,J satisfying 

i e I =* x. £ y., j e J => Xj - yj > InJ = 0, IuJ-l 

(k - 1)k S r < k(k + 1) . 

For fixed t,r, this maximization requires the minimization of the innerpro- 

duct of two unit vectors with given Euclidean lengths of the parts of these 

vectors satisfying Xj^ < yi and x^ k y^ respectively. This is a simple geo¬ 

metric problem. The solution runs as follows: 

For every allowed set of one ^as 

£ xlyl a 1 + t(r - 1) 
+ t . 

Indeed, this lower bound can be attained (if N a 4), viz. choose 

1 + t(r - 1) 
- t 

1 e I 

N e J 

x. = 0, v. = 0 for the other i e I,j e J . 
i J 

So, the maximum for fixed t,r is 

r ■ - t 
[l + t(r - 1) 

+ t2(r - 1 1 + t(r - 1) 

with k satisfying (k - l)k < r < k(k + 1) . 
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This form can easily be maximized numerically over t e [0,1] for fixed r. 

The result is depicted in Fig. 2 as a function of r‘ for the relevant values 

of r, i.e. r > 1. 

Fig. 2: worst case behaviour of the k-repetitive scheme obtained 

by a simple clustering procedure depicted as function of r2, i.e. 

the ratio of the optimal cycle times of both clusters. The figure 

gives the worst ratio of the costs of the repetitive scheme (ob¬ 

tained according to the procedure) and K (the sum of the costs for 

individually optimal cycle times). 

Note that the comparison in Fig. 2 takes place with respect to K which is 

only a lower bound of the real optimum. 

From the construction of the worst cases, it is clear that these worst cases 

are really exceptional. So it might still be true that in the majority of the 

cases the procedure has a relatively good performance. This point will be 

investigated from different points of view in subsequent sections. Also will 

be shown, that in the extreme cases a substantial improvement can be obtained 

by a simple change of the production scheme. 
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4. Worst case analysis for the equal fixed costs case 

In many practical situations, the fixed cbsts for the different products are 

of the same order of magnitude. In the extreme cases of the preceding section 

however, some of the fixed costs have to be zero. Therefore, we will investi¬ 

gate in this section the quality of the performance for situations where all 

fixed costs are equal. 

This implies that we perform the same maximization as in Section 3, but now 

2 1 
under the extra constraint that ^ = x^ = — for i = 1.N. 

So the function (*) and de conditions A are replaced by (**) and B: 

(**) l t ip 
lei 

[ I yj 'k"4 f>- D(N - n) + N]* [(k - 1) l y- + l]! 
^ je J 

with 

5 o, I y, 1 and n.k.J 
lei 

satisfying 

•J = (j I yj - ^ > # J “ n 

(k - l)k < 

1 "J yj 
-d£j < k(k + I) 

N - n l t 

jeJ J 

i • Again - as in Section 3 - we introduce the parameter r, such that r gives 

the ratio between the ideal cycle times for the groups 

1 - J 
r = n - __ 

N - n v 2 
X yj 
jeJ J 



A good idea of the behaviour of (**) under B may be obtained by maximizing 

(worst case) (**) under B for fixed n and r. So the problem becomes 

max [ I yj-'k"* [(k - 1)(N - n) + N]* + l]^ 

with y a 0, I yf- l, J y2 = n + r”N _-nT 
£eL jeJ 

and k,J satisfying 

J = {j | y. s N J}, # J = n, (k - l)k S r < k(k + 1) . 

This maximization problem (for fixed n), can be split up into two independent 

parts: 

I. mm 

?1.yr 

under 

j=i 

y. > 0, l 
j = l 

+ r(N - n) 

II. 

yn+1* *'' ,yN i="+1 

under y^ > 0, 
V 2 = r(N - n) 

. ^ , ^i n + r(N - n) 
i=n+l 

Intuitively the solution of both problems is simple. Formal proof that the 

intuitive solutions are correct may be obtained by standard methods from non¬ 

linear programming theory, for instance by verifying the conditions of 

Griffith and Stewart (see Cooper and Steinberg [3]). 
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The intuitive solutions are: 

I. V. “0 

v = .. . = v - N 
yq+l yv 

-i 

y„ = 
= r. _ n ~ ql 

[n + r(N ^ n) ^ J 

Lth natural q (1 < q < n) such that: 

q - , < < q 
1 n + r(N - n) 

II. 
7n+l yN-l 

= N 

= [ r(N ~ ") 
yN [n + r(N - n) 

This gives the solution of the original maximization problem. The result can 

be easily maximized numerically over n for n= 1,2,...N- 1. In this way one 

obtains a worst case behaviour of the repetitive scheme for the case of equal 

fixed costs. This behaviour is essentially better than in the general case 

of Fig. 2 as is shown by Fig. 3. 
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Fig. 3: worst case behaviour of the cost ratio for the case of 

equal starting costs with 4 and 15 products respectively; in 

close detail the graphs are relatively irregular. 

5. Performance for randomly generated problems 

For a small number of randomly generated problems with 6 and 9 products 

respectively the simplest clustering procedure of Section 2 has been used. 

In Table 1 the ratio of the resulting costs and the lower bound tt is given 

for each of those problems. The F^ and cu have been generated by random 

selections from [0,1] . 

From this table one sees that usually the computed schedule only costs a 

couple of percents more than the lowerbound K. 
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N = 6 

problem r k Q 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1.922 

6.952 

2.596 

3.838 

3.776 

2.744 

4.792 

7.608 

14.557 

1 

3 

2 

2 

2 

2 

2 

3 

4 

1.031 

1.039 

1.027 

1.054 

1.022 

1.023 

1.021 

1.053 

1.041 

(a) 

N = 9 

problem r k Q 

1 

2 

3 

4 

5 

7.041 

4.186 

13.498 

2.530 

3.017 

3 

2 

4 

2 

2 

1.052 

1.058 

1.093 

1.015 

1.031 

(b) 

Table 1: performance of the 

generated problems; r gives 

the clusters, k the optimal 

tering and Q gives the cost 

simple clustering procedure for randomly 

the ratio of the optimal cycletimes of 

number of repetitions for the chosen clus- 

ratio (comparison with K). 

6. Examples from the literature 

For the problem of Rogers [6] we have: 

N = 5, r = 6.944, k = 3, Q = 1.007 . 

For the problem of Bomberger [2] we have: 

N = 10, r = 11.88, k = 3, Q = 1.090 . 
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Remarks: 

For the Bomberger problem one indeed meets the fitting problem as mentioned 

in Section 1. This requires some adaptation of the scheme as described in 

[5]. A rough way of meeting this difficulty is taking k = 2, this gives 

Q = 1.128. For the Bomberger problem a clustering into 4 pseudo-homogeneous 

groups each with cycletime two times the preceding one gives really good re¬ 

sults: Q = 1.014 (compare [5]). 

7. Worst case analysis for essentially positive F and a 

In Section 4 it appeared already that requirement of equal fixed costs con¬ 

siderably improves the results of a worst case analysis. In this section we 

will investigate the effect of a similar requirement, which is also practi¬ 

cally sensible. Namely, we will only consider those configurations where F^ 

and cu are bounded away from zero. This is done by adding to requirements in 

the worst case analysis of Section 3: 

f*a N 
-3 

A > N 
,-3 

This implies that the conditions A in Section 3 have to be amplified with 

2 N 
-3/2 

y0 a N 
,-3/2 

With similar techniques as in Sections 3 and 4, this can be worked out. In 

Fig. 4 the results for the worst case cost ratio (compared with K) are given 

for N = 5 and N = 10. 
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Fig* 4: worst case behaviour of the cost ratio for the situation 

with > N-3, a N-3. 

8. Further analysis of the worst cases 

For the worst cases of Section 3 (and also for nearly worst cases and worst 

cases of Sections 4 and 7) it is clear that the chosen clustering is not very 

sensible. Let us consider the worst case of Section 3 (for fixed t and r): 

X1 = y! and ^ = yN 0 e I, N e J) 

moreover x. = 0 for other i e I 
i 

y. = 0 for other j e J . 
J 

Hence for the worst case products 1 and N both have ideal cycle time I, but 

are put in different clusters. Product I has to go along with products with 

ideal cycle time 0 and product N has to go along with products with ideal 
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cycletime «* . Of course it would be more sensible to let product 1 switch 

from cluster I to cluster J and adapt the cluster cycle times accordingly 

Figure 5 shows the effect on the cost ratio of this simple adaptation. In 

the adapted schedule the ideal k would be infinite, therefore we give the 

cost ratio for the choices k = 5, k = 10 and we give the limit for k ^ 

(k = oo). 

2.0 

1.5 

1.0 

Fig. 5: effect of a simple adaptation on the cost ratio for the 

worst cases of Section 3. 
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