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1. Introduction 

Repeated observations on the same experimental units are a common 

occurrence in research in the social and biological sciences. In cases 

where the assumptions seem appropriate, multivariate analysis of variance 

has been widely advocated as a means of making statistical inferences 

from such data. Adopting this approach has been made easier by the wide 

availability of general purpose computer programs for multivariate statistical 

analysis, such as MULTIVARIANCE (Finn,1978). Unfortunately, some of the 

literature which discusses the use of the technique in general, and 

MULTIVARIANCE in particular, is misleading and incomplete. This is 

primarily a problem for social science researchers, since complete and 

accurate details have been available in the biometric literature for some 

time. (See, for instance, Grizzle & Allen, 1969.) 

In the second section of this paper, we describe how multivariate 

analysis of variance may be "correctly’' used (based on likelihood con¬ 

siderations) to compare models for repeated measures data and to estimate 

parameters for such models. In the third section, with the approach we 

describe as a reference point, we consider some of the literature on the 

subject. This is not meant to be a complete review, but is primarily 

aimed at pointing out some of the misleading and incomplete statements 

referred to above. 

In the fourth section, to make the issues more concrete, we provide 

multiple analyses of a data set used by Grizzle & Allen (1969). Finally, 

in an appendix, we describe some difficulties with Version VI of the 

MULTIVARIANCE program and how it may be used to carry out the analyses we 

describe in the second section. 
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While it is difficult to discuss multivariate analysis of variance 

without going into technicalities, we try to avoid doing so wherever possible. 

The technical details, after all, exist elsewhere. Our goal is to make the 

basic issues as clear as possible. 

2. An approach based on likelihood considerations 

For the sake of simplicity, we restrict our'attention in this section 

to the analysis of "pure" repeated measures data. There is a single group 

of subjects, each of whom responds on a single dependent variable under a 

variety of conditions (or at several times). The conditions (or times) 

are the same for all subjects. In traditional univariate analysis of variance 

terms, this might be described as a subjects x conditions design. 

We assume that the interest of the researcher is in full rank linear 

models for the population mean responses (and not, for instance, in the 

variance component "due to subjects"). Suppose that the models of interest 

may be arranged in a hierarchy so that, except for the first, each model 

may be obtained as a special case of the one before it by setting certain 

parameters in the more general model equal to zero. (In practice, the 

researcher might be interested in several such hierarchies.) 

In any event, the approach we describe demands that the first model in 

the hierarchy be complete (or saturated, as it is sometimes called) in the 

sense that it provides a perfect (and unique, thanks to the full rank 

assumption mentioned above) description of any possible pattern of response 

means. This implies, among other things, that the number of parameters in 

this complete model will be equal to the number of repeated measures in 

the study. 
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A common example of such a hierarchy occurs when responses are 

obtained at £ times and the interest is in finding a polynomial function 

of time which describes the response means. The polynomial of order 

£-1 provides a complete model 

B0+ V + v2 + ••• + VitP"' (1) 

with the £ parameters 3q, 3j, 32» •••» £p_j • Lower order polynomials 

provide successive models in the hierarchy and are obtained by successively 

setting the higher order coefficients (0^,) equal to zero. 

In the multivariate analysis of repeated measures data, it is assumed 

that the responses of each subject form a multivariate random variable, 

identically and independently distributed across subjects according to 

a multivariate normal distribution with a nonsingular covariance matrix. 

This unlikely assumption represents, in fact, an important generalization 

of the assumptions underlying traditional univaridte analysis of variance 

of repeated measures data. 

The robustness of the analyses we describe to violations of this 

assumption is a critical issue which, nonetheless, lies outside the 

scope of this paper. We restrict ourselves to the much simpler task 

of describing what can be done when the multivariate normality 

assumption is met, recognizing (and hoping our readers recognize) that 

what we say may have no legitimate practical application. (Needless to 

say, we hope this last is not the case, and robustness studies such as 

that of Olson, 1974, seem to give some reason for such a hope.) 

The first problem we consider is that of comparing, via hypothesis 

testing, two models in the hierarchy described above. The null hypothesis 
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in this case may be thought of as the proposition that the more restricted 

model is correct (provides a perfect description of the population response 

means). The alternative is that the more general of the two models being 

compared is necessary to describe the means completely. 

More specifically, suppose we can divide the parameters of the 

complete model into three sets: 

a, the parameters which appear in the more restricted model, 

8, the parameters which appear in the more general model, but not 

in the more restricted one, and 

y, the parameters which appear in the complete model only. 

(In the case where the more general model happens to be the complete 

model, there will be no parameters y.) 

In these terms, the hypothesis testing problem can be stated as 

follows: in the complete model, test the hypothesis that 8=0, given 

that y=0 but making no assumptions about a . Thus y=0 is assumed, and 

8=0 is tested under this assumption. 

The most common way to approach this problem involves an initial 

linear transformation of the repeated measures to a new set of dependent 

variables. The transformation we use here is the one which transforms 

the population response means into the parameters of the complete model. 

As was noted earlier, this transformation is unique. It also has the 

property that the population means of the new variables are identical to 

the parameters of the complete model. Thus we may partition the new 

variables into three sets, corresponding to the three sets of parameters 

defined above. We denote these sets of variables by a, b, and c, with 

population means a, 8» and y, respectively. 

, 2 
A direct test of the hypothesis 8=0 applies Hotelling s T^ to the 

new variable set b to test if their population means are all zero. 
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This is sometimes referred to as an "unweighted analysis." Formally, 

as a likelihood ratio test, it compares the complete model (parameters 

a, 3, and y) with the model (not in our hierarchy) having only parameters 

a and y . Of course, if y=0 this is just the comparison we want 

(namely, a and 3 with a only). Thus this unweighted analysis certainly 

provides a valid answer to our problem. It may, however, be conceptually 

unsatisfying in the sense that it makes no use of the assumption y=0 . 

Our main purpose in this section is to describe an approach which does 

use this assumption. 

We now turn our attention to the likelihood ratio test for comparing 

the model having only a with the model which includes both a and 3 . In 

this test, the variables b are again used as dependent variables. The 

set of variables c (with population means y) are, however, now used as 

covariates. Thus we test the hypothesis that the population means of 

the variables b, "adjusted" for the covariates c, are all zero. Since 

the population means of c (y) are all assumed to be zero, this new 

hypothesis is identical to the one we wanted to test, namely, 3=0 . 

. . , 2 . . . . 
Again, a form of Hotelling s T provides the appropriate test statistic. 

Formally, the test we have just described is a one-sample 

multivariate analysis of covariance, which tests the hypothesis that 

the "constant term" (vector of adjusted grand means) is zero. Some 

caution must be used here, however, since many descriptions of the 

analysis of covariance begin by subtracting the grand means of the 

covariates from the individual covariate scores. When this is done, 

the grand means of the dependent variables are not adjusted for the 
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covariates, whereas, in the analysis we have described, this does occur. 

(For a discussion of this point as it affects the use of the program 

MULTIVARIANCE, see the Appendix.) 

Returning to the general hierarchy of models discussed earlier, 

one common interest is to select an appropriate model from the hierarchy. 

Thus, in the polynomial example, the interest may be in identifying 

the appropriate order of the polynomial. A procedure which has been 

suggested for achieving this involves the sequential use of the tests 

described above. More concretely, as a first step, the complete model 

is compared with the second model in the hierarchy. Here no parameters 

are assumed to be zero, so the set y is empty. Consequently, there are 

no covariates available from the set of new variables and the two tests 

(unweighted analysis and analysis of covariance) are identical. In this 

first comparison, if the null hypothesis can be rejected at some 

pre-selected level, the procedure stops and the complete model is 

identified as the appropriate one. 

If the null hypothesis cannot be rejected, then the second and third 

models in the hierarchy are compared. Rejection of the (new) null 

hypothesis means identifying the second model as appropriate. Failure 

to reject leads to a comparison of the third and fourth models, and 

so on. If none of the null hypotheses in this sequence is rejected, 

then we are left with the last ("simplest") model in the hierarchy. 

When unweighted analysis is used , this sequential procedure 

involves simply testing whether the means of successive sets of 

transformed variables are zero in the population. For the analysis 

of covariance approach, the set of covariates at each step 
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consists of the dependent variables from all previous steps. 

A special case of the above occurs when each model in the hierarchy 

differs from the adjacent models by only one parameter. (The set of 

polynomial models discussed earlier falls into this category.) Here 

all tests become univariate. The unweighted analyses yield successive 

one-sample _t-tests on the means of the transformed variables. The analyses 

of covariance are equivalent to a series of step-down F-tests on the 

set of transformed variables. The order in which these step-down tests 

are carried out is critical, and (as we shall see in the next section) 

has been a source of confusion in the past. The first variable in the 

ordering should be the one associated with the parameter appearing only 

in the complete model. The mean of the second variable should be the 

parameter appearing only in the first two models in the hierarchy, and 

so on. In the polynomial example, the variable representing the highest 

order coefficient should be first and the variable representing the 

linear coefficient last (given that it is not usually of interest to 

test whether the constant term is zero). The step-down ^-values should 

then be read in this same order, stopping with the first one which 

exceeds the corresponding critical value. 

Once an (apparently) appropriate model in the hierarchy has been 

identified, the question of estimating parameters in this model arises. 

The simplest estimates for the parameters in our final model are just 

the sample means of the corresponding transformed variables. Their use 

parallels the unweighted approach to testing. The means of these same 

variables, adjusted for all the remaining variables (used as covariates), 

are the maximum likelihood estimates of the final model parameters. 
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They are obviously associatedwith the analysis of covariance (or 

likelihood ratio) approach to model comparisons. 

Using the estimated standard errors for the sample means, or 

the adjusted standard errors for the adjusted means, together with 

critical values from the appropriate _t-distributions, interval estimates 

of the model parameters may be constructed in either approach. In 

many cases, it may be useful to substitute point estimates for the 

parameters in the final model and thus reconstruct estimated means 

for the original responses to the different conditions or times. These 

will typically differ from the sample means, and an examination of the 

differences provides an important check on the adequacy of the final model. 

While the above discussion applies in principle to the study of 

any hierarchy of models for repeated measures, there is an important 

practical point to be made regarding the polynomial example. Primarily 

for reasons of numerical precision, it is common to work with so-called 

orthogonal polynomial coefficients instead of the original coefficients 

(0^) shown in (1). The ith orthogonal coefficient is actually a linear 

combination of 0., 0.^., ...» and 0 . Consequently, a test that the 
i i+l p—I 

ith orthogonal coefficient is zero, given that all higher order coefficients 

are zero, is actually a test of 0.=O given 0 
i+1 =0 =0 . 

p-1 

Although working with orthogonal polynomial coefficients has no 

adverse effect on testing, it should be remembered that the estimates 

one obtains are not estimates of the original 0^ . The latter may be 

obtained from the estimated orthogonal coefficients via a linear 

transformation, but in many cases it will be more useful to estimate 

the original means directly. We do this in the example of Section 4. 
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3. Historical developments 

Two early discussions of the use of multivariate analysis of 

variance with repeated measures are given by Bock(1963) and Finn(1969). 

Both advocate a sequential search through a hierarchy of models, as 

discussed in the previous section. Moreover, they correctly describe 

unweighted analysis as one approach to testing in this context. When 

they turn to the use of analysis of covariance (and specifically step-down 

F-tests), however, both make the critical error of using the wrong 

covariates. Thus in terms of the sets of variables a, b, and c of Section 

2, they test the means of b adjusted for the covariates a (instead of c). 

In the step-down analysis, this means that they analyze the variables in 

exactly the reverse of the correct order. It also means that they test 

the wrong hypotheses. Instead of considering values of $ adjusted by 

linear combinations of y (all elements of which are assumed to be zero), 

Bock and Finn test 3 adjusted by linear combinations of a (about which 

nothing has been assumed). Thus, for instance, a correct rejection of 

such a null hypothesis could be due to non-zero elements of a, rather 

than non-zero 3 • 

When considered in this light, step-down analysis in the "wrong 

order" clearly has nothing to recommend it. Unfortunately, it is also 

described (among other places) in Bock(1975) and Finn & Mattsson (1978). 

Moreover, there appears to be no recognition in the literature (other 

than a mild comment by Roskam, 1976, p. 120) of the basic flaw in such a 

wrong order analysis: namely that it tests the wrong hypotheses. We 

find this an unfortunate state of affairs and hope the present paper will 

at least serve to warn researchers to avoid such analyses. 
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Other work in the field includes that of Potthoff & Roy (1964), 

who developed a weighted least squares approach to the analysis of 

repeated measures data (or "growth curve" data, as it is called in 

the biometric literature). In their treatment, one has the freedom of 

selecting an arbitrary (symmetric, nonsingular) matrix of weights. If 

one choses the identity matrix for this purpose, the result is 

unweighted analysis. (Now we can see the reason for the name.) The 

optimal choice of a weight matrix would be the inverse of the matrix of 

population covariances among the responses. Unfortunately, this is never 

available to the researcher. Khatri (1966) took a likelihood approach 

to the growth curve problem and showed that maximum likelihood estimates 

were given by expressions equivalent to using the inverse of the 

samp1p covariance matrix as weights in the approach of Potthoff & Roy. 

He also showed how models could be compared based on likelihood considerations. 

Rao (1965, 1966, 1967) developed the analysis of covariance 

approach described in Section 2, where variables corresponding to 

parameters not in the model are used as covariates. In these papers, 

he also considered the possibility of using only a subset of the available 

covariates. The (unknown) pattern of covariances among the responses, 

together with the number of observations in the sample, may very well 

be such that better estimates and more powerful tests can be obtained 

by dropping some (or even all) of the potential covariates. Thus, 

under some circumstances, an unweighted analysis (where all covariates 

have been dropped) may be more desirable — from a statistical point of 

view — than a complete analysis of covariance. 
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We avoided these issues (for the sake of simplicity) in Section 2 

and do not wish to discuss them in any detail here. We find the analysis 

of covariance (using all available covariates) conceptually appealing, 

but realize that — especially with small sample sizes — its use may 

be undesirable or even impossible. To give a simple example, imagine 

estimating the parameters for a quadratic model applied to responses 

at ten time points from a sample of five subjects. Here there are seven 

covariates available (ten variables minus the three parameters of the 

quauratic moael) but, if all were used, the standard errors for our estimates 

would have negative degrees of freedom (i.e., such an analysis is impossible). 

With unweighted analysis, on tne other hand, there would still be four error 
degrees of freedom. 

The work of Grizzle & Allen (1969) systematically describes, 

compares, and expands the results of Potthoff & Roy,Khatri, and Rao. 

An important comparison is summed up in the following quote (Grizzle & 

Allen, 1969, p. 362): 

Hence, the estimates obtained by the analysis of 

covariance, by maximum likelihood, and by weighting 

inversely as the estimated variance are identical. 

What this does not say is that the tests, standard errors, and degrees 

of freedom obtained from Potthoff & Royfs approach (which we may simply 

call a "weighted analysis") do not agree with those from the analysis 

of covariance. This is because the weighted analysis is only developed 

for the case when the weight matrix is constant and not a function of 

the data. Consequently, it makes no allowance for the fact that we have 

used the sample covariance matrix, and that this will vary over repeated 
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sampling. As a result, the tests, standard errors, and degrees of freedom 

from a weighted analysis will only be valid in the limit as the sample 

size approaches infinity. Since the analysis of covariance provides 

exact, small sample results, these should be used in preference to those 

of the weighted analysis. 

This point arises in connection with a recent article (Bock, 1979) 

on the analysis of time-structured data which includes a section on 

multivariate analysis of repeated measures. It is also an issue for an 

option in MULTIVARIANCE, Version VI, and the accompanying discussion in 

the User's Guide (Finn,1978). Bock (1979) describes both the unweighted 

and weighted analyses of repeated measures data, and correctly notes 

that the latter does not give exact tests for finite samples. There is, 

however, no mention of analysis of covariance as a solution to this 

problem. Similarly, weighted analysis is available for the analysis of 

repeated measures in MULTIVARIANCE, Version VI, and the user is warned 

that it is only an asymptotically valid procedure (Finn, 1978, p. 48). 

The only discussion of analysis of covariance for repeated measures 

analysis does not occur in connection with the weighted analysis 

(Finn, 1978, p. 44), and, more seriously, still advises using what we 

have seen to be the wrong covariates (!) 

Thus another goal for this paper is to inform researchers who find 

the idea of a weighted analysis attractive that they can obtain the 

same point estimates, together with exact tests, standard errors, and 

degrees of freedom by taking the analysis of covariance approach. 

(Again, see the Appendix for more details on doing this with MULTIVARIANCE.) 
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4. Example illustrating various analyses 

To make some of the points in the previous sections more concrete, 

we reanalyzed a data set used by Grizzle & Allen (1969, p.359. Table 1). 

The data come from an unpublished medical study and are repeated 

measurements of coronary sinus potassium (in mil equivalents per liter) 

made on four groups of dogs following coronary occlusion. Measurements 

are made for each dog at 1, 3, 5, 7, 9, 11, and 13 minutes after occlusion 

(for a total of seven repeated measures). The dogs in the first group 

(nj = 9) serve as a control. Those in the remaining three receive 

various treatments prior to coronary occlusion, as follows: 

2. extrinsic cardiac denervation three weeks prior (^ = 10), 

3. extrinsic cardiac denervation immediately prior (n^ = 8), and 

4. bilateral thoracic sympathectomy and stellectomy three weeks 

prior (n^ = 9). 
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We assume that the effects of the experimental treatments are unequal 

to zero, so the parameters for these effects were always included in 

the models that were compared. Several analyses were performed: 

1. unweighted analysis (no assumptions about parameters 

not included in the models), 

2. step-down tests in the wrong order, 

3. step-down tests in the correct order, 

4. weighted analysis (with the inverse of the sample 

within-groups covariance matrix used for weights), and 

5. multivariate analysis of covariance. 

Test results of the first four analyses are presented in Table 1 , up to 

the first significant result. (We have left the exact choice of 

significance level purposely vague. The choice is only practically 

relevant in this example for the unweighted analysis, and here we have 

simply used .05 per test.) The goal of the analyses in Table 1 is to 

identify an appropriate polynomial model for the main effect of time 

(upper half of table) and for the time x treatment interaction. Note 

that the sextic term tests are identical for the weighted, unweighted, 

and correct-order step-down analyses. This will always be true for 

model comparisons involving the complete model (in this case the sixth 

order polynomial). The wrong-order sextic tests differ from the others 

because the linear through quintic terms have been used as covariates. 

Further examination of Table I reveals that the remaining F-values 

from the weighted analysis are consistently slightly larger than the 

correct-order step-down J^'s. The extent of agreement is an indication of the 

quality of the approximation implicit in the weighted approach. 
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TABLE 1. Test results for illustration using four methods of analysis 

Constant 
given 
Treatments 

unweighted wrong order right order weighted 

F df p< F df p< F df p< F df p< 

sextic 

quintic 

quartic 

cubic 

quadratic 

linear 

.02 1,32 .89 

2.69 1,32 .12 

.00 1,32 .97 

4.07 1,32 .06 

.03 1,2.7 .88 

2.41 1,28 .14 

3.32 1,29 .08 

.01 1,30 .93 

.02 1,32 .89 

2.60 1,31 .12 

.04 1,30 .84 

15.76 1,29 .01 

.02 1,32 .89 

2.68 1,32 .12 

.05 1,32 .83 

18.89 1,32 .01 

Treatments 
given 
Constant 

unweighted 

F df p< 

wrong order 

F df p< 

right order 

F df p< 

weighted 

F df p< 

sextic 

quintic 

quartic 

cubic 

quadratic 

.24 3,32 .87 

.50 3,32 .69 

.60 3,32 .62 

3.42 3,32 .03 

1.36 3,27 .28 

1.11 3,28 .37 

.38 3,29 .77 

1.30 3,30 .30 

.24 3,32 .87 

.48 3,31 .70 

.63 3,30 .61 

8.01 3,29 .01 

.24 3,32 .87 

.50 3,32 .69 

.69 3,32 .57 

9.07 3,32 .01 

^ m 2. • U 1 

Comparison of the tests for the cubic term (both main effect and interaction) 

from the unweighted and right-order analyses reveals the apparently 

greater power of the latter (assuming the cubic model is appropriate) 

in this example. As expected, the wrong-order tests bear little relation 
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to the others, with the exception of the unweighted test of the quadratic 

main effect of time. Here the only difference between the two is that 

the wrong-order analysis uses the linear variable as a covariate and, 

apparently, the adjustment due to this variable was minimal. 

In this example, the results of the step-down analysis (in the 

correct order) point to the choice of a cubic polynomial model for both 

main effect and interaction. Therefore, we continue by estimating the 

parameters (and the associated standard errors) for that model. 

In a complete model, the parameter estimates and standard errors are 

identical for the weighted, unweighted and covariance analyses (since 

there are no covariates). However, if we estimate the parameters and 

standard errors in a more restricted model (such as the cubic polynomial 

in our example), the three methods will yield different results. (The 

wrong-order analysis will not be considered further in this discussion.) 

In Table 2 the differences among the three methods are illustrated 

for two selected parameters of our final model. Examination of the point 

estimates reveals the identity of the values produced by weighted analysis 

and the analysis of covariance. The point estimates from the unweighted 

method, on the other hand, are identical to the values produced for these 

parameters by all three methods when fitting the complete model. The 

slightly smaller standard errors and larger degrees of freedom resulting 

from the weighted analysis(compared to the analysis of covariance results) 

are a consequence of the failure to take into account the variability 

introduced by the covariance adjustment. 
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TABLE 2. Parameter estimates in the cubic model using three methods 

Constant term for comparing groups 1 and 3 

Analysis point estimate standard error df 

unweighted -1.26 .66 32 

weighted -1.50 .62 32 

covariance -1.50 .67 29 

Quadratic term for comparing groups 1 and 4 

Analysis point estimate standard error df 

unweighted .20 .22 32 

weighted .34 .15 32 

covariance .34 .16 29 

A major disadvantage of the transformation of the original responses 

to variables representing orthogonal polynomial coefficients (as occurred 

in this example) is that the resulting parameter estimates are not 

readily interpretable. The MULTIVARIANCE program (Version VI) allows 

the computation of estimated means when working with an incomplete model. 

These estimated means can then be compared with the original sample 

means as a further assessment of the fit of the model. In Table 3, the 

estimated means from the cubic model and the residuals (observed minus 

estimated) are presented. There appear to be no serious discrepancies. 
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TABLE 3. Estimated response means based on the cubic model (with 

residuals from observed sample means) 

Time 

1 

3 

5 

7 

9 

11 

13 

Group 

2 _3 __1 

4. 14(-.03) 

4.19(-.01) 

4.51( .00) 

4.90(-.13) 

5.19(-.12) 

5.16( .06) 

4.64( .08) 

3.58(-.04) 

3.65(-.02) 

3.66(-.04) 

3.63(-.07) 

3.58(-.02) 

3.51(-.01) 

3.46( .00) 

3.55( .05) 

3.70( .03) 

3.99( .21) 

4.30( .14) 

4.51(-.01) 

4.52( .01) 

4.21( .05) 

• 4_ 

3.57( .07) 

3.74( .04) 

3.87( .14) 

3.96( .11) 

4.01(-.03) 

4.01( .06) 

3.98( .06) 

In Figure 1, the estimated means are plotted. 

group 1 

group 3 

group 4 

group 2 

I i * T 9 *' >3 

Time (min.) 

FIGURE 1. Estimated response means based on the cubic model 
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APPENDIX 

The analyses in Section 4 were carried out with the help of the 

MULTIVARIANCE program, Version VI. In working with this program to 

get results such as ours,one must take account of a few peculiarities. 

In the MULTIVARIANCE program, the sample design (groups or treatments 

in our case) and the design on the dependent variables (repeated measures 

over time in our case) are separately specified. When one specifies an' 

incomplete model for the design on the dependent variables (the cubic 

model in our case), the point estimates of the constant in the sample 

design (corresponding to the main effects for the repeated measures) are 

not adjusted for the covariates when an analysis of covariance is 

performed, whereas in a weighted analysis with MULTIVARIANCE they are. 

However, the corresponding standard errors from the analysis of covariance 

are adjusted for the covariates. Thus the standard errors are what we 

want, but are not appropriate for the unadjusted estimates given by 
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the program. As we have already mentioned, the estimated standard errors 

and degrees of freedom from the weighted analysis are only asymptotically 

valid. 

Finally, to obtain estimated means of the original responses in 

MULTIVARIANCE, one must use the weighted analysis option. The estimated 

means obtained with the analysis of covariance are of the transformed 

variables only. 

With these observations in mind, we may now construct the following 

outline for carrying out the sort of analysis described in Section 2 and 

illustrated in Section 4: 

1. Carry out a step-down analysis of the transformed 

variables (starting with the complete model and 

working down the hierarchy) to assess the complexity 

of the appropriate model. 

2. After making a decision about the appropriate model to 

be fitted, carry out a multivariate analysis of covariance 

on the variables associated with parameters in the chosen 

model, using the remaining variables as covaria:tes . From 

this analysis, standard errors and degrees of freedom can be 

used, but not the point estimates (at least not those for 

the repeated measures main effects). 

3. Carry out a weighted analysis, specifying for the design 

on the dependent variables the chosen model. Use only the 

point estimates of the parameters and the estimated 

response means from this analysis. 


