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ON THE APPLI CAB ILITT OF THE TEST FOR THE RASCH MODEL 

Arno I o L. van den toollenberg* 

Abstract 

The 0 statistic as introduced by Van oen Viollenberg (1979,1962) 

presumes a partitioning of the oateset into groups of subjects having 

the same raw score. Molenaar (I960) showed that the item parameters 

should be estimated within each subsample separately in oroer to obtain 

statistics, which are asymptotically distributee as chi-square. 

In the present study it is shown that it is also possible to obtain 

the 0 statistic for composite partitionings, in which several level 
2 

groups are combined into one subsample. 

Simulation results are presented inoicating that the (y statistic for 
2 

the alternative partitionings approximates the chi-square distribution 

to a satisfactory degree. Violation of the uniaimensionality axiom is 

clearly detected in the partitionings. 

It is argued that by these results the applicability of the Q 
2 

statistic is greatly improved. 
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1. Introduction 

In the lest few years the Rasch model has rapidly gained popularity 

among social scientists. This should not at all be surprising, consider¬ 

ing the desirable characteristics of the model deriving from the central 

property of specific objectivity. One of these characteristics of the 

Rasch moael is sample inoepenaence (°) which says: 

When the model holes for a given population of subjects, every sample 

from that population, may it be random or not, will yield the same 

item parameter estimates within sampling fluctuations. 

It is this required equality of item parameters over subsampless 

which has been used to device statistical tests for the model. The test 

of Fischer ana ScheibIechner (1970) inspects the equality of the Item 

parameters of two disjunct subsamples explicitely by means of the 

stat1stic: 

(1) 
Si 

;l!1) - ;s2> 

+ S‘(2)H 

Here is the parameter estimate of Item I in the first subsample 

and s‘(l) is the corresponaing standard error of estimate. For suffi¬ 

cient I y1 I arge N the squared statistics (1) are distributed as chi-square 

with one degree of freedom; summation of the statistics (1) over all 

items then gives an overall statistic, which Is, according to Fischer 

ana ScheibIechner, aistributed as chi-square with k-1 aegrees of free- 

aom. Van den Wollenberg (1S7S) showed that this last contention Is not 

(°) For a detailed discussion of sample independence and specific objec¬ 

tivity one is referred to Fischer (1S74). 



32 

true. For our present purposes it suffices to point out that the statis¬ 

tic checks on the equality of the item parameters of the subsamples in 

the partitioning. The number of subsamples in the Fischer-Scheiblechner 

proceoure is always two. 

The conditional likelihood ratio test (Andersen, 1973) inspects 

whether the overall conditional likelihood is equal to the product of 

the likelihoods of the subsamples in the partitioning: 

(2) X = 

L (i) 

n L (e(r)) 
1 

Here L (£.-) is the maximum of the conditional likelihood function in the 

total sample, given the item parameter estimates, e , of the total sam- 

pie and L ' ) is the maximum ot The likelihood function in the sub¬ 

sample with raw score r, given the item parameter estimates of that sub¬ 

sample. The approximate equality (2) becomes an exact equality, when 

the item parameters of alI subsamples are equal and, the other way 

around, the equality (2) can only hold when the item parameters are 

equal. So the conditional likelihood ratio test checks the equality of 

the item parameters and this equality alone. 

The statistical tests of Martin Lot (1S73), Wright and Panchapakesan 

(1969) and the (^ statistic of Van den Wollenberg (1979,1962) all entail 

a comparison of expected and observed frequencies in the subsamples, 

given the item parameter estimates of the total sample. The situation 

will be depicted for the statistic; the observations mace in the fol¬ 

lowing with respect to , hold to the seme extent for the other two 

statistics. 

Under the null-hypothesis that the total sample item parameters are 

equal to the item parameters of level group r, the probability that item 

i will be solved by a subject with raw score r is: 
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(3) IT . 
ri 

=i (i) 

Yr (i) 

Here is the elementary symmetric function and Y^j i+s partial 

derivative with respect to item parameter (see e.g. Fischer (1974), 

Van den Wollenberg (1979)). The expected frequency may now be obtained 

by multiplying (3) by the number of subjects in level group r: 

(4) E(n •) = n * 
' rv r 

£ y(i) 
Ei Yr-1 

This expected frequency under the model is compared with the observed 

frequency by means of the famil iar Pearson statistic: 

(5) 
{nri - E(nn.)}2 {nrT - E(nrT)}2 

Vi -- + 
n y 

E(nri) E(hrT) 

where n . stands for the number of subjects in level group r with a 
r i 

negative response on item i. For further details concerning the 

rational of the statistic one is referred to Van den Wollenberg (1982). 

When the item parameters of level group r would be estimated, which 

in fact is not the case, the estimation equation would be: 

(6) 
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The difference between (4) and (6) is only lying in the item parameters, 

so again the conclusion must be that the statistic at hand implies a 

comparison of the equality of the item parameters over subsamples, which 

holds in the same way for the Martin Lof statistic. The Wright- 

Panchapakesan statistic was shown to be in error (Van den Inol lenberg 

(1980)), but when the errors are corrected the statistic becomes 

equivalent to Q and by that the above observations also hold for this 

statistic. 

The statistics of Martin Lof (1973), Wright and Panchapakesan and the 

Q statistic of Van den Wollenberg (1979,1962) mount up to a check on 

the equality of item parameters over subsamples, even though the item 

parameters are only estimated for the total sample and not for the sub¬ 

samples. 

Several authors (Gustafsson and Lindblad (1978), Stelzl(1979) and Van 

den Wollenberg (1979,1982)) have pointed out that the above tests 

inspecting equality of item parameters, may fail to detect violation of 

the dimensionality axiom. Van den Wollenberg (1979) gave a set of suffi¬ 

cient conditions under which equality of item parameters over subsamples 

was realized, even for a two-dimensional latent space. 

Equality of item parameters over subsamples may be a necessary condi¬ 

tion for the Rasch model to hold, it most certainly is not a sufficient 

condition. The model tests of the above type are especially sensitive to 

violations of the axioms of monotonicity and sufficiency (Van den Wol¬ 

lenberg (1979), Gustafsson(1980a)); it can be said that these tests 

inspect the parallel I ism of item characteristic curves (Gustafsson 

(1980a)). 

Van den Wollenberg (1979,1982) pointed out that the failure of these 

test procedures to detect certain types of model violations is associ¬ 

ated to the partitioning of the sample according to raw score, which is 

the most commonly used partitioning. However, this is not to say that 

any other partitioning of the sample into subsamples will not suffer 

from this inadequacy. Van den Wollenberg (1979,1981) introduced a method 

to test the dimensionality axiom, using the above statistics, which is 
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based on a suitable partitioning of the dataset using items of the test 

as partitioning criterion. These items are called splitter items by 

Volenaar (1560). 

Van oen Wollenberg (1979,1962) also introduced a new statistic, Q^, 

which is especially sensitive to violation of the axioms of unidimen¬ 

sionality and local stochastic independence. In this paper we will focus 

our attention on the practical applicability of this statistic. In sec¬ 

tion 2 this statistic will be introduced shortly. In section 3 some 

problems in the application of Q will be discussed, whereas in section 
2 

4 a possible solution to the problems will be introduced. In this sec¬ 

tion some general observations will be made with respect to the applica¬ 

tion of Q in practical settings. 

2. The Q statistic 
-2- 

The Q statistic was introduced by Van den Wollenberg (1979,1962) in 
2 

order to fill the existing gap in the testing equipment for the Rasch 

model. The statistic was shown to be especially sensitive to violation 

of the dimensionality axiom. In fact, the statistic inspects local sto¬ 

chastic independence of item pairs within level groups, however, when 

more dimensions underly the data, this will show in lack of local sto¬ 

chastic independence,when a one-dimensional model is applied. It is 

obvious that Q is by nature also sensitive for violation of local sto- 
2 

chastic independence, that does not derive from violation of unidimen- 

slonaIity. 

For a detailed discus ion of one is referred to Van den Wollenberg 

(1562). how we will make do with a short exposition of the procedure to 

obtain the statistic. 

- The total sample is divided into level groups according to raw score. 

As usual the level groups 0 and k are excluded from the analysis 

leaving k-1 subsamples (1,.,k-1). 



The level groups 1 and k-1 are also excluded from the analysis for 

obvious reasons. In the level group with raw score 1 the second order 

frequencies (i+,j+) are necessarily equal to zero (otherwise the raw 

score would at least be 2 In stead of 1) and quite analogously the 

second order frequencies (i-,j-) are zero in the level group with raw 

score k-1. So these level groups cannot give information about the 

association between the item pairs, and hence are removed from the 

sample. This implies that a total of k-3 (r=2,....,k-2) level groups 

is retained in the Q analysis. 
2 

For each level group item parameters are estimated and by means of 

these estimates the second oraer probabilities are obtained: 

(7) 7T . • 
nj 

Ei Ej V2 

where fi is the estimated probability of a simultaneous realiza¬ 

tion of i^and j and Yr-2^ are secona °rder partial aerivatives 

of'the elementary symmetric functions with respect to and Ej 

Comparison of observed and expected second oraer frequencies of the 

2*2 contingency table is again performed by means of the Pearson 

statistic: 

(8) 
nnj 

E(nrij) E(hri5) E(nrTj) E^,) 

where D is the squared difference between observed and expected 
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frequency, which is equal for all cells in the 2*2 contingency table. 

Van den Wollenberg (1979,1582) claims that (8) is asymptotically dis¬ 

tributed as chi-square with one degree of freedom. Molenaar (1980) 

studied four different ways to construct a type statistic. The 

four cases are obtained by using either overall item parameter esti¬ 

mates or the estimates of each level group and by conditioning upon 

the marginals n , n and n or only upon n . He showed that a 
r r i r j r 

satisfactory statistic is only obtained when conditioning is per¬ 

formed on all three marginals mentioned above and when, simultane¬ 

ously, level group parameter estimates are used. This is exactly the 

procedure followed above. 

The overall statistic for level group r is obtained by summation 

over el I item pairs: 

(5) 
Q _ Jo-3 EE 
Vr k-1 i j Tij 

(i = 1,... ,k-l) 
(j = i,...,k ) ’ 

where (k-3)/(k-1) is a factor correcting for the covariance of the 

individual statistics q 
r'j 

It is assumed that the statistic Q is asymptotically distributed as 
1 2r 

chi-square with k(k-3) degrees of freedom. This in fact amounts to the 

assumption that the covariance between the individual q statistics 
r i j 

can be accounted for by the correction factor (k-3)/(k-1). For the 

statistic it has been shown (Van den Wollenberg, 1962) that a similar 

factor can be derived analytically, when all item parameters are equal. 

This proof is based on the fact that equal item parameters imply equal 

covariances. A similar proof should be possible for the present case, 

but has as yet not been provided. Simulation studies show that for the 

case of equal item parameters Q can at least be closely approximated 
2r 

by a chi-square distributed variate. When the item parameters are not 
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equal, the approximation is a 

(Van den Wollenberg (1S62)). 

The individual level group 

overal I statistic Q : 
2 

bit worse, but still quite 

statistics Q can be summed 
2r 

satisfactory 

to obtain an 

uo> 02. IV (l- ■ 2.*-2) 

As the Q (r=2,...k-2) are independent, is chi-square distributed, 

when the Q statistics are. The addition of the Q statistics is yet 
2r 2r 

not as straightforward as it may seem. Each Q statistic is obtained 
2r 

conditional upon the parameter estimates of the level group involved. So 

one could say that each Q is in fact testing a slightly different 

null-hypothesis. However, when is usee after a test of the type 

has been performed, this does not seem to be serious, as in each case 

deviations from local independence are assessed. 

Although Q is defined as the statistic (10), we will also use the 
2 

term in a generic sense to indicate the whole testing procedure. 

3. Some difficulties in the application of Q 

From the fact that the Q analysis is performed on every level group 
2 

separately, several difficulties arise. 

1 Computing time. For every level group the item parameters have to be 

estimated, -which can be a time-consuming affair, when large item 

pools and subject samples are involved. 



^ 1ropossibiIity of estimation. fthen in a subsample an item has been 

passed or failed by all subjects, parameter estimation will prove 

impossible. This is especially likely to occur in the high and the 

low scoring subsamples: a difficult item will rarely be passed in a 

low score subsample, whereas an easy item will rarely be failed in a 

high score group of subjects. Deletion of items for this reason is 

very unattractive, because these items can be very relevant for other 

level groups. 

3 InstabiIity of statIstic. When a Q analysis is performed on a k 

item test, there will be k-3 relevant level groups. Within each level 

group the items are inspected pairwise, a total of k(k-1 )/2 pairs. 

For each item pair a 2*2 contingency table is constructed, so alI in 

al I 

4*k(k-1 )/2*(k-3) = 2k(k-1)(k-3) 

cells are involved in the observation matrix. The number of cells is 

a rapidly increasing function of k; for some values of k the number 

of cells is given here: 

k cells 

5 80 

10 1250 

15 5040 

20 12520 

25 27600 

Each subject figures in each 2*2 table, so the number of observa¬ 

tions is equal to “k(k-1J. When for instance 5 observations per cell 

would be required, 20 subjects per level group would be a minimum and 

for a 25 item test at least 440 subjects are needed In the relevant 
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level groups. 

This minimum value of N is not sufficient to prevent very small 

expected frequencies. Items differ in difficulty, just as subjects 

differ in ability. These two facts will give rise to large devia¬ 

tions from the mean observation number of 5. Especially in the high 

and low scoring subsamples low expected frequencies are bound to 

occur. 

It is known that small expectea frequencies damage the stability 

of chi-square statistics. The following example stems from Van den 

hollenberg (1979). In a Q analysis of the ISI-tests he found the 
2 

following contingency table of expected and observed frequencies: 

observed expected 

305 

6 

313 

310 

10 

320 

6.86 

.14 

303.14 

9.66 

313 

310 

10 

720 

Although in an absolute sense the deviations between observed and 

expected frequencies were small, the small expectea frequency .14 

caused a contribution to of 21.93. Van den hollenberg (1962) dis¬ 

cussed an instance with simulated data conforming the model, in which 

even the statistic suffered from this instability. The number of 

Items was only 8, the number of subjects was 4000, the number of 

cells was only 112, but the parameters were very extreme ranging from 

-4. to +4. Over a total of 100 replications a mean Q of 43.31 was 

obtained, where the expectation was 42. This may still seem reason¬ 

able, but the observed variance was 283.35, whereas the theoretical 

value was 64. Indeed the source of these heavy deviations was lying 
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In the extreme score groups, some giving rise to very high values of 

the statistic. The mean value Is less affected by extreme values than 

the variance, by which the results can be understood. 

In principle all statistics mentioned in this paper may suffer 

from the inoicated phenomenon, in fact in the same study the Martin 

Lof statistic proved to be more sensitive to small expected frequen¬ 

cies than the Q statistic. 

It may be obvious that the applicability of Q would be greatly 

improvea If the number of cells in the observation matrix could be 

drastically decreased. 

Another problem in the application of the Q statistic is the accu¬ 

racy of computations. It is a well known fact that the difference algo¬ 

rithm for computing the elementary symmetric functions and their first 

oroer partial derivatives (e.g. Fischer, 1974) becomes inaccurate, when 

the number of items exceeds 20. In order to obtain the Q„ statistic the 

second order partial derivatives are also neeaed adding another recur¬ 

sive stage and another source of computational inaccuracy. 

Gustafsson (1960b) proposes an alternative algorithm for computing 

the elementary symmetric functions and their first order partial deriva¬ 

tives, which gives also accurate results for large values of k. In 

another contribution to the present issue Jansen (1981) shows how the 

second order probabilities can be obtained from the first order proba¬ 

bilities, which implies that the second order partial derivatives are 

not needed. 

So it seems that the accuracy problem associated to Conditional Max¬ 

imum Likelihood estimation and the statistics Q and Q have been 
1 2 

solved. 
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All the disadvantages of the 0 procedure mentioned in the preceding 

section would be reduced to a considerable degree, when it would prove 

possible to drop the requirement that the parameters should be estimated 

in every level group separately. In the present section we will study 

the possibilities to use other partitionings of the dataset than the one 

we used until now. In the first part the theoretical aspects are dis¬ 

cussed, whereas in the second part simulation results are presented. In 

order to prevent confusion it seems useful to introduce some shorthands 

for the partitionings discussed in the present section. In the follow¬ 

ing we will use the terms: 

the sample is divided into k-3 level groups,one 

group for each relevant raw score, 

the sample is divided in a high- and 

a low-scoring subsample 

the sample is divided in a high, a low 

and an intermediate score'group 

all level groups are taken into one 

'subsample 1 

half 

three 

total 

4.1. Some theoretical considerations 

The 0 statistic is a sum of statistics q which are obtained 
2r r i j 

within each level group for each item pair. For each item pair a 2*2 

contingency table is obtained. As Van den tvollenberg (197S, p 127) 

points out, the observed marginals of this contingency table should be 

equal to the expected marginals. This requirement holds, when in each 

level group the item parameters are estimated, kolenaar C1980) studies 

this point very explicitely considering several cases. Only in the case, 

where level group parameters were used and the second order 
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probobiIities were obteined conditional upon the marginals n and n , 
r i ■ r j 

the q had an asymptotical chi-square distribution. It is exactly this 
rij 

procedure that was used by Van den Wollenberg (1979,1962). 

When the sample is divided into level groups and q statistics are 

obtained within level groups, it is necessary to obta'in item parameter 

estimates for each level group separately. The study of Molenaar showed 

that overall estimates in combination with statistics within level 

groups do not give chi-square aistributed statistics. However, there is 

yet another way to obtain the statistics. 

When a sample is divided into level groups, these groups can be taken 

together into composite partitionings, as for instance a partitioning 

high-intermediate-low. Now item parameters are obtained within each of 

these subsamples and fhe statistic is obtained for the whole subsam¬ 

ple simultaneously. When we use g as a subsample index, the first and 

second order expected frequencies are obtained as 

E(n •) = Z n v gi' r r 
ei Vl > 

(ii) (r = 3i.g,) 

E(ngij> = f n, 

£i9) ej9) (i(9)) 

?r(i(9)) 

Here g^ is the lowest score in the subsample and g is the highest 

score. 
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Now the following contingency tables can be obtained: 

observed 

J 

theoretical 

j 

0 0 

n E(n ) 
gi 

0 n . E (n .) 
9' 

n 
90 

n n 
g 

E(n .) E(n ) 
gj gj 

n 
g 

It can be easily seen that the expected and observed marginals are 

equal, because the item parameters are estimated by solving the the fol¬ 

lowing set of equalities: 

(12) 

which is equivalent to the equation used to obtain the first order 

expected frequencies in (11), when estimated parameters are used. The 

2*2 contingency table follows an extended hypergeometric distribution 

(Molenaar (1980)). It can be shown that the requirements of Harknessl 

(1965), as cited in Molenaar (1980) are fulfilleo, which implies that 

the q 
rij statistic is equal to the normal approximation of the extended 

hypergeometric. As a consequence each q is asymptotically distri- 
r i j 

buted as chi-square with one degree of freedom (°). 

(0) As the study of Iwolenaar i s not yet officially pub I ished, we w i I I at 

this moment abstain from an elaborate exposition on this point. 
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4.2. Distributional properties 

When the individual q statistics are summed to obtain the statis- 
r i i 

tic Q , it is assumed that the covariances ot the individual statistics 
2r 

are properly dealt with by means of the correction factor (k-3)/(k-1). 

For the raw score partitioning this has been shown to be the case to a 

satisfactory degree. 

In order to check whether the approximation still holds good for com¬ 

posite partitionings, a Monte Carlo study was performed. The data- 

construction procedure was the same as used by Van den Wollenberg 

(1S&2). A short out Iine is given here: 

1 A number of k fixed item parameters are fed into the generation pro¬ 

gram. 

2 A subject is sampled from the standard normal distribution 

3 By means of the parameters under 1) and 2) the response probabilities 

are obtained according to the basic equation of the Rasch model. 

4 A vector of k independent elements, one for each item, is sampled 

from the uniform distribution with domain (0,1). 

5 The k probabilities under 3) are compared with the corresponding ran¬ 

dom numbers under 4). An item is said to be positively responded by 

the subject, when the probability exceeds the corresponding random 

number. 

6 Steps 2-5 are repeated N times for desired sample size N. 

For the present simulations we sampled 4000 subjects. In table 1 the 

results are presented for a series of simulations with equal item param¬ 

eters. The number of items varied from 6 through 10. The mean values are 

based upon 100 replIcations each. 
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Table 1 The Q 
2 

total; 

statistic for the partitionings half, three and 

datasets conforming the Rasch model, equal item- 

parameters, N=4000, 100 replications 

number of items 

6 7 

df 5 14 

<5^ 8.67 14.09 

2*df 16 28 
2 _ 

s (Q ) 10.38 24.56 
- 2 

K(Q ) .101 .072 

TOTAL 

20 27 

19.49 27.04 

40 54 

24.68 35.91 

.107 .055 

10 

35 

33.66 

70 

50.68 

.119 

df 18 28 

Q 18.35 28.93 
2 

2*df 36 54 
2 - 

s (Q ) 29.46 54.02 
- 2 

K(Q ) .077 .106 
2 

HALF 

40 54 70 

399.32 54.77 70.18 

80 108 140 

77.62 89.97 111.50 

.095 .080 .091 

df 27 

Q 26.87 
2 

2*of 54 
2 - 

s (Q ) 59.69 
- 2 

K(Q ) .060 
2 

THREE 

42 60 

42.06 60.26 

84 120 

60.69 119.98 

.065 .034 

81 105 

62.90 104.86 

162 210 

169.92 163.36 

.108 .074 

some critical valuer ' r the Kolmogorov goodness of fit 

test statistic K: 

a 

.20 

.10 

.05 

.107 

.122 

.136 
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From table t it becomes clear that the partitionings used here operate 

satisfactorily for equal item parameters. The mean values of the statis¬ 

tics are in all cases very near the expectations. The variance, of 

course, shows larger variability, tending to be a bit smaller than 

expected. The Kolmogorov statistic, K, for the deviation of observed 

distribution and theoretical chi-square distribution is very satisfac¬ 

tory indeed. In no instance the 5$ significance level was reached. So it 

can be stated that for equal item parameters the the distribution of Q 

is closely approximated by a x -distribution 

In table 2 the same model tests are presented, now for item pools 

with differing item parameters ranging from -2. through +2. The results 

are Definitely worse than for the case of equal Item parameters, and in 

some instances clearly significant values of the Kolmogorov statistic 

were obtained. Still the approximation can be looked upon as a good one 

for the following reasons: 

- Only a minority of fit tests shows significant values 

- The sample sizes are very large; each systematic deviation from the 

mooel, however small, will become manifest. 

- Such deviations from the theoretical chi-square distribution as there 

exist tend to make the test a bit on the conservative side. This 

seems a rather harmless property for a model test. 
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Table 2 The Q sta+is+ic for high-low, three and 
2 

partitionings of datasets conforming the 

N=40G0, unequal item parameters ranging 

-2. through +2. 

6 7 

of 9 14 

Q 8.75 13.83 
2 

2*df 18 28 
2 - 

s (Q ) 11.80 17.76 
~ 2 

K(Q ) .086 .068 
2 

df 18 28 

0 16.61 27.98 
2 

2*df 27 42 
2 _ 

s <Q ) 32.18 47.65 
~ 2 

K(Q ) .131 .087 
2 

df 27 42 

25.82 41.81 

2*df 54 82 
2 “ 

s (0 ) 54.66 97.67 
~ 2 

K(Q ) .114 .063 
2 

number of items 

8 9 

TOTAL 

20 27 

17.66 26.66 

40 54 

22.19 31.94 

.161 .137 

HALF 

40 54 

36.69 54.44 

60 81 

71.65 80.76 

.137 .064 

THREE 

60 81 

56.57 62.86 

120 162 

126.50 167.18 

.144 .074 

total samp I 

Rasch model 

from 

10 

35 

32.60 

70 

40.45 

.186 

70 

67.66 

105 

88.50 

.137 

105 

103.79 

210 

149.93 

.093 



The present results bear ressemblence to the results obtained for the 

raw score partitioning (Van den toollenberg, 1962). For equal item param¬ 

eters the fit is extraoraI nary, for unequal parameters it is less but 

still satisfactory. 

The conclusion from the present simulations is that other parti¬ 

tionings of the dataset than the raw score partitioning into k-3 level 
2 

groups also lead to statistics which can be approximated by x to a suf¬ 

ficient Degree. It is even admissible to take the whole sample together 

ano obtain only one set of item parameter estimates and compute Q for 
2 

the whole relevant sample. 

4.3. The detection of mu Itioimensionality 

In the preceding section we have seen that the chi-square distribu¬ 

tion approximates the distribution of Q to a satisfactory degree, even 

when the sample is partitioned into less than k-3 level groups. Now we 

will inspect whether the statistic in conjunction with alternative par¬ 

titionings is also sensitive to violation of the dimensionality axiom 

and to what extent. In table 3 the results are presented of single runs 

on datasets violating the dimensionality axiom. This was done by sam¬ 

pling two parameters for each subject from the bivariate standard normal 

distribution with correlation zero between variates and letting some 

items appeal to one subject parameter and other items to the other (see 

also Van aen Wollenberg (1979, 1962)). It may be observed that the 

alternative partitionings are also sensitive to violation of the model. 
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Table 3 Q statistics for several partitionings of the dataset; 

two-dimensional latent space,N=4000. 

a) equal item parameters 

6 7 

total 332.49 516.48 

df= 9 df= 14 

half 401.62 606.88 

df= 16 df= 28 

three 441.71 552.68 

df= 27 df= 42 

raw 441.71 576.61 

df= 27 df= 56 

b) item parameters ranging from 

total 208.79 300.43 

df= 9 df= 14 

half 290.87 345.21 

df= 18 df= 28 

three 344.69 422.87 

df= 27 df= 42 

raw 344.69 451.76 

df= 27 df= 56 

lumber of items 

8 9 10 

611.23 774.70 1060.68 

dt= 20 df= 27 df= 35 

775.03 963.85 1355.87 

df= 40 df= 54 df= 70 

841.64 1021.91 1469.57 

df= 60 df= 81 df=105 

929.62 1266.63 1715.90 

df=100 df=162 df=245 

-2. through 2. 

445.26 587.03 616.41 

df= 20 df= 27 df= 35 

564.70 693.52 796.55 

df= 40 df= 54 df=70 

646.64 742.84 695.38 

df= 60 df= 81 d f=105 

712.59 876.88 1076.60 

df=100 df=162 df=245 

The power of the test is higher, when all item parameters are equal, 

which can be accounted for by the fact that in this case (item parame¬ 

ters equal to the mean of the subject distribution) the amount of sta¬ 

tistical information in the dataset is larger. The differences between 

the several tests are not very large, especially not when it Is recog¬ 

nized that the more elaborate partitionings have more degrees of free¬ 

dom. So when extreme expected frequencies prohibit the use of the com¬ 

plete raw score partitioning, which will almost always be the case, 

other partitionings may be used instead. 

The partitioning of the dataset into three level groups high- 

intermediate- low turns out to be the best one of the present composite 
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parti+ionings. One reason for this is obvious: this partitioning Is the 

most elaborate one; the deviations are accumulated over more instances. 

There is yet another reason. 

As Van den Wollenberg (197S) argues, the high and low scoring groups 

will not be very helpful In the detection of violation of unidimen¬ 

sionality. High scoring subjects tend to have high parameters on both 

latent traits and therefore a high scoring subsample is homogeneous with 

regard to the underlying traits. The same argument holes for low scoring 

subsamples. The intermediate score groups will contain subjects scoring 

high on one trait and low on the other (or the other way around) and 

subjects that score intermediate on both traits. In other words the 

intermediate groups are heterogeneous with respect to the latent traits 

and this will show in lack of local stochastic independence. 

The above is illustrated by listing the chi-square contributions of 

the level groups to the total statistic. Below this is done for the 

total partitioning of the 10 Item, equal parameter case: 

level group 

2 

3 

4 

5 

6 

7 

8 

Q (df=35) 
2r 

39.22 

117.25 

185.37 

345.29 

253.42 

101 .99 

34.05 

It is seen that violation manifests itself especially in the intermedi¬ 

ate groups. When these groups are taken together in the partitioning, 

deviations will accumulate and violation becomes manifest more easily. 

From table 2 it also seems that for the partitioning 'three' the 

approximation of the chi-square distribution is better than, for 
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instance, for the total partitioning. The 

be an attractive one to use standardly in 

tic. 

partitioning 'three ' seems to 

connection with the Q statis- 

5. Conclusions 

The Rasch model is an important advancement in the measurement of 

individual differences. The model makes it possible to compare persons 

in an objective way, once it has been concluded that the model holds for 

a given universe of subjects and a universe of measurement devices, say 

iterns. 

Except for a special model test introduced by hart in lof (1973), 

which is another test than the better known test statistic T of hart in 

Lof, all model testing has until recently been concentrated on the 

equality of item parameters over subsamples. Equality of item parame¬ 

ters over subsamples is a necessary condition for the model to hold, but 

it is not a sufficient condition, as was explicitely demonstrated by Van 

den Wollenberg (1979,1982). The violation of local stochastic indepen¬ 

dence and unidimensionality may be overlooked by the traditional test 

procedures. 

The statistic is especially sensitive to violation of these two 

axioms, and thus fills the existing gap. However, the application of the 

statistic was not without problems, as item parameters had to be 

estimated in every level group, which entailed several serious problems. 

In the present study it was demonstrated that other partitionings 

than the complete raw score one are possible. Use of one of the dis¬ 

cussed alternatives implies: 

The number of subsamples decreases and with it the number of times 

the item parameters have to be estimated, implying a gain in comput¬ 

ing time. 
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The sizes of the subsamples increase, which garantees that, under 

normal circumstances, the item parameters can always be estimated. 

- The number of cells in the observation matrix reduces considerably, 

so the mean number of observations becomes larger, which increases 

the stability of the statistics q 
ri j 

The partitioning can be chooser depending upon the circumstances. 

For large datasets and for initial runs the 'total ' partitioning may be 

used, implying only 2k(k-1) cells in the observation matrix and 

N*“k(k-1) observations. For this partitioning only one set of item 

parameters has to be estimated and all relevant subjects are included in 

the same 'subsample'. For more intensive testing of the model, the more 

elaborated partitionings can be used to the extent allowed by the 

idiosyncrasy of the dataset at hand. 

Given the above arguments, it does not seem too optimistic to state 

that by the present results, C has become a statistic, which can be 
2 

applied to most datasets without problem. 
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