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TUCKALS3: A program for three-mode principal component analysis 

Pieter M. Kroonenberg, vakgroep Wijsgerige en Empirische Pedagogiek, 
V 

Rijksuniversiteit Leiden, Schuttersveld 9 , Leiden 

VOORWOORD 

Het voorliggende artikel is een verkorte versie van de programmabe- 

schrijving van een computerprogramma voor drieweg principale compo- 

nentenanalyse, TUCKALS3 genaamd. De presentatie van de theorie is 

hier met opzet kort gehouden, omdat deze theorie elders uitvoerig 

is beschreven. De bespreking van het voorbeeld is wel speciaal voor 

dit artikel geschreven en ik heb gepoogd zo veel mogelijk aspecten 

van het programma naar voren te brengen via het voorbeeld. De gede- 

tailleerde invoerbeschijving is niet opgenomen aangezien die toch al- 

leen van belang is voor directe gebruikers, maar wel is een samenvat- 

ting van de invoer als appendix toegevoegd om een mdruk te geven van 

de mogelijkheden van het programma. 

Het programma zelf, samen met het parallelle programma voor een beperk— 

tere vorm van drieweg principale componentenanalyse - TUCKALS2 — zijn 

vanaf ongeveer 1 januari 1982 samen met de programmabeschrijvingen en 

een voorbeeld data set bij de vakgroep Datatheorie (Breestraat 70, 

Leiden) te verkrijgen. Op het ogenblik draait het programma nog uit— 

sluitend op de Leidse IBM/Amdahl configuratie en is nog niet uitgetest 

op andere machines. Met name conversie naar CDC hangt af van de vraag 

naar het programma van CDC-gebruikers. 

Voor geinteresseerden is op verzoek bij mij een eerste versie van een 

geannoteerde bibliografie over drieweg factor— en componentenanalyse 

te verkrijgen. 

SUMMARY 

After a relatively non-technical account of three-mode component analysis 

of three-way data, several features of a computer program to perform such 

an analysis, TUCKALS3, are described. A detailed analysis of data on the 

similarities between Dutch political parties is presented to illustrate 

how three-mode principal component analysis may be used to unravel com¬ 

plex relationships. 



INTRODUCTION 

The three-raode principal component model - here referred to as TuckerS 

model - was first formulated within the context of the social sciences 

by Tucker (1963), and in subsequent articles Tucker (1964, 1966) exten¬ 

ded especially the mathematical description and the programming aspects 

of it. In the multidimensional scaling context references to his model 

occur frequently (Carroll & Chang (1972), Takane, Young & De Leeuw 

(1977), Jennrich (1972), etc.), as the Tucker3 model is the general 

model comprising various other individual differences models. A discus¬ 

sion of the relation between multidimensional scaling and three-mode 

factor analysis can be found in Tucker (1972), Carroll & Wish (1974), 

Takane, Young & De Leeuw (1977), Carroll & Arabic (1980). The method 

used here has been fully described by Kroonenberg & De Leeuw (1980). 

INFORMAL DESCRIPTION 

When a researcher has collected information of a number of subjects on a 

large number of variables, he or she often wants to know if linear 

combinations of these variables can be found, which explain the larger 

part of the variation present in the data. Such linear combinations are 

called components, latent variables or factors. Another way of asking 

the same question is: "Can the scores on the variables be explained by 

linear combinations of a set of underlying or latent variables?” If a 

small number of components is sufficient to explain the larger part of 

the variation, one might look upon these components as latent variables, 

which capture the essential information present in the data. As an exam¬ 

ple one could imagine that the scores on a battery of tests (= measured 

variables) are determined by linear combinations of such latent varia¬ 

bles as the arithmetic and verbal content of the tests. The latent va¬ 

riables - arithmetic content and verbal content - can be found by a 

standard principle component analysis. 

Suppose now in the same example that the researcher has administered the 

battery of tests a number of times under various conditions of stress 

and time limitations. Thevdata are now classified by three different 

types of quantities: subjects, tests, and conditions. Again the re¬ 

searcher is interested in (l) the components of the variables which 
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explain the larger part of the variation in the data. Moreover, he or 

she is interested (2) if different groups or general characteristics can 

be defined for subjects as well. Said differently, he or she wants to 

know if it is possible to conceive of the individual subjects as linear 

combinations of 'idealized subjects'. In the example we could suppose 

that the subjects are linear combinations of an exclusively verbally 

gifted person and an exclusively mathematically gifted person. Such 

persons are clearly ideal types. Finally a similar question could arise 

with respect to conditions: (3) can the conditions be characterized by a 

set of 'idealized' or 'prototype' conditions? 

Each of the three questions can be answered by performing principal 

component analyses for each type of quantities or 'mode'. In fact, the 

same variation present in the data is analyzed in three different ways. 

In other words the components extracted are in some way related. The 

question is of course: how. We will, in order to avoid confusion, call 

the components of the variables latent variables, the components of the 

subjects idealized subjects, and the components of the conditions proto¬ 

type conditions. 

With respect to the relations between the components of the three modes 

one could ask questions like: "Do idealized subject 1 and idealized sub¬ 

ject 2 react differently to latent variable 2 in prototype condition 1?" 

Or one could ask: "Is the relation between the idealized subjects and 

the latent variables different under the various prototype conditions?" 

By performing three separate component analyses such questions are not 

immediately answerable, as one does not know how to relate the various 

components. The three-mode principal component model, however, specifies 

explicitly how the relations between the components can be determined. 

The three-mode matrix, which embodies the relations between the various 

components is called the core matrix, as it is supposed to contain es¬ 

sential relations or characteristics of the data. In a sense the compo¬ 

nent matrices for the three modes and the core matrix are all that is 

necessary to give a representation of the data within the framework of 

three-mode principal component analysis. However, various amounts of 

auxiliary information are necessary for the proper interpretation of the 

outcome of the analysis. TUCKALS3 provides such information, and the 

value of it will be discussed in connection with the output example. 

Three-mode principal component analysis has been used in a wide variety 

of research problems. Below some typical applications in the social 

sciences are given. 
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1. A classical example of three-fold classified data can he found in 

the work of Osgood and associates (e.g. Osgood, Suci & Tannenbaum, 

1957). In the development and application of so-called semantic 

differential scaling subjects have to judge various concepts using 

bipolar scales. Such data have been traditionally analysed averaged 

over subjects, but the advent of three-mode principal component 

analysis and similar techniques has seen an interest in analyzing 

the subject mode as well. The aim was to detect if individual dif¬ 

ferences existed with regard to the semantic organisation of the 

relation between scales and concepts. An example of such a study 

can be found in Snyder & Wiggins (1970). 

2. Endler, Hunt & Rosenstein (1962) collected data for the development 

of a "Stimulus-Response Inventory of Anxiousness". The inventory 

consisted of eleven different (precarious) situations, for each of 

which the respondent had to answer how he would react. He had to 

give the intensity of his reaction for 14 different categories. 

Situations were, for example 'going for the first time on a date', 

'going to an important application for a job'. Answer categories 

were, for instance: 'heart is beating quicker', 'perspiring', 

'enjoing the challenge'. Using three-mode principal component 

analysis Levin (1964) not only found situation and reaction types, 

but also different kinds of subjects, who reacted in different ways 

to the various situation types. 

3. Jones & Young (1972) collected data about the social structure of a 

small, closed and naturally formed group (staff and students of an 

institute of psychology). Staff, students and other personnell of 

the institute judged the similarity between the members of the 

scientific staff and doctoral students, where each similarity could 

be scored on a seven-point scale. Although such data can be ana¬ 

lysed fruitfully with various other models, also three mode princi¬ 

pal component analysis is appropriate for them. Especially if one 

also wants to evaluate individual differences. In this study the 

interest was primarily concentrated on the dimensions of interper¬ 

sonal perception (as emerged in the ratee or stimulus space), and 

the use of subjects of these dimensions (as shown in the core ma¬ 

trix). The subjects J[as raters) were divided in groups based on 

professional interest (in psychology). The three groups that could 

be found placed differential weights on the dimensions of the sti¬ 

mulus space (status, political persuasion and professional inte¬ 

rests) . 
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Van de Geer (1974) presented an example of time-series data with a 

relatively large number of variables and only a few time-points. 

More in particular, data were available of 188 hospitals on 27 

variables measured in 11 consecutive years. The aim of this study 

was to determine if there were various kind of hospitals which 

showed differential growth rates or growth patterns. Typical re¬ 

sults of this study were that over the years large hospitals stay 

large relative to the initially smaller ones, and that all hospi¬ 

tals grew roughly in the same manner. There were, however, a small 

number of hospitals which showed a different growth pattern, espe¬ 

cially in a special group of variables. 

FORMAL PROBLEM DESCRIPTION 

A Ixmxn three-mode matrix Ze defined as the collection of 

elements: 

*Zijk I k=1. 

These elements can be placed in a three-dimensional block with the index 

i running along the vertical axis, the index j along the horizontal 

axis, and the index k along the ’depth' axis. We will use the word mode 

to indicate a collection of indices by which the data can be classified. 

For instance, in semantic differential studies one collects scores of a 

number of persons on a set of bipolar scales for a collection of attri¬ 

butes. These data can be classified by persons, scales, and attributes, 

each of these therefore determines a mode of the data. 

2nd mode 

Figure 1 A three-mode matrix 

A three-mode matrix can also be seen as a collection 'normal' (= two- 

mode) matrices. This can be done in three different ways, as is shown 

below in Figure 2. 



Zj.: frontal' planes Z.: horizontal planes Z.: 
J 

lateral planes 

Figure 2 Three different ways to view a three-mode matrix as a collec¬ 

tion two-mode matrices. 

The TuckerS model is the factorization of the three-mode matrix 

matrix Z = { z. Z eRlxmxn such that 
ijk ’ 

Zijk I l l 
p=J q=l r=l 

ip jq kr pqr 

for i=l,_,1; 

j=l,...,m; 

(1) 

k=l,...,n, 

where the coefficients g. , h. . and e, are the elements of the column- 
sip’ jq’ kr 

wise orthonormal matrices GcK^xs, HEKmxt, E e K1^11 respectively, and 

the c are the elements of the so-called three-mode core matrix 
pqr 

C eRsxtu. 

One can interprete G as the matrix which contains the scores of the va¬ 

riables of the first mode on their components. (In the factor analytic 

literature these scores are usually called "loadings". Note, however, 

that the length of the components are here scaled to be equal to 1, and 

not equal to the eigenvalues). The interpretation of H and E is analo- 

guous. The number of components of the first, second and third mode are 

s, t, and u respectively. In the original matrix Z every element of the 

matrix represents a specific combination of categories of the original 

variables. In a similar manner each element of the core matrix repre¬ 

sents a unique combination of categories of the components. Thus the 

core matrix describes the basic relations that exist between the various 

collections of variables as expressed through their components. 
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1... j .. .m 

data array Z core matrix C 

Figure 3 Data array versus core matrix 

The matrix formulation of the model is 

z = GcoreE1) O) 

where Z eR^Xma and Ce RSXtU are now ordinary two-mode matrices by making 

use of so-called combination modes (Tucker, 1966, 28l), and 8 denotes 

the Kronecker product (Tucker, 1966, 283ff). We will not introduce 

special notation to distinguish between the two-mode and three-mode 

versions of Z and C, as the appropriate one is indicated by the real 

space whereof it is an element. 

If we would compute all the principal components, thus s=l, t—m, and 

u=n, then we would decompose any data matrix exactly in its components. 

However, in practical applications one is just interested in the two, 

three or four first principal components. This precludes in general fin¬ 

ding an exact factorisation of Z in G, H, E, and C. One, therefore, has 

to settle for an approximation, i.e. one has to find G, H, E, and C such 

that the difference between the model and the data is minimal according 

to some loss function, or in slightly different terms, we have to look 

for a best approximate factorization of the matrix Z into G, H, E, and C 

according to the Tucker3 model. 

In our case we define the loss function to be the mean squared one, and 

propose to search for those G, H, E, and C such that 

f(G,H,E,C) = ||Z - GC(H,eE')|| 2 (2) 

is minima] . Where || . || denotes the Euclidean norm. The minimization has 

to be carried out under the restrictions of the model: 

G, H, E are columnwise orthonormal matrices (3) 



In a more semantic notation (2) can be written as 

SSQ(Residual) = SSQ(Data - 'Reconstructed Data') (4) 

where SSQ means Sum of SQuares. By 'reconstructed data' is meant the 

estimated data values on the basis of model (1). Via some algebraic 

manipulations it can be shown that (4) can be transformed into 

SSQ(Residual) = SSQ(Data) - SSQ(Reconstructed Data), or 

SSQ(Residual) = SSQ(Data) - SSQ(Fit). (5) 

As the SSQ(Data) or SSQ(Total) is fixed, minimizing the SSQ(Residual) 

is equal to maximizing the SSQ(Fit). This maximization problem can 

be written as 

max SSQ(Fit) = max Tr G'ZtHH'S EE')Z'G. (6) 
G,H,E GfH,E 

The maximization can be carried out via a so-called Alternating Least 

Squares algorithm, which maximizes the objective funtion over G, H, 

and E in turn holding the other two parameter matrices fixed. This 

procedure is repeated until convergence. Details about the algorithm 

are given in the User's Guide to TUCKALS3, and the convergence proper¬ 

ties are discussed in Kroonenberg & De Leeuw (1980). 

A point which needs to be mentioned is the initialization of G^, 

and E , the starting matrices of the algorithm. It seems appropriate 
o 

to search for initializations which would increase the chances of con¬ 

vergence to a global maximum rather than a local one. The approach 

taken here is to choose G , H , and E such that they will solve the 
o o o 

maximization if it had an exact solution. It can be shown that the 

eigenvectors associated with the largest eigenvalues of U = ZZ' (Zc-R ) , 

V = ZZ* (ZtR111^1) , and W = ZZ' (ZfcRnxlm) will solve the maximiztion 

problem exactly if there exists such a solution. These eigenvectors 

are, therefore, used to initialize the algorithm. This initial solu¬ 

tion is, in fact,the Method I solution of Tucker (1966). 



JOINT PLOTS 

After the components have been constructed the core matrix will provide 

the information about the relations of the components. It is, also very 

instructive to investigate the common space of two modes (say, subjects 

and variables). The components can be scaled in such a manner that they 

can be plotted together in one figure. Such joint plots are provided in 

the program (see Input Summary, parameter ICPLOT). 

The joint plots of every pair of component matrices for each component 

of the third mode, say E, are constructed in such a way that g^ (i=l,..,s) 

and h. (j = l,..,t) - i.e. the columns of G and H - are close to each other. 

Closeness is measured as the sum of all sxt squared distances. 

The plots are constructed as follows: For each component r of E, G 

and H are scaled by dividing the core plane between them (by using 

a singular value decomposition), and weighting the so scaled G and H 

by the relative number of elements in the modes to make the distances 

comparable: 

GC H' = GUAV’H' = (^(GUA*) (-McHVA*)’ = gV' 
r 1 m 

with 

G* = (H)‘GUA^ and H* = (I)*HVA5. 
1 m 

When C is not square only the first min(s,t) components can be used. 

For further remarks on this procedure one could consult Appendix 2 of 

Kroonenberg & De Leeuw (1977). (Note, however, that in the second sec¬ 

tion 1 and m should be interchanged.) 



ANALYSIS OF RESIDUALS 

For a proper assessment of the role of the elements of the various 

modes, it is necessary to have some insight in the structure of the re¬ 

siduals. A residual in this context is the difference between the data 

and the estimated data 'reconstructed* from the estimated model parame¬ 

ters. Large residuals or residual sums of squares (SSQ(Residual)) indi¬ 

cate that a particular element does not fit very well in the structure 

determined by the other quantities. However, an extremely large residual 

sum of squares, often combined with a very large total sum of squares 

(SSQ(Total)) is often indicative for some clerical error in the data. 

The size of a SSQ(Residual) depends on the SSQ(Total). Therefore, the 

relative residual sum of squares (=SSQ(Residual)/SSQ(Total)) should be 

used for the assessment of the role of an element of a mode. Also the 

so-called fit/residual ratio (see below7) provides valuable information 

to that end. It is good to realize that in general elements with large 

SSQ(Total)'s will be fitted better than those with small SSQ(Total)'s 

due to the least squares procedures used. Sometimes it is wise to rerun 

an analysis without an element which has an incomparable larger total 

sum of squares than the other elements in the analysis. 

The residuals can be analysed at two levels: 

a. From formula (5J we see that 

SSQ(Total) = SSQ(Fit) + SSQ(Residual) (7 ) 

For each element e of each mode it can be shown that 

SSQ(Totale) = SSQ(Fite) + SSQ(Residuale) (g ) 

Using (8 ) we can examine 

SSQ(Fite)/SSQ(Residuale) (9 ) 

or the fit/residual ratios of the elements of each mode. High 

fit/residual ratios indicate good agreement with the model, while 

low fit/residual ratios mean bad agreement with the model. 
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The program provides for each mode a plot of the SSQ(Residual) 

versus the SSQ(Fit) from which the relative performance of the 

points can be gauged, i.e. both relative to each other, and rela¬ 

tive to the overall fit/residhal ratio. Probably the easiest way to 

examine the plot is by connecting the point (0,0) with the point 

which has as its coordinates the average SSQ(Fit) and the average 

SSQ(Residual). Points above the line have a relative worse fit than 

average, and points below the line have a relatively better fit 

than average. As sums of squares are plotted, rather than propor¬ 

tions of total of sums of squares, the sizes of the total sums of 

squares are reflected in the plots. They can be found by adding the 

x- and y- values in the plot. This means that points with equal 

total sums of squares lie on lines which make an angle of -45 

degrees with the positive X-axis. Note that due to (possibly) 

unequal scaling this line need not be under an angle of -45° at 

first sight. 

b. A more detailed analysis of the residuals is possible by writing 

the Ixmxn block of squared residuals to an external unit (tape, 

disk or card). The unit number is transferred to the program by the 

parameter I0URES (see Input specifications). These squared re¬ 

siduals could be inspected individually, or, by averaging over one 

of the modes, the 'interaction' of two modes may be investigated. 

SCALING OF INPUT DATA 

In standard two-mode principal component analysis the input data are 

often transformed to standard scores without much thought to the conse¬ 

quences. In three-mode analysis the question of scaling must be ap¬ 

proached with more care, as there are many ways to standardize or centre 

the data. The two basic rules are: 

(1) those means should be eliminated (i.e. set equal to zero), which 

cannot be interpreted or which are incomparable within a mode; 

(2) those variances should be eliminated (i.e. set equal to one), which 

are based on arbitrary units of measurement or which are incompar¬ 

able within a mode. If all quantities are measured in the same 

(possibly arbitrary) units it is not necessary to eliminate the 

variances. 
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Table 1 Similarities between •parties 

PvdA group 

compared parties 

compared parties 
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Very common procedures are 

(a) centring or standardizing the variables over all subject-condition 

combinations; 

(b) centring or standardizing the variables over all subjects for each 

condition separately; 

(c) double-centring, i.e. centring per condition over both variables 

and subjects. 

Subjects, variables and conditions indicate here the first, second, and 

third mode quantities, respectively. 

The decision which centring or standardization is appropriate in any 

particular data set depends on the researcher’s assessment of the origin 

of the variability of his or her data, in other words on which means and 

variances can be meaningful interpreted. For a more extensive discussion 

one could consult Kroonenberg (1981). 

EXAMPLE: SIMILARITIES BETWEEN POLITICAL PARTIES 

Data 

To illustrate the working of the program we will use some very 

old data on similarities between Dutch political parties (De 

Gruijter, 1967). The choice of the data was mainly guided by the 

small size of the data set, and the reasonable interpretability. 

De Gruijter used a group of 82 members of political student organi¬ 

zations at the University of Leiden; three of the students were not 

used in the analysis. On the basis of their preference for a parti¬ 

cular party the students were divided into six groups, namely into a 

PSP, PvdA, KVP, ARP, WD, and a CHU group respectively. The ten par¬ 

ties which were then (1966) in Parliament - CPN,PSP, PvdA, KVP, ARP, 

WD, CHU, SGP, GPV, Boerenpartij (BP) - were used as stimuli. De 

Gruijter confronted the students with all possible triads of parties, 

and asked them to indicate for each triad which two parties were 

most alike, and which two were least alike. For each preference 

group he computed the number of times (summed over all subjects in 

that group - n ) that in all triads with stimulus parties i and j 

the similarity between i and j was considered to be greater than that 

between i (the standard) and the third stimulus. As each party was 

compared with all combinations of the other parties the sums for the 
9 

standards are equal to n (0). The data have thus the form of 6 ma- 
g 2 

trices (preference groups) of 10 standards by 10 compared parties. 
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Table 2 General characteristics of the solutions 

type of 
solution 

Standardized total sum of squares - SSQ (Total) 

Approximation of SSQ ( Fit ) derived from separate 
PCA on mode 1 

Approximation of SSQ ( Fit ) derived from separate 
PCA on mode 2 

Approximation of SSQ (Fit) derived from separate 
PCA on mode 3 

Pitted sum of squares from simultaneous estimation - 
SSQ (Fit) 

Residual sum of squares: SSQ (Res) = 
SSQ (Total) - SSQ (Fit) 

Improvement in fit compared to initial configuration 

3x3x2 

1 .00 

.94 

.94 

.97 

.92 

.08 

.001 

2x2x2 

1 .00 

.83 

.83 

.97 

.82 

.18 

.004 

In the present analysis the data matrices have been divided by the 

number of persons in a preference group (cf. Table 4), as in a pre¬ 

vious analysis (which is presented in the User's Guide to TUCKALS3), 

it was shown that some of the differences observed between groups 

could be attributed to different sizes of the groups. The unequal 

sizes obscured any real differences in variability between parties. 

In addition, the main diagonal elements of each data matrix, which 

were left blank in De Gruijter's analysis) were set to 9, indicating 

that a party is more similar to itself than to any other party. Note 

that the data matrices can be and are asymmetric as there is no ne¬ 

cessity for a party to be chosen over another when compared with a 

standard as often as it is considered alike to the same party when 

itself is the standard. Note also that all row sums are now (^) =: 

45. The data matrices were double-centred before the analysis pro¬ 

per, as is customarily done with similarities. An option to do this 

and other types of centring is included in the program. Table 1 

gives, as an example, the data,adjusted for group sample size,for the 

KVP and the PvdA group. 

In the following we will report the results primarily to illustrate 

the program, rather than to shed light on the political scene in 

1966 as seen through the eyes of 79 students. We will, therefore, 

primarily follow the flow of the output. 
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Fit 

In principal the analysis, which is reported here is the one with 

three components each for the first and second mode, and with two 

components for the third mode; from now on called the 3x3x2-so_lution. 

It is sometimes compared with another analysis with two components 

for each of the modes, or the 2x2x2-solution■ 

From Table 2 it can be seen that with three components for the par¬ 

ty modes we exhaust the variability in the data, as 92% of the total 

sum of squares was accounted for by the model. Even the two compo¬ 

nent solution was already satisfactory. The 'approximate total fit 

from the initial configuration for each of the modes (which make up 

the standard Tucker (1966) Method I solution) are upper bounds for 

the SSQ(Fit) of the simultaneous solution. Obviously the smallest of 

the three is the least upper bound, in this case the one based on the 

second mode (.94). The initial configurations are used as starting 

points for the main TUCKALS3 algorithm. The improvement in fit indi¬ 

cates how much the iterative process improves the simultaneous solu¬ 

tion over the starting one. In this case this improvement is negli¬ 

gible, in other words we could have settled for the old method as 

far as fit is concerned, but we could not have known that beforehand. 

Table ^ Party spaces (based on mode 1 - parties used as standards) 

3x3x2 - solution 2x2x2 - solution 

CPN 

PSP 

1 

748 
.48 

PvdA .45 

KVP 

ARP 

WD 

CHU 

GFV 

SGP 

BP 

compone 

.01 

-.15 

-.20 

-.22 

-.35 

-.33 
-.17 

weight .61 

2 3 

-.04 

-.1? -04 

.18 .15 

.50 -.09 

.30 .40 

.22 -.62 

.30 -.00 

-.33 .29 

-.28 .34 

-.46 -.47 

.21 .11 

1 2 

.48 - 725 

.48 -.18 

.43 .18 

.01 .50 

-.15 -30 

-.20 .21 

-.22 .29 

-.33 -.53 

-.33 -.27 

-.17 -.46 

.61 .21 



Configurations for the three modes 

De Gruijter had to symmetricize the matrices in his analysis, due to 

the inability of earlier multidimensional scaling programs to handle 

asymmetric data. He analysed each preference group separately, 

rather than simultaneously as was done here. His results are dis¬ 

played in Figure 4. The advantage of the present approach is that 

one space can be found for all groups together, and in addition the 

fit of this common configuration for each group can be assessed. 

De Gruijter extracted only two dimensions, and concluded that a 

'horseshoe' could be found for each of the preference groups sepa¬ 

rately (see Figure 4), and not surprisingly in the present analysis 

the first two components of the common space exhibit a horseshoe as 

well (see Table 3 and Figure 5). Of course we get two common spaces, 

one for the first mode (standards), and one for the second mode (com¬ 

pared parties), but the two are hardly different from one another as 

can be seen from their respective solutions. In other words 

the asymmetry present in the data is very small; a conclusion also 

reached by De Gruijter using different means. 

Horseshoes always pose interpretational problems. Often but not al¬ 

ways both the projections on the axes, and the position along the 

horseshoe are candidates for interpretation. Kruskal & Wish (1978, 

p.88,89), Levelt, Van de.Geer, and Plomp (1966, p. 173,174), and 

Gifi (1980, p.73) discuss horseshoes, their origins, and their inter¬ 

pretations. In the present example the interpetation of the position 

along the horseshoe is very clear cut, viz. from left-wing (CPN) to 

right-wing (BP). 

The party space is open to a more complex interpretation than just 

the horseshoe. In particular, the first dimension also shows a left- 

right distinction, so that we are now faced with the problem that we 

have not a priori scaled the parties on this dimension, and that we 

do not know which of the GPV, SGP, and BP the students considered the 

most right-wing party. This information would have made it possible 

to choose between interpreting the horseshoe or the axis. The second 

axis separates the big and ideologically or politically flexible par¬ 

ties with governmental experience from the small and dogmatic parties 

which have never borne governmental responsibility. Which of the 

three mentioned characteristics the students really used or used more 

often is not possible to assess without additional independent infer- 
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Fig. 5 Party space of node 1 (standards) - 3x3x2-solution 
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Table 4 Party preference space 

party- 
prefe¬ 
rence 

3x3x2-solution 

1 2 

2x2x2-selution 

1 2 
number 
of students 
in group 

Ng 

PSP 

PvdA 

KVP 

ARP 

- WD 

CfflJ 

.42 .68 

.42 -34 

.40 -.59 

.40 -.19 

.42 -.10 

.38 -.18 

.42 .52 

.42 .22 

.40 -.79 

.40 -.09 

.42 .21 

.38 -.12 

8 

15 

11 

10 

9 

9 

compo¬ 
nent 
weight 

.91 .01 .81 .007 

mation. Finally, the third axis which defies my interpretational abi¬ 

lities indicates that BP and WD are alike, and both unlike the ARP. 

That the third axis is not a fluke of the technique or some acciden¬ 

tal effect, can be seen from the data itself. For each of the prefe¬ 

rence groups (for examples see Table 1) we see primarily a central 

central band of high similarities, which causes the horseshoe. Not 

fitting into this pattern are exactly the effects mentioned: the WD 

and the BP are more alike than the horseshoe would predict, and the 

ARP is less alike especially than the WD. The same can be said to 

a lesser extent for the too close agreement of the ARP and the SGP, 

GPV. A further point worth mentioning is that the bending back of 

the horseshoe to make the BP somewhat similar to the CPN (probably 

because their similar extremist and unflexible approach to politics) 

can be seen in the data by the slight increase of the similarities 

in the NE and SW corner of the data matrices. This effect is 

strongest for the KVP preference group, which is a party in the 

middle of the political spectrum, and least so for the PSP preference 

group near the end of the horseshoe. The circumplex structure is 

clearly not complete. Finally we want to point out that the method 

to solve the three-mode model makes, that the solutions are not nes¬ 

ted, i.e. the first two components of the 3x3x2-solution are not 

equal to the two components of the 2x2x2-solution. That the diffe¬ 

rence is very small in the present example is besides the point. 



Table 5 Frontal planes of the core raatrix 

3x5x2 solution 

Core plane C1 belonging to the first component of the party preference 
' space 

components of "compared parties" 

C1 = (Cpql) 

1 2 3 

c? = (c2 .) 
1 pq1' 

1 2 3 

standardized 

(c^/SSQCTotal)) 

1 2 3 

components 1 

of the 2 

standards 3 

19. -.03 -.01 

.06 11. -.2 

.01 .03 8. 

361 

121 

64 

O
N
 

O
 

ro
 

—
V
 

_J
k 

sum = first com¬ 
ponent weight=.91 

Core plane C0 belonging to the second component of the party preference 
c. space 

components of Mcompared parties" 

C2 _ ^°pq2^ 

1 2 3 

2 / 2 . 

°2 - cpq2 

1 2 3 

standardized 

(c^/SSQCTotal)) 

1 2 3 

components 1 

of the 2 

standards 3 

.5 1-3 1.2 

1.1 -0.6 -0.4 

.9 -0.1 -0.4 

.3 1.7 1.5 

1.2 .4 .2 

.8 .0 .2 

>.003 

siim = second com¬ 
ponent weight=.01 

Hote: The program also prints the core matrix in two other ways, i.e. 
as horizontal and as lateral planes. The sums of the horizontal 
planes are equal to the component weights of the first mode 
standards. The sums of the lateral planes are equal to the com¬ 
ponent weights of the second mode ("compared" parties). 
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The party preference space is- on the whole hardly interesting. As 

was to be expected from the similarity of the solutions from the se¬ 

parate analyses, the loadings on the first component are virtually 

equal. In addition, the second component is not worth bothering 

about as it accounts only for 1% of the total variation, and it is 

probably just reflecting random error. On the other hand, it should 

be remembered that only the first and second modes were centred, and 

not the third mode. This means that the first component of the third 

mode still reflects the average scoring level of the six groups. 

Technically the average frontal plane of the double-centred three- 

mode matrix is not zero, while the average lateral and average hori¬ 

zontal planes are zero. For the present data the second component of 

the third mode is too small under any circumstances, but in other 

data the second component might contain valuable information about 

differences between the elements of the third mode even though it is 

far smaller than the first component. 

Core matrix 

Above we noted that really only the first component of the space for 

the preference groups was interesting, therefore we will only discuss 

the interpretation of the first core plane. 

The core matrix indicates how the various components of the three 

modes relate to one another. For instance, the element (=19) 

of the core matrix indicates the strength of the relation between 

the first components of the three modes, and c221 (=11) the strength 

of the relation between the second components of the first and second 

mode with the first of the third mode. The interpretation of the 

elements of the core matrix is facilitated if one knows that the sum 

over all squared elements of the core matrix is equal to the SSQ(Fit), 
2 

In other words the c 's indicate how much the combination of the 
pqr 

p-th component of the first mode, the q-th component of the second 

mode, and the r-th component of the thirdl mode contributes to the 

overall fit of the model, or how much of the total variation is ac¬ 

counted for by this particular combination of components. Thus as 

Table 5 shows, 60% of the SSQ(Total) is accounted for by the combina- 
» 2 

tion of the first components of the three modes, another 21% by c00 , 
2 221 

and 11% by Together with the negligible contributions of the 

other elements of the first frontal plane these contributions sum to 
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Table 6 Sums of squares broken down by party preference 

3x3x2-solution 

Party- 
prefe¬ 
rence 

SSQ(Total) 

standard¬ 
ized 

SSQ 

standard¬ 
ized 

(Pit) 

relative 
fit 

SSQ 

standard¬ 
ized 

(Res) 

relative 
fit 

PSP 

PvdA 

KVP 

AEP 

TVD 

CHU 

.18 

.17 

.16 

.16 

.18 

.15 

.16 

.16 

.15 

.14 

.16 

.14 

• 93 

.95 

.93 

.91 

.92 

• 91 

.01 

.01 

.01 

.01 

.01 

.01 

.0? 

.05 

• 07 

.09 

.08 

.09 

overall 1 .00 .92 .08 . - 
SSQ(Total) = SSQ(Pit) + SSQ(Res) 

Notes: 1) standardized' means devided by the overall SSQ (Total) 

2) relative fit = SSQ (Pit of a party)/SSQ (Total of a 

party) 

91%, which is equal to the weight of the first component of the third 

mode, as it should be. The core matrix thus breaks the SSQ(Fit) up 

into small parts, through which the (possibly) complex relations be¬ 

tween components can be analysed. It is in this way that we can in¬ 

terpret the core matrix as the generalization of the eigenvalues or 

singular values of the Eckart-Young decomposition. It constitutes a 

further partitioning of the 'explained* variation as is indicated by 

the eigenvalues of the standard principal components. The present 

example is in a way too simple to make full use of the interpretatio- 

nal possibilities of the core matrix, as all off-diagonal elements 

are virtually zero. 



Table 7 Sums of squares broken down by parties used as standards 
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3x3x2-solutlon 2x2x2-solu-tion 

Party 

SSQ 
(Total) 

stan¬ 
dard¬ 
ized 

SSQ( 

stan¬ 
dard¬ 
ized 

Pit) 

rela¬ 
tive 
fit 

SSQ(l 

stan¬ 
dard¬ 
ized 

’it) 

rela¬ 
tive 
fit 

+ 

fit 
resi¬ 
dual 
ratio 

Improvement 
in relative 
fit due to 
third com¬ 
ponent 

CPN 

PSP 

PvdA 

KVP 

ARP 

WD 

CHU 

SGP 

GPY 

BP 

.16 

.15 

.13 

.06 

.06 

.08 

.06 

.10 

.10 

.09 

.16 

.15 

.12 

.05 

.05 

.08 

.05 

.10 

.10 

.09 

• 95 

• 95 

• 94 

.84 

.88 

• 93 

.83 

.95 

.95 

• 90 

.15 

.15 

.12 

.05 

.03 

.03 

.05 

• 09 

.08 

.06 

• 94 

• 95 

• 92 

.82 

• 59 

.41 

.83 

.85 

.82 

.66 

16.5 

18.5 

11.5 

4.6 

1.4 

0.7 

4.8 

5.8 

4.5 

1.9 

.01 

.00 

.02 

.02 

.29 

.52 

.00 

.10 

.13 

.24 

over¬ 
all 1.00 .92 .82 

Notes: 1. 'standardized' means devided by the overall SSQ (Total) 

2. relative fit = SSQ (Pit of a party)/SSQ (Total of a 

party) 

3. fit/residual ratio = SSQ (Fit of a party)/SSQ (Resi¬ 

dual of a party) 

+ not yet printed in the program, but may well be in 

a next version 

Assessing the quality of fit 

In essence the analysis could stop with the above interpretations. 

All that the technique could offer towards breaking the complex rela¬ 

tionships down into small intelligible pieces is contained in the in¬ 

formation by the program so far. However, it is good to have some 

ancillary information available to assess if there are no irregulari¬ 

ties in the data like outliers, unduly influential points, points 



Fig. 6 Fitted sums of squares versus residual sums of squares for mode 1 (parties used as standards) 

2x2x2-solution 



which are not sufficiently accounted for, etc. An attractive way to 

investigate such questions is to inspect the residual sums of squares 

in conjunction with the fitted sums of squares (see also "Analysis of 

Residuals"). Whereas the. core matrix informs us about the contribu¬ 

tions of the components and their interrelationships, so do the sums 

of squares broken down by the elements of the modes tell us about 

their contributions to the solutions. 

Let us first turn to the sums of squares of the preference groups 

(see Table 6). Now that we have equalized the n 's of the groups, it 

is possible to -assess the overall variability between the groups. 

The ARP, CHU, and KVP groups tended to judge relatively less consis¬ 

tent or outspoken than the PSP and WD groups, as a comparison of 

their SSQ(Total)'s shows. Although very often elements with larger 

total sums of squares tend to be fitted better than those with smaller 

sums of squares, this effect is hardly present in these data due to 

the small differences in the SSQ(Total)'s. The SSQ(Fit)'s or better 

relative fits are all high and rather alike indicating that the 

common solution is shared by all to the same extent. The sums of 

squares for the third mode thus tells us that everything is in order. 

Far more interesting is the comparison between the sums of squares of 

the stimuli (here shown for the first mode) in the 3x3x2 and 2x2x2- 

solutions (see Table 7). The total sums of squares show that parties 

in the middle look alike, and thus the students have not one mind 

which parties resemble each other the most. Most of the students 

agreed, however, about the similarities of the parties at the end 

points of the political spectrum to other parties, leading to higher 

and lower scores, and thus to larger SSQ(Total)'s (see also Table 1). 

The SSQ(Fit)'s for the 2x2x2-solution show that the relative fit of 

the WD, ARP, and BP leaves much to be desired. Figure 6 summarizes 

most of the information of Table 7, and makes it easy to spot espe¬ 

cially the ill-fitting and the well-fitting points. Table 7 also 

shows that not much is gained by adding a fourth axis to the party 

space. Not only is the overall fit of the 3x3x2-solution very good, 

but also all parties now fit more or less equally well. In other 

words the third component was all that was needed to accomodate re¬ 

maining anomalies. 
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7 Joint plot of first mode (standards) and second mode (compared parties) 
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Joint plots 

Figure 7 shows a joint plot (see "Joint Plots") of the first and se¬ 

cond mode. In this case all it tells us is that the original data 

matrices are virtually symmetric, which is by now no longer a sur¬ 

prise. For many other data sets, however, in which the first and 

second component are different types of variables, these joint plots 

are a major aid in interpretation. To illustrate this we show such 

a joint plot from another study of political parties in the same pe¬ 

riod (see Figure 8). Here staff and students from a psychology de¬ 

partment indicated whether parties possessed certain attributes or 

not. For a more detailed account of these data and their three-mode 

analysis see Kroonenberg & De Leeuw (1977). It is left to the reader 

to decide where the judges' sympathy lay. 

Fig. 8 Joint plot of attribute and political party space 
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INPUT SUMMARY 

CARD 1 KEY WORD (COL.1-4) AND TITLE (COL.5-80) 
'TITL' title card 

'SIZE' compute necessary core space 
'INFO'* produce the program information and this input summary 

'• ' signals end of input (obligatory) 
DATA SPECIFICATIONS: CARD 2 

COLUMN 
1- 5 

6-10 
11-15 

16-20 
21-25 

26-30 
CARD 3 

1- 5 
6-10 

11-15 
16-20 

21-25 
26-30 

31-35 
41-45 

51-55 
56-60 

61-65 
66-70 

71-75 
CARD 4 

l- 5 
. 6-10 

11-15 
26-35 

36-45 
CARD 5 

1-12 
13-24 

25-36 
CARD 6,7,8 

DESCRIPTION 
L number of elements 
M number of elements 
N number of elements 
S number of components in first mode 
T number of components in second mode 
U number of components in third mode 

INPUT AND OUTPUT SPECIFICATIONS: 

in first mode (e.g. subjects) 
in second mode (e.g. variables) 

in third mode (e.g. conditions) 
(S should be smaller or equal to L) 

(T should be smaller or equal to M) 
(U should be smaller or equal to N) 

INP 
I PLOT 
I PR 

IOUTG 
I0UTH 

I0UTE 
I0UTCP 

IDATPR 
ISYM 

INCONF 
I0URES 

ICPL0T 
I0UFRS 

unit number for data input 
plot component scores; 

level of print-out; 

(0=DEFAULT=STANDARD INPUT UNIT CARDS) 
(0=NO=DEFAULT; 1=YES) 

(0=STANDARD PRINT-0UT=DEFAULT; 1=ITERATI0N TABLE EXTRA) 
unit jiumber for output component scores of first mode other than printer 

unit number for output component scores of second mode other than printer 
unit number for output component scores of third mode other than printer 

unit number for joint plots other than printer 
printing of input data 

restricted output due to symmetric frontal planes 
printing of initial configuration 

unit number for output individual squared residuals 
printing of joint plots (0=NO=DEFAULT, 1=M0DES 1&2,2=M0DES 2&3,3=M0DES 3&1,4=ALL MODES) 

unit number for output fitted and residual sums of squares per mode (0=NO OUTPUT OTHER THAN PRINT=DEFAULT) 
ANALYSIS SPECIFICATIONS: 

IDBCEN centring per frontal plane (0=NO,l=DOUBLE-CENTRING,2=CENTRE ROWS,3=CENTRE COLUMNS,4=CENTRE PLANE) 
maximum number of iterations (DEFAULT=50) 

internal storage mode of data (0=IN C0RE=DEFAULT;l=ON DISK) 
convergence criterion for optimal factorisation (DEFAULT=.0001) 

convergence criterion for component matrices (DEFAULT=.0001) 

(0=N0 EXTRA OUTPUT=DEFAULT) 
(0=N0 EXTRA Ol)TPl)T=DEFAULT) 

(0=N0 EXTRA OUTPUTpDEFAULT) 
(0=NO EXTRA OUTPUT=DEFAULT) 

(0=NO=DEFAULT; 1=YF.S) 
(0=N0=DEFAULT;1=YES) 

(0=N0=DEFAULT;1=YKS) 
(0=N0 0UTPUT=DEFAULT) 

NIT 
MST0RE 

EPS1 
EPS2 

LABELS FOR THE THREE MODES: 
MI.ABI label first mode 

MLABJ label second mode 
MLABK label third mode 

VARIABLE INPUT FORMAT (THREE CARDS) 

Here after DATA CARDS if the data are to be read from the same input unit as the input parameters otherwise the next KEY-AND- 
T1TLE CARD should follow. If the present job is the last one the next KEY-AND-TITLE CARD should indicate end of input ('• ') 

ro 
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